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ABSTRACT

This paper explores one way to use music in the context of affec-
tive design.  We've made a real-time music generator that is de-
signed around the concepts of valence and arousal, which are two 
components of certain models of emotion.  When set to a desired 
valence and arousal, the algorithm plays music corresponding to 
the intersection of these two parameters.  We designed our algo-
rithm using psychological  theory of emotion and parametrized 
features of music which have been tested for affect.  The results 
are a modular algorithm design, in which our parameters can be 
implemented in other affective music algorithms.  We describe 
our implementation of these parameters, and our strategy for ma-
nipulating the parameters to generate musical emotion.  Finally 
we discuss possible applications for these techniques in the fields 
of the arts, medical systems, and research applications.  We be-
lieve that further work will result in a music generator which can 
produce music in any of a wide variety of commonly-perceived 
emotional connotations on command.

1.INTRODUCTION

In  recent  years  a  paradigm  has  emerged,  affective design[1], 
where things are designed in part to elicit emotional responses in 
users.  This paper explores the possibility of using computer mu-
sic for this purpose.  The elicitation of emotion is an intuitive ap-
plication of music: one can make the argument that the elicitation 
of emotion is exactly what most composers and musicians spend 
their lives trying to accomplish.   Music psychologists have stud-
ied music in terms of perception of  emotion, and computer musi-
cians have been creating algorithmic music for well over half a 
century—but there have only been a few cases where the two 
worlds collide[2,3].

We focus on algorithmic techniques for the purpose of evok-
ing specific emotions.  For example, in our engine a user can se-
lect a desired value for both valence and arousal; these two scales 
can be used to describe many human emotions. The algorithm 
will then generate piano music which feels similar in quality to 
the desired affect settings.  This work crosses multiple disciplines 
including music, psychology, and digital  media—and members 
of each of these  disciplines might find this work useful.

Musicians can benefit from this work because creation of this 
algorithm demands study of music structural features, including 
abstract features such as rhythmic roughness, to determine their 
effect on emotion.  Knowledge of a music feature's affect can 
help  composers  and  performers  make  creative  decisions  with 
emotion in mind, just as they already do with well understood 
music structures like tempo and mode.  

Psychologists  benefit  because these  algorithmic techniques 
could be valuable in future study of emotion.  Consider a hypo-

thetical situation where a researcher needs to determine the ef-
fects of mood upon a specific task: one way to go about this re-
search might be to use an affective music algorithm to influence 
the mood of the test subjects.  Such an algorithm could also be 
useful in the study of affective disorders or autism. 

The field of digital media has arguably the most to gain from 
these techniques because  of  the multi-modal  nature  of  today's 
media.  An algorithm like ours, built using affective principles, 
could serve as an automatic soundtrack generator for movies or 
video games, or be used in interactive systems designed for more 
serious purposes like education, rehabilitation, or art. 

2.EMOTION THEORY 

Music and its relationship to emotion has been studied by scient-
ists since the late 19th century, and by musicians for much longer. 
Starting in the 1930's, music psychologists such as Hevner[4] and 
Gundlach[5] have been able to identify and quantify some of the 
emotional effects of  specific features of music such as tempo, 
rhythm, and mode.

Since then, the study of emotion and music has evolved rap-
idly.  In the experiments of Hevner and Gundlach, emotions were 
considered to be discrete elements: feelings such as anger and 
sadness were not really related.  Since then, various models of 
emotion have been developed, many of them mapping emotion to 
continuous multidimensional  space.   One of  the first  of  these 
models is the circumplex model of emotion [6], which has some 
similarities with the emotion groupings used by Hevner.  The cir-
cumplex model considers any emotion to be part of a two-dimen-
sional  space,  in  which  the  x-axis  is  related  to  the  emotional 
valence and the y-axis is related to emotional arousal.

