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The problemof reproducingJ signalswith K loudspeakrsis consideredA algebraictime-domainsynthesisapproach
is developedthat extendsthe multi-input multi-outputinversetheorem(MINT) of Miyoshi andKaneda. The approach
is generaland canencompasgoint surroundsoundsynthesisandloudspeakr/roomcorrection. First, a discretetime-
domainmatrix descriptionis developedthat captureshe effectsof amplifiers,loudspeakrs,androomacoustics Based
onthis model,it is shavn thatexactsynthesiss possiblewith practicalreproductiorapparatusnly if K > J. Sufiicient
conditionsarealsopresentedTheresultsarespecializedo the caseof zero-crosstalkkransaurakoundreproductionand
thetheoreticaimportanceof loudspeakrtime alignments illustrated.Finally, minimum-paverexactsynthesiss briefly

described.

INTRODUCTION

How mary loudspeakrsarerequiredto faithfully repro-
duceanacousticsignalat a particularsetof points? As-
sumingthatthe desiredsignalis available,the key prob-
lemsareamplifier/loudspeasrresponsethatdepartfrom
theideal,roomacousticsandcrosstalkcancellation Ex-
isting approachesre basedon inversefiltering and can
be divided into two classes:non-adaptie and adaptve.
Adaptive techniqueq 1, 2] are basedon randomsignal
modelsandthereforeonly approximatehe true inverse,
aspointedoutin [3]. In particulat signaltransientswill
not betracked exactly dueto memoryof the adaptve fil-
ter, which may causedistortion of the signal. The non-
adaptve exactinverse(MINT—multi-input multi-output
inversetheorem)approachby Miyoshi and Kaneda[3]
is basedon the z-transform. Cross-talkcancellatiorand
3D soundsynthesistechniquescan also be definedus-
ing the z- or Fourier transform[2, 4] (seealso[5] and
the referencegherein). Thesetechniquesare basedon
complex exponentialsignalmodelsdefinedover at least
the positive time axis. For example,frequeng-domain
approachesonsideronly the steady-stateesponsefter
initial transients.

In this paperwe generalizeéhe MINT approachby con-
sideringfinite-durationsignalsin the time domain. The
exact multiple-input, multiple-output(MIMO) response
is characterizedy a Toeplitz-blockmatrix, andtherefore
the approachs basedon linear algebra. Ratherthanin-
vertingor cancellinganundesiredesponsewe consider
whetherit is possibleto synthesizea collectionof inputs
that cangeneratehe desiredcollectionof outputs. The
desiredoutput setis general;in this paperwe treatthe
synthesi®f soundata setof pointlocations,andthethe-
ory thereforeappliesto transauralambisonic,and am-
biophonicsoundreproduction.

This paperis organizedasfollows. Sectionl definesthe
time-domainmatrix descriptionof a MIMO loudspeakr
soundsynthesisystem.Section2 formsthe coreof the
paper and presentgesultson the achievability of exact
synthesisusingtransaurakoundreproductionasan ex-
amplecase.Theresultinginterpretatiorof relative loud-
spealer-recever delaysis givenin Section3. Section4
toucheson the implementationof exact synthesiswith
conclusiondollowing in Section5.

We usethe following nomenclaturelen(h) is thelength
of thevectorh. The transposeof a vectoror matrix is
givenby theoperator(-)*'. The M-dimensionatealvec-
tor spaceis denotedoy RM , andthe rangespaceof the
matrix H is R(H).

1. MIMOTIME-DOMAIN MODEL

Assumethatthereare K input signals(eachuniquelyas-
sociatedwvith aloudspeakr)and.J receivers(e.g.,micro-
phonesor ears),andthatthe loudspeakrsandrecevers
areat fixedlocations. Let the finite-lengthdiscrete-time
impulseresponsdrom loudspeakr k to recever j (in-
cluding amplifier, loudspeakr, androom effects) be de-
notedby the columnvectorhV®). (Theresponseanbe
truncatedbasedn somecriterionif necessary Thenfor
anoutput £ of length L, ary correspondingnput s(*)
is of lengthL — len(h %)) + 1. If sucha pairexists, they
arerelatedby

f(j) — H(jk)s(k), 1)

whereHU*) js Toeplitzwith first columntheconcatena-
tion of h9¥) and L — len(h"")) zeros,andwhosek-th
columnis shifteddown oneposition(with zeroinsertion
atthetop) from columnk — 1.

