Proc. of the 11" Int. Conference on Digital Audio Effects (DAFx-08), Espeinjand, September 1-4, 2008

INSTRUMENT REUSABILITY SCHEME IN PWGLSYNTH

Mikael Laurson Vesa Norilo
CMT, CMT,
Sibelius Academy Sibelius Academy
Helsinki, Finland Helsinki, Finland
[[aur son@gi ba. 1 vnorilo@ ba. fl

Mika Kuuskankare

CMT,
Sibelius Academy
Helsinki, Finland

nMKuuskan@si ba. 11

ABSTRACT of PWGL (www.siba.fi/PWGL), our focus in sound synthesis has
)) shifted more towards end users, so that PWGLSynth couldoaiso
This paper presents our recent developments that aim to thake ,seq for music production. For this end we need a more system-

instrument dgflnmon process of our visual synthesis emrirent atic and modular way to define instruments and how they redate
more accessible to a broader audience. There are seve’l Nov g.gres.

aspects that aim to overcome some of the classical limitstio

found in sound synthesis systems. After an introductoryieec In a typical case the user defines the instrument visuallygalo
we discuss two advanced examples where scores containing se with special accessor methods that define the interfacedssiw
eral model-based instrument parts can be realized withaxih the score and the instrument. In smaller instrument dedimstihis

to edit the original instrument definitions. In the first omes can part of the process can be stored in a single patch. In more com
duplicate instrumental parts of a single instrument dedinit In plex cases the user can use the user-library scheme probided

the latter example, we can mix in a single score severalimstnt PWGL. Here the library normally consists of a folder conitagn
models with the help of a mixer patch that is automaticalgated a load file, an accessor code file, instrument definition fitel a
by system. possibly various data files (typically sound samples). Hitet li-
brary scheme supports also an autoload facility, i.e. anument
is loaded automatically if the user opens a score that amtau-
sical parts that utilize the instrument definition. All ingnents
known to the system are stored in a database.

1. INTRODUCTION

The instrument/score paradigm in sound synthesis hasdglrea
been investigated for about 50 years. For instance thetradisle Musical scores are central in our new scheme as they manage
[0l enumerates some typical problems related to so-chlesic-N which instruments should be loaded in the system. Also score
programs such as instrumental reuse, parameter mappingdiet e responsible for calculating control information aratting the
orchestra file and score file, and lack of graphical tools. focus sound synthesis engine for real-time playback. This paitedil

in this article will be somewhat similar and we will preseniro help a user in complex instrument setups as several stefe sj$-

solutions to these classical problems. Our synthesis@mvient, (o are done automatically in the background. In more addnc
PWGLSynth [2], is related to the ones of the Music-N traditio 556 the system is also able to instantiate several iestafi@n
as we deal with instrument definitions and scores. Our sy®em strument automatically. A score can also combine sexiffal-
however, different as it is strongly visually oriented. e follow- entinstruments: in this case the score creates a specief patch
ing we will address problems that are related to parametg@- ma \ynere links are created to the required instruments.
ping with musical scores, and especially focus on the relityab
scheme of complex instrument definitions. We start this paper with an introductory section that presid
PWGLSynth is part of our visual programming language a case study where we define an instrument along with a score
PWGL [3]. PWGL and its tight integration to its music notatio that utilizes the instrument. After this we go over to moreneo
program, ENP[]4], provides a new and unique system for caxple plex instrument definitions and show how the system manages
instrument design and synthesis contfol [2]. scores that contain several instances of complex modeldbas
Until now our synthesis environment has mainly been used struments. We end with an advanced example where we combine
as a research tool where we have studied how model-based inseveral different instruments within one score. Here werease
struments can be controlled using ENP. In a typical case we ha instrument definitions with the help of a mixer patch thak$imnd
worked with one instrument model at a time. Thus the work- mixes dynamically the required instruments. We also shaeflipr
flow using one instrument along with one or several scores hashow to deal with cases when the number channels of incoming
been quite straightforward. Recently, along with our pukdiease instruments differ.