Valence1 is  a  term with  meaning  shared  across  many do-
mains:  in  electronics,  for  example,  valence  describes  whether 
particles are positively or negatively charged.  In emotion theory 
the  meaning  is  similar.  Positive  emotions  such  as  happiness, 
peacefulness,  and  love  are  all  considered  to  have  a  positive 
valence.  Similarly, less pleasant emotions such as anger, sadness, 
and fear all have negative valence.  Arousal2 is a description of 
the amount of energy in an emotion.  Emotions like fury, panic, 
and excitement all have high arousal, while emotions like depres-
sion,  contentment,  or solemnity have low arousal.   In the cir-
cumplex model, each emotion is described as the intersection of a 
certain  valence  with  a  certain  arousal—a  point  in  the 
valence/arousal space.

These two scales, by themselves, do not do a good job of dis-
tinguishing all types of emotion.  Emotions like fear and anger 
are perceptually quite different, for example, but are likely to in-

1 Sometimes called pleasure.
2 Sometimes called activity or  intensity.
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habit the same regions of the valence/arousal space.  This fact 
has led to the development of various conflicting higher-dimen-
sional  models  of  emotion[7,8],  the  most  commonly  used  of 
which is the PAD model.  The PAD model includes the valence 
and arousal axes but adds a third dimension called  dominance, 
which is a measure of approach and avoidance response.  The 
PAD model would do a better job of distinguishing the two emo-
tions used in the above example, because anger is a high-domin-
ance emotion, while fear is a low-dominance emotion.  

It is clear that music is capable of generating more finely-
grained emotions than the valence and arousal scales can distin-
guish[9], and eventually we hope to study music generation in 
terms of three or more axes.  The valence and arousal model is 
perfectly valid, however, and is advantageous in terms of inter-
face design.  For example, a GUI has been designed for our en-
gine in which a single mouse click anywhere on a two-dimen-
sional grid is used to set the desired valence and arousal of the 
music  (Figure  1).   Similar  grid  interfaces  have  already  been 
tested and validated in terms of evaluating emotion[10].  

3.ALGORITHM STRUCTURE 

We feel that the most important part of our work is in the defini-
tion of music parameters which can be implemented in other al-
gorithms.  Music parameters, in the context of this paper, indicate 
music features which can be quantified in some way, and com-
pared using less-than and more-than relationships.  Any aspect of 
music can be a parameter, and new parameters can be contrived, 
as in the example of the rhythmic roughness feature to be dis-
cussed later.

Nothing about this particular music generator has anything to 
do with emotion other than the fact it manipulates music para-
meters which are based on well-studied musical features; for this 
reason, description of the algorithm structure seems almost irrel-
evant.  Nevertheless, it would be impossible to describe some of 

the generalizable music parameters without their implementation 
within this engine's structure.  Figure 2 is a flow chart of the cur-
rent algorithm.  It consists of three interdependent modules: one 
that controls timing, one that controls the harmonic framework, 
and one that selects notes and transmits them via MIDI to an ex-
ternal sound engine.

3.1.Groove: A Timing Module

The  groove  module  controls  all  temporal  aspects  of  this  al-
gorithm.  It tells the harmony module when to change chords, 
and it tells the voicing module when to play and end notes.  It im-
plements  the music  parameters  of  tempo,  rhythmic roughness, 
and articulation, all to be discussed in detail later.  These para-
meters have all been linked to the perception of musical arousal.  

3.2.Harmony: A Harmonic Framework Module

Discussions of harmonic matters may require some background 
knowledge of music theory for understanding.  Persichetti[11] is 
a useful resource on these topics.

 The harmony module ensures that the generated music fits 
into a western modal music context.  It implements the musical 
parameters  of  upper  extensions  and  harmonic  mode,  each  of 
which is associated with valence perception.  A chord progres-
sion is contained within this module which is written, not with 
explicit chords as is the norm, but in terms of chord functions:  

In modal and tonal music, each chord serves a specific func-
tion within the harmonic framework.  Although there have been 
numerous  functions  identified  through  analysis,  they  can  be 
boiled down to three categories: dominant functions, subdomin-
ant functions, and tonic functions.   Chords of similar function 
within the mode can usually be interchanged without affecting 
the quality of the chord progression.  
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Figure 2: Algorithm flow chart.  Solid edges indicate control or 
information flow, dashed edges indicate  an “implemented by” 
relationship.