The compositeoutputvectorcanbe definedasthe stack-
ing of thevectorsf(j),j =1,...,J into onevector f.

AES 22* InternationalConferencen Virtual, Syntheticand Entertainmenfudio 1



Flikkema

Similarly, we canconstructhe compositeinput vector s
froms® k=1,... K.
Using thesedefinitions,we candefinethe time-domain
responsenatrix (TDRM) H asfollows. It is composed
of the Toeplitzblocks

H(jk),

je{L,2,...,J}, ke{,2,...,K}, (2

sothat H is of dimension/L x i, len(s(®)), and
f = Hs. 3)

Thismodelis correctonly if all theloudspeakr-recever
channelsretimealigned,.e., if thefirst elemenof h(¥)
is non-zerdfor all j, k. Thisissueis discussedater; until
thenwe assumdime alignmentto simplify the presenta-
tion.

Thismodelcantakeinto accounnhon-ideabmplifier, loud-
spealer androom characteristicat multiple recever lo-
cations.Theonly requirementarelinearity andtime in-
variancesothatanimpulseresponsérom eachinputsig-
nalto eachrecever canbedefined.

The descriptionof H dependsn the synthesigequire-
ment. Thesimplestis the specificatiorof a setof J pres-
sure (scalar)responsest differentlocations, e.g., J/2
binauralsignalsin the caseof transaurakynthesis.On
theotherhand,the modelalsoadmitsspecificatiorof ve-
locity (vector) responsedy consideringthree orthogo-
nal componentst eachlocation; for example,provision
of thesevelocity componentspatially coincidentwith a
pressurgesponsevill yield ambisoniaeproduction.
We arenow in the positionto ask: For agiven TDRM, is
it possibleto synthesizenput signalssothatany desired
setof outputsignalsd will be producedattherecevers?
In otherwords,whatarethe conditionson J, K, and H
suchthatit is possibleto generatea signal s thatyields
d= Hs?

2. THEACHIEVABILITY OF EXACT SYNTHESIS

The above questioncan be restatedn termsof the fol-
lowing

Definition. A TDRM H is exactsynthesisf for ary de-
siredoutputd thereexistsaninput s suchthatd = H's.

From standardesultsin linear algebrawe have the fol-
lowing result:

Theoeml. A TDRM H isexactsynthesisf rank H) >
len(d), or equivalently, iff R(H) = R/L.

Consequentlyexactsynthesigequireshat H beatleast
aswide asit is tall.

Let I';, bethe L x L identify matrix,and0y, bethe L. x
L matrix of zeros. If the transmissionpath from each
loudspeakrto eachreceverisideal,thenthesubmatrices
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of the TDRM are

Gry _ ) I, =k

wherewehaveignoredscalingfactordfor attenuatiortoss
without lossof generality Hence H is the identity ma-
trix, andeachintendedsignalreachests desiredrecever
with zerodistortionor crosstalk. Therefore,in the case
of ideal (unit-pulse)responseandzerocrosstalkwe can
have exactsynthesisvhenK = J.

We cannow statea necessargonditionfor exactsynthe-
sis.

Theoem?2. In ary practicalsoundsynthesisystem ex-
actsynthesicanbeachiezedonly if the numberof loud-
spealersexceedghenumberof recevers,i.e., K > J.

This canbe seenby notingfirst thatin ary practicalsys-

tem, the submatriceswill be taller thanthey are wide.

HenceTheoreml requiresthat K > J.

