
Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

INSTRUMENT REUSABILITY SCHEME IN PWGLSYNTH

Mikael Laurson

CMT,
Sibelius Academy
Helsinki, Finland

laurson@siba.fi

Vesa Norilo

CMT,
Sibelius Academy
Helsinki, Finland

vnorilo@siba.fi

Mika Kuuskankare

CMT,
Sibelius Academy
Helsinki, Finland

mkuuskan@siba.fi

ABSTRACT

This paper presents our recent developments that aim to makethe
instrument definition process of our visual synthesis environment
more accessible to a broader audience. There are several novel
aspects that aim to overcome some of the classical limitations
found in sound synthesis systems. After an introductory section
we discuss two advanced examples where scores containing sev-
eral model-based instrument parts can be realized without having
to edit the original instrument definitions. In the first one,we can
duplicate instrumental parts of a single instrument definition. In
the latter example, we can mix in a single score several instrument
models with the help of a mixer patch that is automatically created
by system.

1. INTRODUCTION

The instrument/score paradigm in sound synthesis has already
been investigated for about 50 years. For instance the recent article
[1] enumerates some typical problems related to so-calledMusic-N
programs such as instrumental reuse, parameter mapping between
orchestra file and score file, and lack of graphical tools. Ourfocus
in this article will be somewhat similar and we will present our
solutions to these classical problems. Our synthesis environment,
PWGLSynth [2], is related to the ones of the Music-N tradition
as we deal with instrument definitions and scores. Our systemis,
however, different as it is strongly visually oriented. In the follow-
ing we will address problems that are related to parameter map-
ping with musical scores, and especially focus on the reusability
scheme of complex instrument definitions.

PWGLSynth is part of our visual programming language
PWGL [3]. PWGL and its tight integration to its music notation
program, ENP [4], provides a new and unique system for complex
instrument design and synthesis control [2].

Until now our synthesis environment has mainly been used
as a research tool where we have studied how model-based in-
struments can be controlled using ENP. In a typical case we have
worked with one instrument model at a time. Thus the work-
flow using one instrument along with one or several scores has
been quite straightforward. Recently, along with our public release

of PWGL (www.siba.fi/PWGL), our focus in sound synthesis has
shifted more towards end users, so that PWGLSynth could alsobe
used for music production. For this end we need a more system-
atic and modular way to define instruments and how they relateto
scores.

In a typical case the user defines the instrument visually along
with special accessor methods that define the interface between
the score and the instrument. In smaller instrument definitions this
part of the process can be stored in a single patch. In more com-
plex cases the user can use the user-library scheme providedby
PWGL. Here the library normally consists of a folder containing
a load file, an accessor code file, instrument definition file, and
possibly various data files (typically sound samples). The latter li-
brary scheme supports also an autoload facility, i.e. an instrument
is loaded automatically if the user opens a score that contains mu-
sical parts that utilize the instrument definition. All instruments
known to the system are stored in a database.

Musical scores are central in our new scheme as they manage
which instruments should be loaded in the system. Also scores
are responsible for calculating control information and starting the
sound synthesis engine for real-time playback. This protocol will
help a user in complex instrument setups as several steps of the sys-
tem are done automatically in the background. In more advanced
cases the system is also able to instantiate several instances of an
instrument automatically. A score can also combine severaldiffer-
ent instruments: in this case the score creates a special mixer patch
where links are created to the required instruments.

We start this paper with an introductory section that provides
a case study where we define an instrument along with a score
that utilizes the instrument. After this we go over to more com-
plex instrument definitions and show how the system manages
scores that contain several instances of complex model-based in-
struments. We end with an advanced example where we combine
several different instruments within one score. Here we canreuse
instrument definitions with the help of a mixer patch that links and
mixes dynamically the required instruments. We also show briefly
how to deal with cases when the number channels of incoming
instruments differ.

DAFX-1

http://cmt.siba.fi/
mailto:laurson@siba.fi
http://cmt.siba.fi/
mailto:vnorilo@siba.fi
http://cmt.siba.fi/
mailto:mkuuskan@siba.fi
http://www.siba.fi/PWGL

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

Figure 1:An additive synthesis patch utilizing 3 banks of sine wave oscillators. (A) gives the top-level definition with three main entities:
an abstraction ’Sines’, a ’synth-ctrl-mapping’ box, and a ’copy-synth-patch’ box; (B) shows the contents of the ’Sines’ abstraction with five
’synth-plug’ boxes; (C) a musical excerpt is used to controlthe instrument definition given in (A) and (B). The break-point function above
the staff controls the pan parameter.

2. BASIC COMPONENTS: A SINE WAVE OSCILLATOR
BANK CASE-STUDY

PWGLSynth instrument definitions are realized normally using
the following scheme. A special box called ’copy-synth-patch’
is used to copy the contents of an abstraction box count times. The
abstraction contains a patch consisting of DSP-modules (boxes
marked with ’S’) and ’synth-plug’ boxes. Thus the user defines
the abstraction only once and the system automatically copies this
model as many times as required. In order to distinguish between
different duplicated patch instances ’copy-synth-patch’generates
automatically symbolic references to specific user defined entry
points. These entry points are defined by connecting a ’synth-plug’
box at the leafs of a synthesis patch. The entry points are used af-
terwards to control the synthesis process. The symbolic references
are pathnames, such as ’guitar1/1/freq’ or ’guitar2/6/lfgain’.

