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ABSTRACT

A novel approach to implement the distortion effect is introduced.
The proposed approach is based on time-varying phase distortion
of the input signal, and it is implemented using a coefficient mod-
ulated first-order allpass filter. This new technique provides con-
trol over the distorted band with a proper choice of the modu-
lating signal. By choosing a modulating signal that applies the
phase distortion only for low frequencies, the aliasing often gen-
erated by conventional distortion effects, which modify the signal
amplitude, can be greatly reduced. Modulation signals that pro-
duce distortion effects applicable for electric guitar playing are
also discussed. Sound examples on the use of the filter can be
found at http://www.acoustics.hut.fi/~jpekonen/
Papers/dafx08/.

1. INTRODUCTION

Distortion, a controversial property of an electrical device, is de-
sired to be minimized in high fidelity sound reproduction systems,
but in music, and especially in electric guitar playing, the distor-
tion effect is an essential tool in the generation of new timbres
and soundscapes. Examples on the use of the distortion applied to
guitar playing can be heard in any modern day rock album as the
effect has become a standard part of the sound.

The operation principle of the distortion effect is to modify an
input signal x(n) with a nonlinear function f(·), i.e.,

y(n) = f(x(n)). (1)

The distortion function f(·) introduces to the output y(n) new fre-
quency components that are not present in the input signal, and it is
usually implemented either as a table or as a polynomial approx-
imating the characteristics of an analog nonlinear circuit. Quite
often the distortion function is a hyperbolic trigonometric func-
tion, e.g. the hyperbolic sine sinh or the hyperbolic tangent tanh,
a nonlinearity often found in electric circuits [1, 2], or a sum of
Chebychev polynomials [3], which produce the harmonic compo-
nent of their order to a sinusoidal input.

The above-mentioned approaches can also be used in sound
synthesis, as in the waveshaping synthesis technique the sound is
produced by applying a nonlinear function to a sinusoidal input.
The use of the sinusoidal input signal in the waveshaping synthe-
sis is due to the fact that the distortion obtained by (1) produces
aliasing when either the distortion function f(·) contains any dis-
continuities or the input signal has a complex waveform, i.e., it
contains energy also at high frequencies [4, 5].

The distortion implemented as (1) modifies the amplitude of
a signal. Since an arbitrary signal can be represented at any time

instant using two properties, namely amplitude and phase, the non-
linear amplitude modification can also be interpreted as a modifi-
cation of the phase increment of the input signal from one sample
to another. Therefore, the distortion effect obtained by (1) could be
implemented by modifying the phase of the input signal instead of
the amplitude. This point of view is illustrated in Figure 1, where
the output of a distorter f(x) = tanh(2x)/ tanh(2) applied to
one cycle of a sinusoid is presented. The factor 1/ tanh(2) is used
to set the maximum amplitude of the output to unity in order to
illustrate this viewpoint more effectively.

Figure 1 shows that first the amplitude of the distorted sinusoid
increases faster than that of the pure sine, which can be obtained by
increasing the phase increment of the sampling synthesizer. When
the amplitude of the output is about to reach unity, the phase incre-
ment is decreased so that it is almost zero. After the maximum, the
phase increment is modified as before the maximum but in a time
reversed manner. Since the tanh function is symmetric, the nega-
tive part of the output can be obtained by similar modifications of
the phase increment as for the positive part.

Phase distortion has been previously used for sound synthe-
sis purposes, but those implementations apply the phase distortion
only to waveforms read from a table, e.g. see [6]. For an arbitrary
signal the phase distortion can be implemented by means of adap-
tive frequency modulation (AdFM) [7], where the input signal is
fed into a delay line from which the output is read in the desired
phase increment. However, in order to produce modifications that
correspond exactly to a conventional amplitude distorting function,
the AdFM approach would require a control logic that would ex-
tract the modulation parameters from the amplitude of the input
signal. Since the mapping between the amplitude and the modula-
tion parameters is, in principle, the same as the implementation of
the conventional amplitude distortion function, the direct AdFM
approach is not practical.