In the caseof transaurakound,we desireto reproduce
two signalsattwo locations,andthe TDRM is

®)

(22

g7
= [ D

o712 ]

whereeachsubmatrixhas L rows. Assumethat perfect
ipsilateral responsesan be achieved so that H**) =
I;,. However, dueto crosstalkthecontralateraTDRM'’s
HU® | j £ k, musthave fewer than L columnsin prac-
tice. It followsthat H, eventhoughfull rank, musthave
arangespacethatis a propersubspacef R?>”. Hence,
evenundertheseideal conditions,exact synthesids not
possiblewith two loudspeakrs,andit canbe seenthat
the situationonly worsensf theipsilateralresponseare
notideal.

This obsenationleadsto thequestiorof sufficiency—the
guestiorthatconcludesSection2. It is clearthat H must
have at least.J L linearly independentolumnsfor exact
synthesis.

More usefulwould be a resultthat definesthe minimum
numberof loudspeakrsneededor exact synthesisand
that canbe basedon an easilymeasurableharacteristic
of the multi-input multi-outputelectro-acoustichannel.
The structureof the TDRM can be exploited to obtain
suchasharperesult.

Sincetheoutputspacsds of dimensionJ L, we musthave
by Theoreml that

K
> len(s®) > JL. (6)
k=1

Supposethat the impulse responsesre truncatedto a
commonlength, so that the input sequencesare also of
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a commonlengthlen(s(®)) = M for all k. ThenTheo-
rem1requireshatK M > JL, or

L
K> 22T, @)

Thisresultcanbe summarized:

Theoem3. Exactsynthesiscanbe achievedif (i) H is

full rank (i) the numberof loudspeakrs K satisfieq7).

Moreover, the minimum numberof loudspeakrsneeded
for exact synthesids the smallestinteger exceedingthe
right-handsideof (7).

SinceL and M arerespectiely the outputsequenceand
input sequencdengths,we have that L/M > 1 (due
to the non-idealimpulse responseof the ervironment).
More importantly this resultimplies thatthe greaterthe
dispersion(i.e., as L/M grows), the more loudspeakrs
arerequiredfor exactsynthesislt cannow be seenthat,
for finite-durationsignals,Theorem?2 is simply a wealer
versionof Theorem3, sincethe lattertheoremtakesinto
accountheactualdispersion.

Now considerthe asymptoticcasewhenthe signaldura-
tion grows without bound. Assumethat the longestim-
pulseresponséiasduration, andthatall responseare
zero-paddedif necessaryjo thislength.Then

1.

Llinéoﬂlel—{goLﬁ-I—l -

Thuswe have thefollowing sufficiengy result:

Corollary. As the input signal length grows arbitrarily
large, exact synthesiscanbe achieved if H is full rank
andK > J.

In otherwords,asthe signallengthsgrow, the submatri-
cesbecomesquardn thelimit.

It is of interestto determineherelationshipbetweerthis
matrix conditionandthewell-known MINT conditionre-
gardingtransferfunction zeros. Considera multi-input,
single-outpu{MISO) system In the z-transformdomain,

we have
K

F(z) =Y SW(2)H®) (2).

k=1
If all K channelssharea setof commonzeros,thenwe
have H®) (z2) = C(2)G*®)(z) for all k, and

K
F(z) =C(2) ZS(")(Z)G('“) (2).
k=1
In thetime domain,this impliesthat
f=CaGs.

WhenC(z) = 1 (i.e., nocommonzeros),C is theiden-
tity matrixandG = H. Otherwise C will betallerthan
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it is wide anda lossof rankresults. Hencewe canstate
thatcommonzerosin the setof SISOtransferfunctions
{HU® (2)}K | makingup ary of the J MISO transfer
functionspreventexactsynthesis.

In the MINT approach,t was found that any common
zerosin the z-domainpreventexactinversionwhentwo

loudspeakrsareemployedto reproducenesignal. Three
key advantagesof the presentapproachare (i) it cov-

ers the caseof arbitrary numbersof loudspeakrs and
recevers, (i) amplifier/spea&r characteristiceandroom

acousticsare treatedjointly, and (iii) it addressegxact
reproductionof transients. Finally, it shows the effect
of transferfunction zeroson the reproductionof finite-

durationsignals.