Figure  1:  A GUI  for  the  affective  music  engine.   The  “run” 
checkbox turns the music on and off, and the emotion quality of  
the generated music is set by clicking anywhere in the “Arousal/ 
Valence” grid.
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Because of this fact, one can write a chord progression using 
harmonic  functions rather  than specific  chords.   Our  harmony 
module contains such a chord progression: tonic, subdominant, 
dominant, tonic, repeat.  Whenever a chord change is requested 
by the groove module, the harmony module first proceeds to the 
next chord in the cycle, then translates that chord into a list of 
notes using methods to be described later, in the discussions of 
the upper extensions and harmonic mode parameters.  

Once a note list has been obtained for the chord, that list is 
sent to the voicing module.  The voicing module can only select 
and play notes that are in the list.  Note that this means our music 
engine cannot play non-chord tones.

3.3.Voicing: A Note Selector and MIDI Interface

The  voicing  module  is  the  last  module  in  the  generation  al-
gorithm,  the  one which transmits MIDI information on to  the 
sound engine [12].  It also implements the music parameters of 
loudness and pitch register through a probabilistic note selection 
scheme.

Whenever  the  groove  module  tells  the  voicing  module  to 
play,  a probability table is constructed on the notes from the har-
mony module.  The weights for the probability table are based on 
three rules:

Rule 1:  Generated notes tend toward a central range, keep-
ing the music from going too high or low.  The range 
can be transposed up or down in pitch.

Rule 2:  New notes will not play on top of notes which are 
already  playing.   In  addition,  each  currently  playing 
note is surrounded by a range that new notes  tend to 
avoid.  This feature allows a simple adjustment of the 
openness or closedness of chord voicings.  Voicings are 
more  open more  in  the lowest  pitch ranges  for  psy-
choacoustic reasons.

Rule 3:  After  notes  are  released,  new notes  tend  to  play 
near the same place.  This rule enforces the concept of 
voice-leading,  with  which pianists and composers are 
familiar.   Voice-leading is  a  strategy  by  which  the 
movement of individual notes is minimized over chord 
changes.

The resulting probability table is used to probabilistically select 
each note.  Next, the volume for each note is determined by a 
gaussian random number generator.  Finally,  the notes are sent 
on to the sample player via MIDI.

4.MUSICAL PARAMETERS 

Determining the parameters was done through condensing, extra-
polating from, or uniting the work of various affective musical 
psychologists.   Of special interest were psychologists who per-
formed experiments controlling for specific musical features in 
regards to emotion. Gabrielsson and Lindstrom [13] have a fairly 
comprehensive review of relevant work.  

Many more features have been studied than can be coded into 
any  algorithm,  so  we  tried  to  focus  on  features  that  had  the 
greatest correlation with perceived valence or arousal.  We ended 
up with tempo, rhythmic roughness, harmonic mode, upper ex-
tensions, loudness, articulation, and pitch register.  

Although each of these features has been studied by several 
music psychologists, often our parameters are not constructed the 
same way as used in the experiments.  For example, in many ex-

periments, when the scientists needed to quantify the music fea-
tures  they were controlling for, their  preferred method was  to 
bring in musical experts to grade each piece of music in terms of 
the desired features.  While this is a perfectly valid quantification 
method, it offers no information to aid in algorithm design, so in 
those cases the created parameters were designed from scratch.

4.1.Rhythmic Roughness

In separate experiments, Hevner and Gundlach each studied the 
affective value of rhythm through the use of an obvious contriv-
ance: reducing the entirety of rhythm to a single parameter hav-
ing to do with how perceptually smooth or rough a rhythm is. 
They also had different definitions of smoothness and roughness. 
Nevertheless, their results showed that their made-up parameters 
could be mapped to perceived musical affect.  Generally, rougher 
rhythms have higher arousal values, although there is entangle-
ment with tempo which, in our case, serves to reduce this effect.