The computational complexity of the AdFM could be reduced
by simplifying the control parameters to be constant or directly ob-
tainable, e.g. via filtering, from the input signal. However, since in
a system with limited computational capabilities both the number
of required operations and the number of required delay elements
are desired to be as small as possible, the delay line required in
AdFM needs to be replaced with a filter structure that utilizes a
smaller number of delay elements. Since a delay line is, in prin-
ciple, an allpass filter, i.e. the magnitude response of a delay is
unity for all frequencies, a low-order allpass filter can be used to
approximate the delay line.

This paper introduces a novel approach to implement the dis-
tortion effect via a time-varying, coefficient-modulated first-order
allpass filter. In Section 2, the structure of the filter and its effect
on an input signal are presented. Section 3 discusses the prop-
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Figure 1: The output (solid line) of a distorter f(x) =
tanh(2x)/ tanh(2) applied to a sinusoid (dashed line).

erties of the presented implementation with stability analysis and
with the choice of the phase distortion signal. The use of the time-
varying filter is discussed in Section 4 for the distortion type used
in electric guitar playing. Section 5 concludes the paper.

2. COEFFICIENT-MODULATED FIRST-ORDER
ALLPASS FILTER

By definition, a time-invariant allpass filter passes the input signal
without affecting its magnitude spectrum. Instead, allpass filters
modify the phase of the signal, thus implementing a frequency-
dependent delay determined by the filter coefficients. This is il-
lustrated in Figure 2 where the phase delay, the delay applied by a
filter to an individual sinusoid [8], of a first-order allpass filter,

H(z) =
a1 + z−1

1 + a1z−1
, (2)

is plotted for three values of the coefficient a1. As can be seen
in Figure 2, the phase delay varies as the coefficient a1 is varied,
more at low frequencies than at high. At DC, the phase delay is
given by [9]

DDC =
1 − a1

1 + a1
. (3)

At the Nyquist limit, the phase delay is always exactly the filter
order, regardless of the coefficient value.

The variation of the phase delay can be interpreted as a distor-
tion effect as discussed above. By allowing the coefficient a1 of the
first-order filter to be time-varying according to a modulating sig-
nal m(n), the filter produces a time-varying frequency-dependent
delay which can be interpreted as a modification of the phase in-
crement of an input signal from one sample to another. Now, the
resulting filter is no longer allpass and the magnitude response of
the filter depends on the modulating signal m(n).

The flow diagram of a coefficient modulated allpass filter is
given in Figure 3 and the difference equations for the filter state
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Figure 2: The phase delay of a first-order allpass filter with a coef-
ficient value of 0.1 (solid line), −0.3 (dashed line) and −0.5 (dash-
dotted line).

and output are given by(
w(n) = x(n) + m(n)y(n) and
y(n) = −m(n)x(n) + w(n − 1),

(4)

where w(n) is the resulting signal of the first adder fed to the delay
element as shown in Figure 3. The state formula, i.e., the formula
for w(n) in (4), can be expanded as

w(n) = (1 − m2(n))x(n)

+

∞X
k=1

k−1Y
l=0

m(n − l)(1 − m2(n − k))x(n − k). (5)

Now, the output of the filter can be written as

y(n) = −m(n)x(n) + (1 − m2(n − 1))x(n − 1)

+

∞X
k=2

k−1Y
l=1

m(n − l)(1 − m2(n − k))x(n − k). (6)

If the filter is assumed to be causal, the summation goes to n in-
stead of infinity. With (6), the effect applied by the filter can be
expressed in closed form when both the input x(n) and the modu-
lation signal m(n) are known.