DAFX-1

http://cmt.siba.fi/
mailto:laurson@siba.fi
http://cmt.siba.fi/
mailto:vnorilo@siba.fi
http://cmt.siba.fi/
mailto:mkuuskan@siba.fi
http://www.siba.fi/PWGL

Proc. of the 11" Int. Conference on Digital Audio Effects (DAFx-08), Espeinjand, September 1-4, 2008

synth-plug
<- instrument and accessors -
o _:fregs

{ ctrl-freq

Sines
v

D

synth-ctrl-mapping

" |

copy-synth-patch

envelope-trigger
T |

mk-init-sines-envs

(B) v<<trig>> "

%

synth-plug synth-plug

1_:amps ;
{ ctrl-amy
T
synth-plug

D
! 1eﬂV310Pelrigger
<<trig>>
v

:triggamps | 0.0

Smysines | <sinesl/
Y v
accum-vector sine-vector synth-plug
» 2 r b —IVQQ stereo-pan p zvm q
v aceum > [« ctrl-pan
* » [——
M 2 D
> [« Y »s
4105 > .
7 Score-Editor
(A) Reverb
J(
(C) /
4.-002
. >S>>>> > > > >
1-005 o # o e o
V2 4 1 — ™ :E — =
utput h " — — =
pwgl-progn synth-box sines# -:i Eg ii
» I 4 ladd-vector sines1 % * i3 z H
» b iscore P | [«
& :dac b v
v

Figure 1:An additive synthesis patch utilizing 3 banks of sine waedla®rs. (A) gives the top-level definition with three maintities:
an abstraction 'Sines’, a 'synth-ctrl-mapping’ box, andc@py-synth-patch’ box; (B) shows the contents of the 'Satestraction with five
'synth-plug’ boxes; (C) a musical excerpt is used to contel instrument definition given in (A) and (B). The breakapfunction above

the staff controls the pan parameter.

2. BASIC COMPONENTS: A SINE WAVE OSCILLATOR
BANK CASE-STUDY

PWGLSynth instrument definitions are realized normallyngsi
the following scheme. A special box called 'copy-synthebat
is used to copy the contents of an abstraction box count tiffrtes
abstraction contains a patch consisting of DSP-modulegefo
marked with ’S’) and 'synth-plug’ boxes. Thus the user define
the abstraction only once and the system automaticallyesapis
model as many times as required. In order to distinguish éetw
different duplicated patch instances 'copy-synth-patgmerates
automatically symbolic references to specific user defingdye
points. These entry points are defined by connecting a 'sghuity’
box at the leafs of a synthesis patch. The entry points ar afse
terwards to control the synthesis process. The symbokceates
are pathnames, such as 'guitarl/1/freq’ or 'guitar2/@ilig

Our scheme allows to associate an instrument to a score by

adding to the ’synth-plug’ boxes information about accesso
These accessors are short Lisp-based textual methodsehese

to access information from a note object, such as midi, vigloc
start-time, duration, and expressions. What is more inaporthe
system is able to access the musical surroundings of a nude, a
thus accessors can deal with melodic, harmonic, and vemditig
formations. Furthermore, the user gives control labels,-"D, or

'C’ - to the ’synth-plug’ boxes whether they are used for déite,
trigger or continuous control purposes.

From this information (i.e. entry point pathnames, accesso
and control labels) the system creates automatically bgtrete
and continuous control methods for the instrument in qaesti
These control methods are generated by the 'synth-ctripmgp
box.

Figurell shows an overview of a typical instrument definition

that can be split in three major parts. In a top-level patéh, &
‘copy-synth-patch’ box copies an abstraction called 'SiBdimes
(the count value is given in the first input). The outcomirgnsil is
mixed to a stereo signal that is reverberated by a 'Reverdirab-
tion. The dry and wet signals are mixed together and thetiegul
signal is fed to a 'synth-box’ that represents the final otitpu

The top-level patch has in the upper part a box called '(Lisp)
that contains a text-editor. Here we find in textual form astrin-
ment class definition and accessor methods. In our examele th
instrument class called 'sines’ is defined as follows:

(create-enp-instrunent sines (synth-instrunent)

()
(:default-initargs
:name "sines"
cinstrunent-group :synth-instrunments))

This class name is used later in accessor method definitions
and for instrument names in a score.

The contents of the the 'Sines’ abstraction is shown in (Be T
patch contains besides ordinary synth-boxes such asvsicier’,
'stereo-pan’, and 'accum’, three discrete 'synth-plugkée (see
the label 'D’) and two triggered ones (labeled with 'T’). Ttrerd
input of the discrete 'synth-plug’ boxes are labeled witmbgpls
that represent the accessor methods (we find here threesarcses
‘ctrl-freq’, ctrl-amp’ and ’ctrl-pan’). Accessor methodisive three
arguments: an instrument class, a note object, and an mstru
name. For instance the left-most 'synth-box’ utilizes alyacom-
plex accessor method called 'ctrl-freq’ that generatesdufency
envelopes (one for each partial), and it is defined as fotlows

