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ABSTRACT 

This paper describes an approach on real-time performance 3D 
visualization in the context of music education. A tool is de-
scribed that produces sound visualizations during a student per-
formance that are intuitively linked to common mistakes fre-
quently observed in the performances of novice to intermediate 
students. The paper discusses the case of clarinet students. Nev-
ertheless, the approach is also well suited for a wide range of 
wind or other instruments where similar mistakes are often en-
countered. 

1. INTRODUCTION 

The growing use of computer software for music teaching led 
research to a new evolving domain, Music Visualization. So far, 
this term has not been given a strict definition. Various ap-
proaches have been presented in the recent years in the literature 
regarding music visualization.  

Hiraga [1] presented a system that visualizes a whole music 
piece. The proposed model reads music pieces from MIDI files, 
and no waveform analysis is made. At the same year Hiraga 
proposed a more advanced system in [2], however with same 
properties as in [1]. McLeod in [3] developed a system that com-
putes and visualizes the pitch of a music performance in real-
time. The visualization scheme is a 2 dimensional pitch-time 
graph. The system was tested by an expert violin teacher and the 
feedback was promising. Toivinianen in [4] provided a system 
that visualizes the tonal content of a musical piece using SOMs. 
Ferguson [5] proposed a very interesting work on visualizing 
music performance in real-time. The developed system provides 
visualization of important acoustic features, such as harmonic 
content, tuning discrepancy and noisiness.  

Music visualization can serve different purposes in the con-
text of music education. As an offline tool, it can offer students a 
way to examine different aspects of their performance. Such 
aspects can include information about their timing, rhythm, sta-
bility and overall quality. However, as a real-time tool, the visu-
alization of the sound is displayed during the student perform-
ance. 

This paper presents work carried out in the context of the 
VEMUS project. VEMUS (Virtual European Music School) is a 
project funded by the European Commission under the Informa-
tion Society Technologies (IST) Programme of the Sixth Frame-
work Programme (FP6). The VEMUS project aims to design, 
develop and evaluate an open, highly interactive, and networked 
multilingual music tuition framework for popular instruments 
and a set of innovative pedagogically-motivated e-learning com-
ponents addressing different learning settings [6]. 

The aim of work described in this paper is to provide a real-
time music 3D-visualization tool for clarinet sound in the context 
of music education. The feedback provided in real-time should 
be short and simple, avoiding to distract the students and helping 
them to go on despite any errors. Furthermore, the tool must help 
the students to gain a perception of their progress as the time 
goes by. To meet real-time requirements, the system needed to 
operate only based on rather simple spectral features, such as 
pitch, RMS energy and the partials amplitudes. The performance 
error detection machine also had to be kept simple. 

The rest of the paper is organized as follows. Section 2 de-
scribes the basic clarinet errors that are common for students of 
the target levels. Section 3 provides the overall system architec-
ture and a brief description of each component. Section 4 de-
scribes the method used for detecting performance errors. Sec-
tion 5 presents the proposed visual model and the way the sound 
quality is mapped to an image. Conclusion and directions for 
further work are provided in section 6. 

2. CLARINET BAD SOUNDS 

In a related work, Zlatintsi [7] presented a classification of "bad" 
clarinet notes. The separation of these classes was made by tak-
ing into account two criteria: the cause of a mistake and the re-
sulting sound quality. These classes are described in summary 
below: 
 
Hollow notes: The main cause of a hollow note is the bad air-
flow in the clarinet. The main attribute of a hollow note is that 
the energy of the individual harmonics is lower than the normal.  
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Figure 1: The first four harmonics amplitudes over time for a 
good quality note. Index: “+”:1st, “x”: 2nd, “o”: 3rd, “*”: 4th. 
The same index will be used in Figures 2 and 3. 
 
However this cannot be described explicitly. “Hollowness” is 
related somehow with timbre. This leads us to the conclusion 
that it is preferable to address hollowness as a scalar property 
rather than crisply characterizing a note as hollow or not. 
Squeak notes: The main cause of a squeak is saliva (into the 
clarinet or when the reed gets calcified) or when students press 
and bite the reed resulting no free vibrations. In a squeak note all 
the partials amplitudes become much higher than the normal. A 
graph of the harmonics amplitude over time for a good note, a 
hollow and a squeak note are shown in Figures 1,2 and 3 respec-
tively. 
Unstable notes: Unstable notes have many causes such as insuf-
ficient amount of airflow for the specific tone or not firm em-
bouchure. Instability can be either pitch instability or RMS en-
ergy instability. Both can be easily detected by calculating the 
standard deviation of pitch and RMS-energy within a note (or 
part of note) 

 

Figure 2: The first four partials of a hollow note. 