They each thought of rhythmic roughness as a discrete para-
meter.  For example, Gundlach, whose feature definition was bet-
ter for our uses, separated all rhythms into three roughness cat-
egories: 1) smooth, where all notes are of equal length, 2) un-
even,  where  the  pulse  is  maintained  but  some notes  are  sub-
divided  by  half,  and  3)  rough,  where  there  are  multiple  note 
lengths.   

Because we are interested in creating a music-emotion space 
which seems continuous, we could not use a rhythmic roughness 
parameter with only three states.  Therefore, our rhythmic rough-
ness is on a smooth to rough continuum.  At maximum smooth-
ness, each measure is divided into sixteen events of equal length. 
As the roughness  increases,  randomly selected event  pairs are 
joined into single events.  At the maximum roughness, nine junc-
tions  will  have  occurred  (Figure  3).   The  value  of  nine  was 
chosen because with nine randomly-selected junctions it is not 
possible for a rhythmic pattern consisting of all equal lengths to 
result.

4.2.Tempo

Tempo is a feature, strongly correlated with arousal, that seems 
ubiquitous: everyone knows it as a synonym for “musical speed.” 
Unfortunately, in  the  context  of  the  mind,  it  is  just  not  that 
simple.  There are actually multiple different kinds of tempo.  In 
the context of composition there is score tempo, which is easily 
quantified in beats-per-minute.  This is what musicians think of 
when they think of tempo.  It is also what is used in this music 
engine: it works by expanding or contracting the note durations 
in the rhythm pattern generated by the rhythmic roughness para-
meter.

Unfortunately, score tempo as written is not always as per-
ceived, which is why two other definitions exist for tempo, called 
preferred tempo and perceived tempo.  Preferred tempo is  the 
tempo that  listeners  tap their  foot  to;  and often this is half  or 
double the score tempo.  It tends to land in a moderate range of 
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Figure  3: (A)  Smoothest  rhythm, consisting of  sixteen  
equal-length rhythmic events.  (B) Rougher rhythm, in  
which four of the sixteen events are joined at random.  
(C)  Roughest  rhythm, in  which five  additional  events  
(nine total) are joined.
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60 to 120 beats-per-minute[14], no matter what the score tempo 
is.

Perceived tempo is not easily quantified by a number.  It is 
less related to the speed of the musical pulse, and much more re-
lated to the sparsity or density of musical events.  For instance, a 
composer might write a passage at 40 bpm, and most musicians 
would agree that this is a slow score tempo.  However, if this 
passage  is  densely  composed  using  all  thirty-second   notes, 
listeners will hear fast music.  This loose description of musical 
speed, “fast”, is its perceived tempo. 

Perceived tempo, not score tempo or preferred tempo, is used 
by the mind to assign an emotional quality to the music.  This is 
slightly problematic from an algorithmic design standpoint, be-
cause it means that tempo is affectively entangled with rhythmic 
roughness.  However, one advantage to our rhythmic roughness 
parameter design is that the entanglement is easily understood: 
the smoothest rhythm is also the densest, so it sounds the fastest. 
The roughest is also sparsest, so it sounds the slowest.  In some 
applications a fixed score tempo is needed because of aesthetic or 
synchronization  reasons.   In  those  cases  we  have  found  that 
rhythmic  roughness  alone  is  sufficient  to  control  perceived 
tempo.

4.3.Articulation

Musical  passages  are  sometimes  notated  as  either  staccato or 
legato.  These are descriptions of musical  articulation, which is 
equivalent to saying they are descriptions of note length.  Stac-
cato music has short, almost percussive, notes; while legato mu-
sic is played in such a way that every note blends together as 
smoothly  as  possible  without  discordant  overlapping.   The 
former tends to be high in arousal, the latter is low.

Rather than having only two states, our parameter has a con-
tinuous parameter from short to long articulations.  Between the 
beginnings of any two subsequent events there is a length of time 
called the inter-onset interval.  The shortest articulations produce 
note lengths which are only one-fifth of the inter-onset intervals. 
The longest produce note lengths which are double the inter-on-
set  intervals.   In  the  long  articulations,  notes  overlap,  which 
could  allow the possibility  of  inadvertent  discordant  intervals; 
but since our algorithm disallows non-chord tones, this likelihood 
is very small.