Our scheme allows to associate an instrument to a score by
adding to the ’synth-plug’ boxes information about accessors.
These accessors are short Lisp-based textual methods that are used
to access information from a note object, such as midi, velocity,
start-time, duration, and expressions. What is more important, the
system is able to access the musical surroundings of a note, and
thus accessors can deal with melodic, harmonic, and voice-leading
formations. Furthermore, the user gives control labels - ’D’, ’T’, or
’C’ - to the ’synth-plug’ boxes whether they are used for discrete,
trigger or continuous control purposes.

From this information (i.e. entry point pathnames, accessors
and control labels) the system creates automatically both discrete
and continuous control methods for the instrument in question.
These control methods are generated by the ’synth-ctrl-mapping’
box.

Figure 1 shows an overview of a typical instrument definition

that can be split in three major parts. In a top-level patch, (A), a
’copy-synth-patch’ box copies an abstraction called ’Sines’ 3 times
(the count value is given in the first input). The outcoming signal is
mixed to a stereo signal that is reverberated by a ’Reverb’ abstrac-
tion. The dry and wet signals are mixed together and the resulting
signal is fed to a ’synth-box’ that represents the final output.

The top-level patch has in the upper part a box called ’(Lisp)’
that contains a text-editor. Here we find in textual form an instru-
ment class definition and accessor methods. In our example the
instrument class called ’sines’ is defined as follows:

(create-enp-instrument sines (synth-instrument)
()
(:default-initargs
:name "sines"
:instrument-group :synth-instruments))

This class name is used later in accessor method definitions
and for instrument names in a score.

The contents of the the ’Sines’ abstraction is shown in (B). The
patch contains besides ordinary synth-boxes such as ’sine-vector’,
’stereo-pan’, and ’accum’, three discrete ’synth-plug’ boxes (see
the label ’D’) and two triggered ones (labeled with ’T’). Thethird
input of the discrete ’synth-plug’ boxes are labeled with symbols
that represent the accessor methods (we find here three accessors:
’ctrl-freq’, ctrl-amp’ and ’ctrl-pan’). Accessor methodshave three
arguments: an instrument class, a note object, and an instrument
name. For instance the left-most ’synth-box’ utilizes a fairly com-
plex accessor method called ’ctrl-freq’ that generates 10 frequency
envelopes (one for each partial), and it is defined as follows:

(defmethod ctrl-freq ((self sines) note name)
(flat
(loop for b from 1 upto 10

DAFX-2

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

collect
(let* ((fund (m->f (midi note)))

(ys (loop for i from 1 upto 10
collect

(* fund (g-random 1.0 1.02)))))
(convert-to-synth-env

(mk-bpf (interpol 10 0.0 1.0 t) ys)
(dur note))))))

Another accessor method, called ’ctrl-amp’, is quite similar
and it generates 10 amplitude envelopes.

A third accessor method, called ’ctrl-pan’, calculates thepan-
ning value for the current note by accessing the break-pointfunc-
tion that is seen above the note information of the score (C):

(defmethod ctrl-pan ((self sines) note name)
(e note :bpf :sample :at note))

Finally, in (C), we have a score that generates control infor-
mation for the instrument definition shown in (A) and (B). The
score is associated to our instrument class definition from above
(see ’sines’ just before the staff-lines). Below the instrument class
the user adds an instrument name (here ’sines1’). The instrument
name is added to the entry point pathnames and can thus be used
to distinguish different instrument instances belonging to the same
class.

When calculating the score the system proceeds from left to
right and for each note calls the accessor methods of the ’synth-
plug’ boxes that in turn feed the DSP modules with score infor-
mation. To listen a score in real-time the user selects the ’Score-
Editor’ box and types the space key. This will automaticallysearch
for the associated synthesis patch, calculate the score, start the cur-
rent synth box, and finally start the playback. Non-real-time mode
can be evoked by changing the third ’:dac’ input of the ’synth-box’
to ’:file’.

3. SINGLE INSTRUMENT DUPLICATION PROBLEM

In the previous section we discussed a fairly typical and straight-
forward sound synthesis implementation problem, i.e. how to de-
fine a bank of sine wave oscillators. Here the sine wave bank is
one conceptual unit that is simply copied as many times as needed.
Thus we could, without problems, have a score that contains sev-
eral polyphonic parts that plays our instrument.

A special problem arises, however, if we consider more com-
plex instruments that are internally built out of several sub-entities
such as strings. Figure 2 shows a top-level guitar model implemen-
tation. Here we copy a ’string’ abstraction 6 times. This definition
works only with scores that have one guitar part. If we introduce
scores with several parts, then our guitar model definition cannot
distinguish between different guitar model instances.