3. SYSTEM OVERVIEW 

The individual components of the proposed system and the flow 
diagram are shown in Figure 4. Real-Time Audio Recognizer 
(RTAR) reads streamed data from the microphone as the student 
performs the musical piece. With a conventional front-end proc-
essing scheme RTRA process a window of 25 ms long every 10 
ms with a 60% overlap. For every window it processes, RTAR 
writes output data to the Audio Buffer and sends a message to 
the synchronizer module that a new frame is processed. Output 
data consists of pitch, RMS energy, the partials up to the 6th and 
the MIDI value of the tone played. The synchronizer activates 
the Error-Detection (ED) module. ED reads the Audio Buffer 
and computes the “Quality” or “Hollowness/Squakness” value as 
will be described in the next section. Every 4 iterations of this 
procedure (i.e. 40 ms) the synchronizer sends a message to the 2-
Dimensional curve generator which produces the 2D curve. Fi-
nally the 2D curve is fed to the 3D-Curve Generator which draws 

 
Figure 3: A squeak note appearing at about 35th frame. 
  
the final shape. These rates are adjustable, to adapt to machines 
of different computing power. 

4. BAD SOUND DETECTION 

The intuition that a classic ML approach (labeling sounds as 
hollow, squeaks etc, training a machine, categorizing) would not 
succeed the desirable results led us to a different approach. Our 
system is based on the concept that a machine should be flexible 
on how it judges the students’ performance. The teacher should 
be able to adjust the strictness of the module. 

The limitation of the real-time processing led us to use only 
the partials extracted by the Audio Recognizer Tool, without any 
extra signal processing. Our approach is based on the fact that 
the mean values of the harmonics of a music piece performance 
can represent the clarinet’s “sound”. Any divergence from these 
values can be considered as a bad sound. 

4.1. Features Used 

The basic features used for the detection of clarinet bad sounds 
are the partials of each frame up to the 6th. Specifically, because 
of the fact that the first harmonic is proportional to RMS energy, 
we used partial values from the 2nd to the 6th, divided by the am-
plitude of the first. Thus, system uses 5 features denoted by 
{fi},i=1..5. 

4.2. Training 

In the training phase we fit a Gaussian distribution to data from 
recordings where a clarinet teacher or professional player per-
formed.. During this process, and accordant to the bibliography 
we measured that the partial amplitudes depend strongly on the 
pitch. Thus, for different pitch values, we fit a different Gaussian 
distribution to the relative partials. Specifically, for each individ-
ual musical tone (MIDI value), we train a different model. This 
process results N Gaussian distributions for each feature, a total 
of 5N. 
 5..1,..1),,,( 2 === jNifpp jijijGaussij σμ  (1) 

where index i is referred to the tone identity and j to the feature 
identity.  

4.3. Error Detection 

The error analysis presented in section 2 led us to the following 
admission. If the relative partial j is greater than the mean value 
calculated in the training phase for a specific tone, then contrib-
utes to the sound to be heard more squeak. Reversely if it’s 
smaller, contributes to the sound to be heard hollower. The 
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Figure 4: The overall architecture of the system 

measure of this contribution is a quantity somewhat inverse pro-
portional or decreasing to pij. The final characterization will be a 
sum of these quantities. 

We tested various such functions from simple linear combi-
nation, to more complex ones. We found that a sum of powers of 
1-pij worked well enough. The final formula we used is: 
 ∑
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The polynomial power of 4 is used to smooth small variations of 
1-pij around zero. The sign function in each clause has the role to 
define if the corresponding feature contributes for the sound to 
be heard more as a squeak or hollow. If Q is positive, means that 
we probably have a squeak sound, if negative a hollow sound. 
Closest to zero is Q, the better the sound is. 

4.4. Time Averaging 

Because in time space, one visual frame corresponds to more 
acoustic frame, it is not desirable to characterize the sound be-
tween two subsequent visual frames from only one acoustic 
frame. Thus, we take the average value of Q between these two 
visual frames.  

The extreme case, where between two visual frames exist 
both almost equal high valued squeak and hollow sounds, result-
ing an average Q close to zero is almost impossible. 

4.5. Onset and Offset Discarding 

The sound modelling described before does not correspond to the 
case where the sound data processed is a part of the onset of a 
note. Onsets have very different statistical properties between the 
partials, thus it is ineffective to try characterizing such frames. In 
a very simple fashion, we discard onset frames, by ignoring the 
first frames of each note. 

The same stands for the offset of each note. Higher partials 
decay faster than lower. In contrast with onset, we do not have 
prior knowledge when a note will end. Therefore such discarding 
is impossible.  

We handled this situation in terms of smoothing, as will be 
described in section 5.4. The basic idea is when we have decay-
ing in RMS energy on the signal, implying the note ends; we 
limit Q from changing value greater than a certain ratio. This 
worked well enough. 