4.4.Harmonic Mode

Mode is a harmonic structure that has a strong relationship with 
musical valence.   Often when young music students are  being 
taught to distinguish between the commonly used minor and ma-
jor modes3, they are told that one sounds happy while the other 
sounds sad.  These two modes seem to be the only two which 
have ever been studied scientifically in terms of affect.  

However, other  modes  do  exist.   Much  western  music  is 
based on a single eight note pattern of pitch intervals called the 
diatonic scale.  The pattern of intervals is always found in the 
same order, but it can be rotated by moving the first interval to 
the end or the last interval to the front.  Because of rotation, there 
exist seven different configurations of the diatonic scale.  These 
configurations are called modes.  The seven modes,  according to 
music theorists such as Persichetti, can be ordered from brightest 
to darkest: Lydian, Ionian, Mixolydian, Dorian, Aeolian, Phrygi-
an, and Locrian.  The difference between any two consecutive 

3 Henceforth, we will refer to the major and minor modes with their al-
ternate names, the Ionian and Aeolian modes.

modes on this scale is a single rotation of the diatonic scale.
There seems to be a direct relationship between Persichetti's 

mode brightness and the perceived valence of the music.  This 
has been scientifically proven only in the cases of the two most 
commonly heard modes of Aeolian and Ionian; the other modes 
have historically been used only in the context of specific music-
al genres, so affective scientists have overlooked them.  Never-
theless, we want our mode parameter to seem continuous, so it 
must have more than two states.   Therefore our algorithm uses 
all the modes excepting Locrian, which for harmonic reasons is 
rarely used in musical practice—with exceptions in some modern 
music styles and jazz, where Locrian is used fleetingly.

Each mode  has  a  different set  of  chords  serving its  tonic, 
dominant, and subdominant functions, but each mode has several 
of each.  Whenever the harmony module cycles to the next chord 
function in its progression, the first step in translating that func-
tion into a chord list is to select, at random, one of the chords in 
the current mode which fulfills the desired function.  This dy-
namic function-based chord generation means our music engine's 
harmonies will adapt to do the same thing harmonically across 
multiple different modes.

4.5.Upper Extensions

One well-studied music feature we were interested in implement-
ing was  harmonic complexity.  It had a strong inverse relation-
ship with valence, but was very loosely defined, making it hard 
to parametrize.  We spent a significant amount of time imple-
menting a harmonic complexity parameter into our algorithm, us-
ing a complex system of theoretically-based chord substitutions. 
Then we realized we had a problem: the harmonic complexity 
parameter was too entangled with the mode parameter.  

By our definition, harmonically complex music is music that 
either: 1) contains a high level of chromaticism, 2) is difficult to 
ascribe a single mode to, or 3) both.  Our parametrization suc-
ceeded in creating harmonically complex music, but caused the 
mode parameter to be less reliable.  Therefore, for the time being, 
we  have  stopped  using  the  harmonic  complexity  parameter. 
However, the work we did was not a total loss: part of our imple-
mentation could be retained.  This part is the  upper extensions 
parameter.

The simplest type of chord is the  triad, consisting of three 
notes spaced in intervals of thirds.  More complex chords can be 
constructed from triads, however, through the addition of notes 
called sevenths and upper extensions.  Jazz and twentieth-century 
music, in particular, makes common use of these extra notes.  

At the minimum upper extensions value, all chords will be 
triads.  As the upper extensions value begins to increase, sev-
enths will begin to be included.  At the maximum upper exten-
sions  value,  all  non-discordant  sevenths  and  upper  extensions 
will be included in the chord.

It seems reasonable to assume that this parameter will, like 
harmonic complexity, have an inverse relationship with musical 
valence, so this is how we use the parameter.  Once we have the 
capability, however, it is important that we study this parameter 
in isolation from the other parameters in order to determine if our 
assumptions are correct.  