(defrethod ctrl-freq ((self sines) note nane)
(flat
(loop for b from1 upto 10

DAFX-2

Proc. of the 11" Int. Conference on Digital Audio Effects (DAFx-08), Espeinjand, September 1-4, 2008

col I ect string
(letx ((fund (m>f (mdi note))) v
(ys (loop for i from1l upto 10
col | ect synth-ctrl-mapping copy-synth-patch
(* fund (g-random 1.0 1.02))))) \ [46 | L
(convert-to-synth-env T END-auit -
(nk-bpf (interpol 10 0.0 1.0 t) ys) _ENP-guitar | uitar 4_guitar/ -
(dur note))))))
accum
W yeetor |
Another accessor method, called ’ctrl-amp’, is quite samil Y
and it generates 10 amplitude envelopes. synth-box
A third accessor method, called 'ctrl-pan’, calculatespbe- Dy_l
ning value for the current note by accessing the break-goimt- ‘%’
tion that is seen above the note information of the score (C):

(defmethod ctrl-pan ((self sines) note nane)
(e note :bpf :sanple :at note))

Finally, in (C), we have a score that generates control infor
mation for the instrument definition shown in (A) and (B). The
score is associated to our instrument class definition froove
(see 'sines’ just before the staff-lines). Below the instent class
the user adds an instrument name (here 'sinesl’). The mstu
name is added to the entry point pathnames and can thus be used
to distinguish different instrument instances belongmghe same

Figure 2:A single guitar model definition.

synth-ctrl-mapping
y |

string
v

copy-synth-patch
46 | <

4_ENP-guitar

v

number of

4 guitar/
\

copy-synth-patch

class guitar models 42—|—Iq
. Y
When calculating the score the system proceeds from left to aceum synth-box
right and for each note calls the accessor methods of théh'syn \ |] |
plug’ boxes that in turn feed the DSP modules with score infor Y 7 score
mation. To listen a score in real-time the user selects therts v

Editor’ box and types the space key. This will automatica#égrch
for the associated synthesis patch, calculate the scaréttst cur-
rent synth box, and finally start the playback. Non-realktimode
can be evoked by changing the third ":dac’ input of the 'sybtix’
to file’.

Figure 3:A nested guitar model definition that allows to copy sev-
eral models.

3. SINGLE INSTRUMENT DUPLICATION PROBLEM 4. SCORESMIXING MULTIPLE INSTRUMENTS

In the previous section we discussed a fairly typical analigiit- __ .
forward sound synthesis implementation problem, i.e. hmaet- A similar problem arises when we have scores that have pets t
should control different instrument models, say one pautiliz-

fine a bank of sine wave oscillators. Here the sine wave bank isin a harpsichord model and another a guitar model (seedfur
one conceptual unit that is simply copied as many times adatee 9 P 9

Thus we could, without problems, have a score that cont@wns s Soeucrt.gaogfmés Zirteozm(')lagltotghgeogﬁlgrgsfgtig 'g .t:t(.enm.sn“sl?
eral polyphonic parts that plays our instrument. : we w Viously u xistingu

. . . . ment model definitions. Otherwise we would be forced to com-
A special problem arises, however, if we consider more com-

. . ' . bine the two model definitions by hand in a single patch and mix
plex instruments that are internally built out of severdl-entities their outputs. What is worse we would have to redo this pmces
such as strings. Figufé 2 shows a top-level guitar modelémph- for each?wewlscore that utilizes a new combination of insenunmp
tation. Here we copy a string’ abstraction 6 times. Thisrigon Thus the reusability problem becomes here even more praedun
works only with scores that have one guitar part. If we introel than in the reviou)s/ zection P
scores with several parts, then our guitar model definitammot P '
distinguish between different guitar model instances. To solve this problem we create for each score referring to

One solution to this problem would be to duplicate the 'copy- different instrument models a new mixer patch that has twmma
synth-patch’ box in Figulg2 as many times as needed and then m tasks. First, the mixer patch creates a link to all requiresr-
their outputs. While this workaround would fix our problenisit ment definitions. Second, it combines all signals for thel fiuig
not optimal. In the worst case each score having differenttrer put. This scheme requires that all instrument definitioesséored
of instruments would require a new instrument patch dedinitA in a database. Thus each time a score needs an instrumeetf:-its d
more elegant solution is to use in the patch two 'copy-sysateh’ inition can be accessed automatically. Fidilre 6 shows thdtre
boxes where one box calls the other one in a nested mannen as caing mixer patch when the user attempts to play the score given
be seen in Figurigl 3. Thus here we can reuse our model definitionFigure[». Here the upper row of 'mixer-connect’ boxes are ac-
for all scores having multiple guitar parts. Figllle 4 showshsa cessing the two required instruments (i.e. 'enp-harps@hand
score: here we need two guitar models that are distinguiblged ’enp-guitar’). The 'combiner’ box and the 'accum’ box in tur
the control system. combines the two incoming signals and mixes them to the outpu