3. TIMEALIGNMENT

Absoluteandrelative delaysareknown to affecttheabil-
ity to invert room responseg$6]. In corventional(i.e.,
not room-adaptie) surroundsound loudspeakr-listener
distancesreascloseto uniformaspossible creatingthe
“sweet spot” wherea more lifelik e soundstageis per
ceived.

Up to this point, we have assumedime alignmentin our
modeling. From the perspectie of exact synthesisthe
presencef relative delaysimpliesthatin eachof the K
submatriceindexedby afixedj, only thesubmatricess-
sociatedwith the minimum propagatiortime to recever
4 areToeplitz: all otherswill have ablock of zerosabove
theToeplitzblock. Thisclearlyimpliesalossof rankand
hencea degradedability to synthesizehe desiredsignal
vector

Notethatnon-zeraelative delaysdo notimply lossof ex-
actreproduction;t simply meansthata particularloud-
spealer (or loudspeakrs)maybeunderutilized Because
of this, Theorem3 canbe extendedto include the time
alignmentrequirement.Fortunately relative time delays
canbe easilyremoved from early channelausingsimple
digitally-implementedroom-adaptie delays;the correct
delayscanbedeterminedy sounding.

4. MINIMUM-POWER SYNTHESIS

Corventionalapproacheso 3D soundattemptto undo
the effectsof theloudspeakrsandroom acousticaising
pre-equalizatiorof the desiredsignals. In contrast,we
proposethe computatiorof a new setof signalsthatwill
reproducehedesiredsignalg(atthedesiredocations).In
this approachall loudspeakrswill in generalcontritute
(in varying degrees)to all received signals: the signals
aresynthesizedothattheloudspeakrsoptimally (in the
senseof minimum overall power) cooperatdo generate
thedesiredresponses.

Assumingthat Theorem3 is satisfied the next stepis the
implementatiorof exact synthesis By Theorem3, there
exists at leastonesignalvectors thatcanreproduceary
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desiredvectord via
d= Hs. (8)

Dueto the factthateachloudspeakr contritutesa large
numberof linearly independenvectorsto H, it is un-
likely that H will be square.Thus(8) is anunderdeter
minedsystemwith aninfinite numberof solutions.Prob-
ablythemostdesirablesolutionis theonerequiringmini-
mumpower. Thiscorrespond#o theminimumEuclidean-
normsolution

3=H'd, (9)

where H' is the pseudoinerse,or Moore-Penrosen-
verseof H (seee.g.,[7]).
A well-known issuein loudspeakr/room correctionis

whetherall spealerreceverchannelareminimumphase.

If strongreflectionsare presentandthe recever is off-

axisfrom aloudspeakr, a channelmay not be. While it

is agoodideato locateloudspeakrsto ensuraninimum-
phasechannelsthis may not alwaysbe possible.In this
contet it is worth notingthatthis synthesisapproactap-
pliesto non-minimumphasechannelsWork is on-going
to quantify the additionalcost(in numberof spealersor
power)in this case.

5. CONCLUSION

This paperintroducedan algebraictime-domaintheory
of 3D soundsynthesishasedon finite-durationsignals
and a discrete-timelinear model of reproductionappa-
ratusand room response. The condition of exact syn-
thesiswas defined,and necessanand sufficient condi-
tionsfor exactsynthesisverefound. The approacthan-
dlesarbitrarynumbersf loudspeakrsandrecevers,and
thefinite-durationmodelaccuratelycapturessignaltran-
sientbehaior. Finally, synthesiqe.g.,transaurabr am-
bisonicapproachesjnd correctionof loudspeakr-room
responsearetreatedointly.

The focusof this paperwassoundreproductionjnclud-
ing pressureand velocity responsesat a collection of
fixed points. It is well-known that exact synthesisof a
soundfield requiresan infinite numberof loudspeakrs.
Thereforethe fidelity of soundfield approximationwith
agivennumberof loudspeakrsis of greatinterestandis
currentlyunderstudy
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