4.6.Loudness

Loudness  has  been,  quite  intuitively, associated  with  musical 
arousal through scientific experimentation.  There are differences 
between studies, however, leading us to implement loudness in 
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more than one way.  In Hevner's experiments, a piano player per-
formed all the music excerpts for her test subjects, so in her case 
the louder music was caused by louder playing: each individual 
note was played louder.  Other scientists, however, used recorded 
orchestral music.  In orchestral music, the loudness changes with 
the number of players at any one time.  If orchestra members are 
resting, the music is quieter than when all are playing at once.

We implemented  both  types  of  loudness.   Individual  note 
loudness is manipulated by adjusting the mean of the gaussian 
random number generator used in the voicing module for determ-
ining note volume.  At the same time, we have another, more in-
direct  loudness  manipulation.   During  quiet  music,  only  two 
notes will play at any one time.  As the loudness increases, the 
sizes of the chords increase as well, until at maximum eight notes 
are played per event—nearing the limits of practicality for a real 
piano  performance.  This  second  loudness  manipulation  may 
someday, after some experimentation, be split  off into its own 
parameter.  But for now, since we do not know how it affects 
emotion other than that it corresponds to loudness, we will leave 
it entangled with the more standard definition of loudness.

4.7.Pitch Register

This parameter is used to describe, in a holistic way, the highness 
or lowness of a musical passage.  As studied by the various psy-
chologists, it has a weak relationship with valence, quite depend-
ent on context.   In the future, when we begin to use these al-
gorithmic techniques to study emotion models with more than 
two dimensions, we may find that pitch has a greater correspond-
ence with a dominance axis: this would be an intuitive mapping 
due to the tendency of low pitches in nature to originate from 
large sources.

The pitch register mapping is implemented in a simple way. 
As you will recall, the voicing module's first note selection rule 
involves tending to generate notes in a central range.  We manip-
ulate the pitch register by transposing that range up or down in 
pitch.

5.MANIPULATION OF FEATURE VECTOR

So far, we have described how the algorithm is structured, and 
we  have  described  each  affective  parameter  we  use  in  it. 
However, every one of those parameters is contextual.  It is often 
the case in real music that some feature which would normally 
serve to move the affect one direction is overpowered by other 
features.  For example, there are numerous examples of music 
which, despite being in a minor harmonic mode, can only be de-
scribed as upbeat and cheerful.  

Therefore, a strategy must exist for controlling the paramet-
ers as a group.  For now, we use the simplest possible strategy: 
the parameters move in parallel with one another.  If, on our in-
terface, we choose to hear music at the maximum arousal,  we 
will hear the maximum tempo, maximum roughness, maximum 
loudness,  and  shortest  articulations.   If  we  desire  minimum 
arousal,  the  opposite  will  result.   Similarly, if  we ask  for  the 
highest valence, we will hear music in the brightest mode, at the 
highest  pitch range,  with  the  least  upper  extensions,  and  vice 
versa if we choose to hear music with low valence.  

The parallel strategy is wonderful for tuning the parameters: 
one can listen to music that is meant to sound angry and say to 
oneself,  “This  does not sound fast  or discordant enough to be 
angry”; then go back and re-scale the parameters.  Unfortunately, 
it means that if the engine is left playing the same valence/arous-
al setting for a long time, there might not be as much musical 

variety as desired.  One way to alleviate this could be to change 
to a probabilistic strategy, where the desired valence and arousal 
are approximate values that change from time to time within a 
small, centrally weighted range.  This might help—somewhat—
with the musical self-similarity.    

We are  currently  in  the process  of  developing a far  better 
strategy, however.  Right now the algorithm is calibrated to our 
perception of musical emotion.  We are currently performing user 
studies in order to calibrate it to the average person's perception. 
Once this has been accomplished, we can begin a process of in-
cremental  studies  isolating  and controlling  for  each individual 
musical parameter, as well as any new parameters we might want 
to implement.  