DAFX-3

Proc. of the 11" Int. Conference on Digital Audio Effects (DAFx-08), Espeinjand, September 1-4, 2008

Jotio mixer-connect mixer-connect
" :&7& — . 2. 4_enp-harpsichord <_enp-guitar
ENP-guitar 1 |fat—g—r—1—F i e e e X . y
1/guitar = s 7 %ﬂ ¥ Ei = = combiner
> Al
J =110 > «
ENP-suitar 1 éﬁuﬁ.‘. P X accutn
-guitar #—g—F 1 i i T
guitar 8 — - N
2/guitar 3 3 3 TI
synth-box
Figure 4:A two part score that utilizes two guitar model instances. Hpach |
<" :score
4 :dac
v
Ji=sa
YTV L Ny) -
[t yeaetae g e R PR e e Figure 6:An automatically created mixer patch where two instru-
ENP-harpsihord ¢ == e = ment models are combined.
harpsy ligrs—t—
" mmul-vector mmul-vector mmul-vector
Josa 400 | ©03505F <00 [©50500F <00 [©1000) |
s, o ° 'y v v
ENP-guitar |5 *ﬁwﬁ :?x ;2 3' —
1/guitar & pad-vector pad-vector pad-vector
4100 | 4 [<00 |5 [400 | 5 8
v Vv v

Figure 5: A score that controls a harpsichord model and a guitar

shuffle-vector
model.

shuffle-vector

> 04123 p 02122 f

v v

5. CHANNEL CONVERSION SETUPS
Figure 7: Six output setups for converting mono signal to stereo,

uad or 5.1 (upper row); stereo to quad, or 5.1; quad to 5.
We end this paper by shortly discussing some problems tHat wi ?ow), (upp) q q o

appear if the incoming signals to the mixer patch in Figureo6 d

not match. In our previous case this is not a problem as beth in

coming signals are mono signals. For cases, however, winere o 7. ACKNOWLEDGMENTS
instrument results, say, in a stereo signal, and anotheoaipeits

a mono signal, we need rules how to combine these conflicting This work has been supported by the Academy of Finland (SA

signals. 105557 and SA 114116).
As the main rule the number channels of the mixer output is
chosen from the source that has the maximum number of chan- 8. REFERENCES

nels: thus if one source has 4 channels and another one 2, then

the mixer will output 4 channels. In these cases we need t0 "up [1] Pedro Kroger, “CSOUNDXML: A META-LANGUAGE IN
grade" sources having less channels than the mixer outghiso XML FOR SOUND SYNTHESIS,” ininternational Sympo-

they will match the main output. Figu@ 7 outlines six comiyon sium on Music Information RetrieyaBarcelona, Spain, 2004.
used cases, for instance how to convert a mono signal toostere

(for more details on how PWGLSynth operates with multicl&nn
signals se€]5]). In all cases we assume that the incomimglsig
connected the the left-most input.

[2] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare,
“PWGLSynth: A Visual Synthesis Language for Virtual In-
strument Design and ControlComputer Music Journalol.
29, no. 3, pp. 29-41, Fall 2005.

[3] Mikael Laurson and Mika Kuuskankare, “Recent Trends in
PWGL,” in International Computer Music Conferenddew
Orleans, USA, 2006, pp. 258—261.

Mika Kuuskankare and Mikael Laurson, “Expressive Nmtat

6. CONCLUSIONS

This paper gave an overview of how classical problems that ar [4] ; .
found in sound synthesis programs of the Music-N tradition a Package, Computer Music Journalol. 30, no. 4, pp. 67-79,
solved in our environment. We showed in an tutorial sectiow h 2006.

the main components of our system, such as the visual t@b-lev [5] Mikael Laurson and Vesa Norilo, “Multichannel Signal [re
patch, DSP abstraction, plug scheme, and accessor mettteds i resentation in PWGLSynth,” i€onference on Digital Audio
act with a musical score. Then we focused on our main topic of Effects 2006.

this paper, and discussed two main cases how we can reuse ex-

isting instrument definitions in various score configunasioIn a

concluding section we outlined a scheme that allows to leaadi

tomatically cases where incoming signals to the main outpxer

do not match.

DAFX-4

	1 Introduction
	2 Basic Components: A Sine Wave Oscillator bank Case-study
	3 Single Instrument Duplication Problem
	4 Scores mixing multiple instruments
	5 Channel conversion setups
	6 Conclusions
	7 Acknowledgments
	8 References