One solution to this problem would be to duplicate the ’copy-
synth-patch’ box in Figure 2 as many times as needed and then mix
their outputs. While this workaround would fix our problem itis
not optimal. In the worst case each score having different number
of instruments would require a new instrument patch definition. A
more elegant solution is to use in the patch two ’copy-synth-patch’
boxes where one box calls the other one in a nested manner as can
be seen in Figure 3. Thus here we can reuse our model definition
for all scores having multiple guitar parts. Figure 4 shows such a
score: here we need two guitar models that are distinguishedby
the control system.

Figure 2:A single guitar model definition.

Figure 3:A nested guitar model definition that allows to copy sev-
eral models.

4. SCORES MIXING MULTIPLE INSTRUMENTS

A similar problem arises when we have scores that have parts that
should control different instrument models, say one part isutiliz-
ing a harpsichord model and another a guitar model (see Figure 5).
Our problem is here similar to the one presented in the previous
section as we want obviously to be able to reuse existing instru-
ment model definitions. Otherwise we would be forced to com-
bine the two model definitions by hand in a single patch and mix
their outputs. What is worse we would have to redo this process
for each new score that utilizes a new combination of instruments.
Thus the reusability problem becomes here even more pronounced
than in the previous section.

To solve this problem we create for each score referring to
different instrument models a new mixer patch that has two main
tasks. First, the mixer patch creates a link to all required instru-
ment definitions. Second, it combines all signals for the final out-
put. This scheme requires that all instrument definitions are stored
in a database. Thus each time a score needs an instrument its def-
inition can be accessed automatically. Figure 6 shows the result-
ing mixer patch when the user attempts to play the score givenin
Figure 5. Here the upper row of ’mixer-connect’ boxes are ac-
cessing the two required instruments (i.e. ’enp-harpsichord’ and
’enp-guitar’). The ’combiner’ box and the ’accum’ box in turn
combines the two incoming signals and mixes them to the output.

DAFX-3

Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

Figure 4:A two part score that utilizes two guitar model instances.

Figure 5:A score that controls a harpsichord model and a guitar
model.

5. CHANNEL CONVERSION SETUPS

We end this paper by shortly discussing some problems that will
appear if the incoming signals to the mixer patch in Figure 6 do
not match. In our previous case this is not a problem as both in-
coming signals are mono signals. For cases, however, where one
instrument results, say, in a stereo signal, and another oneoutputs
a mono signal, we need rules how to combine these conflicting
signals.

As the main rule the number channels of the mixer output is
chosen from the source that has the maximum number of chan-
nels: thus if one source has 4 channels and another one 2, then
the mixer will output 4 channels. In these cases we need to "up-
grade" sources having less channels than the mixer output sothat
they will match the main output. Figure 7 outlines six commonly
used cases, for instance how to convert a mono signal to stereo
(for more details on how PWGLSynth operates with multichannel
signals see [5]). In all cases we assume that the incoming signal is
connected the the left-most input.

6. CONCLUSIONS

This paper gave an overview of how classical problems that are
found in sound synthesis programs of the Music-N tradition are
solved in our environment. We showed in an tutorial section how
the main components of our system, such as the visual top-level
patch, DSP abstraction, plug scheme, and accessor methods inter-
act with a musical score. Then we focused on our main topic of
this paper, and discussed two main cases how we can reuse ex-
isting instrument definitions in various score configurations. In a
concluding section we outlined a scheme that allows to handle au-
tomatically cases where incoming signals to the main outputmixer
do not match.

Figure 6:An automatically created mixer patch where two instru-
ment models are combined.

Figure 7: Six output setups for converting mono signal to stereo,
quad or 5.1 (upper row); stereo to quad, or 5.1; quad to 5.1 (lower
row).

7. ACKNOWLEDGMENTS

This work has been supported by the Academy of Finland (SA
105557 and SA 114116).

8. REFERENCES

[1] Pedro Kröger, “CSOUNDXML: A META-LANGUAGE IN
XML FOR SOUND SYNTHESIS,” inInternational Sympo-
sium on Music Information Retrieval, Barcelona, Spain, 2004.

[2] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare,
“PWGLSynth: A Visual Synthesis Language for Virtual In-
strument Design and Control,”Computer Music Journal, vol.
29, no. 3, pp. 29–41, Fall 2005.

[3] Mikael Laurson and Mika Kuuskankare, “Recent Trends in
PWGL,” in International Computer Music Conference, New
Orleans, USA, 2006, pp. 258–261.

[4] Mika Kuuskankare and Mikael Laurson, “Expressive Notation
Package,”Computer Music Journal, vol. 30, no. 4, pp. 67–79,
2006.

[5] Mikael Laurson and Vesa Norilo, “Multichannel Signal Rep-
resentation in PWGLSynth,” inConference on Digital Audio
Effects, 2006.

DAFX-4

	1 Introduction
	2 Basic Components: A Sine Wave Oscillator bank Case-study
	3 Single Instrument Duplication Problem
	4 Scores mixing multiple instruments
	5 Channel conversion setups
	6 Conclusions
	7 Acknowledgments
	8 References