The result of each incremental study will be a vector or curve 
in the emotion space for the studied feature.  Given that data, we 
will no longer need to move the parameters in blocks: we can use 
the change in one parameter to offset the change in another para-
meter.  We will be capable of much more musical variety while 
leaving our music generator on only one setting.

6. PRELIMINARY APPLICATIONS

Because of the newness of the algorithm and the concepts, we are 
only just beginning to use this work in digital media applications. 
However, we have begun to explore it for artistic use with dan-
cers, by using a motion capture system to drive the valence and 
arousal controls.  This possibility could lead to further affective 
computing research, where we try to extract the emotional qual-
ity from dance using motion capture, so the interactive music can 
automatically follow the emotion of the dancer.

Also using motion capture,  we have begun to explore  this 
music engine in the context of a Parkinson's Disease rehabilita-
tion system.  Physical therapy sessions for Parkinson's sufferers 
use some repetitive exercises in order to help the patient retain 
balance and mobility.  We can provide affective music feedback 
to these patients during their sessions.  This research path leads 
to some interesting questions, like:  Which emotions are more 
conducive to rehabilitation?  Is it better for the patient to be ex-
cited  or  relaxed?   Does  each  patient  have  different  affective 
needs, to which the system must adapt?  

Because of the way music, emotion, and movement are all 
linked together neurologically[15], affective music feedback has 
the potential to greatly improve Parkinon's patients' benefit and 
enjoyment  of  rehabilitation.  Also,  Parkinson's  sufferers  have 
been shown to respond positively to active music therapy[16], so 
there is some precedent for our optimism in regards to this ap-
plication.

7.CONCLUSION

This paper has focused on the design details of our music genera-
tion engine, with emphasis on music feature parametrization.  We 
designed our  parameters as  individual  elements,  around music 
features which have been tested by affective psychologists.  This 
results in a music generation algorithm which can be set to gener-
ate music corresponding to a specific arousal and valence.   

Our  work  in  defining  affective  musical  parameters  in  al-
gorithmic ways, as opposed to the often subjective way in which 
the features were originally studied, was specifically done so that 
the parameters  could be  generalizable  and repeatable  in other, 
stylistically and musically different affective music engines.  For 
that matter, they might even be useful as guidelines for musicians 
who compose in the traditional way without computers.

The possibilities for applying these algorithmic techniques in 
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digital media are quite vast.  We are of the opinion that the video 
game industry, for example, could make great use of this type of 
music  generation.  Currently, most video game music  is  com-
posed out of audio loops, a technique which can grow monoton-
ous and is not interactive.  An affective algorithm need never re-
peat  itself,  can easily  be designed to interact  and synchronize 
with the game, and serves the purpose game designers need from 
music by producing the desired emotion for the scene.

Other more serious digital media systems can make use of 
these techniques as well, as evinced by the Parkinson's Disease 
rehabilitation system that was discussed.  Also, scientists could 
use an affective music generator in experiments when trying to 
learn more about disorders like depression or autism.  We are 
currently in the process of collecting data to ensure that our al-
gorithm corresponds well to the greater population's perception 
of music and emotion.  Once that is  completed, this algorithm 
can be a baseline for experimentation on a variety of topics, in-
cluding any music parameters we want to define in terms of af-
fect—especially the ones which are already implemented.

In short, we have created a novel musical interface, and hope 
that it leads to open-ended research on emotion, music, and digit-
al media.  We also hope that the concepts used in designing the 
engine can proliferate, leading to a new way of thinking about al-
gorithmic music design; where concepts like tempo and loudness 
aren't just implementation problems, but are considered in terms 
of emotion as well.

8.AUDIO EXAMPLES

Here are some examples of the algorithm's sound output:

Angry: High arousal, low valence
http://ame2.asu.edu/students/riwallis/Angry.mp3

Sad: Low arousal, low valence
http://ame2.asu.edu/students/riwallis/Sad.mp3

Joyful: High arousal, high valence
http://ame2.asu.edu/students/riwallis/Joyful.mp3

Glad: Low arousal, high valence
http://ame2.asu.edu/students/riwallis/Glad.mp3
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