 

Figure 5: The 2-Dimensional visual model 

4.6. Coping with the Different Level of Students  

Visualizer module must have different behavior in different 
levels of students. For the same waveform, produced by a begin-
ner and an intermediate student, visualization feedback must be 
stricter for the latter. This can be easily adopted adding one more 
parameter to the model described. In equation 1 we substitute 
standard deviation by a multiple of it by a value α. 

 Parameter α is global for all density components. The lesser 
α is, the more sensitive is system to mistakes. This extension 
allows the teacher by adjusting this value to personalize visuali-
zation according to the student level. 

5. THE VISUAL MODEL 

The Q value is fed to the Visualizer. The main idea is to repre-
sent a note as circle. This circle has four attributes to control 
(plus the color, a total five). These attributes can be shown in 
Figure 5. Changing the values according to the student’s per-
formance produces a meaningful shape evolving over time.  

Attribute Ry/Rx is controlling the capability of the shape to 
become more or less elliptic. On the surface of the shape a sinu-
soidal disturbance is added. The amplitude of the disturbance is 
controlled by the attribute dR/Rx (we use radius Rx as reference 
as the ratio Ry/Rx changes), and the frequency is labeled as freq. 
Finally the size of the shape is represented by Rx. 

In the next sections we describe how the circle’s attributes 
values depend on the errors made by the performer. The choice 
of this relationship is made using intuitive criteria, in accordance 
with clarinet teachers’ opinions. 

5.1. Visualizing a Squeak Frame 

When a frame is classified as a squeak, the shape is drawn as 
“craggy” or “rough”. As more squeak a frame is, the rougher the 
circle should be. The rules that determinate the circle’s attributes 
values are the following: Ry/Rx=1 and attribute freq is high val-
ued, and increases as squeakness increases. Also dR/Rx is propor-
tional to squeakness and R is proportional to RMS energy of the 
frame. 

5.2. Visualizing a Hollow Frame 

A Hollow note is represented as a more “flabby”, “sleazy” shape, 
as shown in Figure 7. Ry/Rx is decreasing as hollowness increases 
and attribute freq is low valued and decreases as hollowness 
increases. dR/Rx is proportional to hollowness and R is propor-
tional to RMS energy. 
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Figure 6: The 3-Dimensional output for a squeak note 

5.3. Pitch and RMS Instability 

The RMS instability is directly related with the sphere shape, 
because of the proportional relationship between RMS energy 
and Rx. Therefore an RMS unstable note is directly shown. Pitch 
instability has not been yet explored. We have the intuition that 
relating the pitch instability with a light change of the color of 
the shape will result a meaningful feedback. 

5.4. Smoothing 

As the hollowness/squeakness value evolve over time, sudden 
jumps of this value often occur. This fact results to rapid changes 
of the shape, making the view of the graphic annoying. To han-
dle this problem, we deployed a smoothing on the final shape. 
Every attribute cannot change more than a fixed ratio between 
two consecutive visual frames. However this imports a tradeoff 
between a satisfactory and enjoyable viewing and visualizing 
quick, short-time errors.  

In the case of offset discarding, when a consecutive decay of 
RMS energy is detected, the fixed ratio between the attributes 
values become grater.  

5.5. Transforming to the 3-Dimensional Object 

The rendering system takes as input the 2-Dimensional curve. 
The number of drawing steps used to create this object deter-
mines the quality of the generated object. Since our module is 
real-time and targets to low-end machines, the performance of 
the implementation itself should be fast and effective.  

Since we want to use lights and material features to our ob-
ject, one more step is actually required, to compute the normals 
for each triangle we are going to draw. After normals calculation, 
our object is ready to be drawn. 

We are applying color, material and lighting and also (op-
tionally) rotation to the object. The colors used in our implemen-
tation are chosen arbitrary. However, as mentioned before, there 
is the persuasion that associating changes in color with instability 
of pitch will result a meaningful output. The object is now ready 
for drawing as shown in Figures 6 and 7. 

6. CONCLUSION AND FURTHER WORK 

In this paper, a tool has been presented that employs 3D 
graphics to provide real-time visualization of a beginner student 
performance in an educational context. 

 Students receive simple and intuitive visual feedback that 
can help them improve the quality of the sound they produce, 

 

Figure 7: The 3-Dimensional output for a hollow note  

while keeping the disruption of their practice to a minimum. An 
important feature of the system is that it does not only provide a 
measure of sound quality at a given time, but also visual feed-
back on different aspects of the performance integrated into a 
simple 3D object which offers an intuitive way of understanding 
what is wrong and, to a degree, what the student must do to cor-
rect it. 

Some first feedback from music teachers has provided clear 
indications that the approach is well motivated in an educational 
context and that if appropriately integrated into a learning set-
ting, it may help students gain better understanding of their er-
rors. Further feedback from music teachers, but also from stu-
dents, will be collected after the visualization tool has been inte-
grated into the overall VEMUS platform and tested with users in 
realistic conditions. 
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