A time-varying first-order allpass filter has been previously
used to model nonlinear behavior of acoustical instruments, e.g. a
nonlinear spring termination [10] and the tension modulation phe-
nomenon [11, 12] of a vibrating string. In the tension modulation
model the time-varying first-order allpass filter is used to imple-
ment a fractional delay, i.e. the phase delay of the filter at DC
is between zero and one, and in the nonlinear spring termination
model the filter coefficient is switched between two values. How-
ever, here the number of possible modulation signal values is not
limited and the DC phase delay can be greater than one.
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Figure 3: Flow diagram of the coefficient-modulated first-order
allpass filter.

3. PROPERTIES OF THE COEFFICIENT-MODULATED
FIRST-ORDER ALLPASS FILTER

First, the stability condition of the presented filter must be deter-
mined. A thorough discussion on the stability analysis of time-
varying filters can be found in [13], and the stability analysis of
the proposed filter is performed here using the state-space stabil-
ity analysis approach. For an arbitrary state-space representation
given by (

X(n + 1) = P (n)X(n) + Q(n)x(n)

y(n) = R(n)X(n) + S(n)x(n),
(7)

where x(n) and y(n) are the input and output signals, respec-
tively, X(n) is the state vector of the filter, and P (n), Q(n), R(n)
and S(n) are filter-dependent time-varying transition coefficients,
the necessary and sufficient condition for time-varying bounded-
input-bounded-output (BIBO) stability can be expressed for all n
with [13]

|S(n)| +
−∞X

i=n−1

˛̨̨̨
˛R(n)

 
n−1Y

k=i+1

P (k)

!
Q(i)

˛̨̨̨
˛ < G, (8)

where G is bounded.
For the proposed filter the state-space representation coeffi-

cients are X(n+1) = w(n), P (n) = m(n), Q(n) = 1−m2(n),
R(n) = 1 and S(n) = −m(n). By applying the triangle inequal-
ity to the sum term, an upper bound for the BIBO condition can be
obtained,

|m(n)| +
−∞X

i=n−1

˛̨̨̨
˛(1 − m2(i))

 
n−1Y

k=i+1

m(k)

!˛̨̨̨
˛

≤ |m(n)| +
−∞X

i=n−1

 
|1 − m2(i)|

n−1Y
k=i+1

|m(k)|

!
. (9)

This upper bound converges if |m(k)| < 1 for all k since then the
product term converges towards zero as i decreases. In addition,
if |m(k)| = 1, the sum term reduces to zero for all n. Therefore,
the filter is stable if |m(n)| ≤ 1 for all n. The same condition

for the filter stability can be obtained by writing the impulse re-
sponse of the filter using (6) and by analyzing the convergence of
the absolute sum of the impulse response samples.

The delay produced by the coefficient modulated allpass filter
at zero frequency at time instant n can be computed using (3).
Since now a1 = m(n), the DC delay at time instant n is then

D(n) =
1 − m(n)

1 + m(n)
. (10)

Since the filter stability requires that |m(n)| ≤ 1 for all n, the
DC delay created by the filter is always nonnegative. This implies
that the effect illustrated in Figure 1 cannot be achieved with the
proposed filter, as going forwards in the signal phase would require
a negative delay.

Consider now the extreme values of the modulating signal
m(n). When m(n) = 1, the DC delay created is zero, and it
is infinite when m(n) = −1. When the DC delay is large, the
delay at low frequencies is also quite large, and the filter is very
dispersive, i.e. the high frequencies exit the filter well before the
low frequencies. When the input signal contains energy also at
high frequencies, the dispersion effect would produce unnatural
artifacts that are not desirable in the distortion effect. Therefore,
the modulating signal values should not be close to −1 for long
times.

Another issue in time-varying filters is the transients induced
by the coefficient changes. In many applications these transients
are not desirable, and techniques to remove them have been pro-
posed, see e.g. [14, 15]. However, as the transients produce dis-
tortion, they can be tolerated in the distortion effect. Yet, the coef-
ficient change may produce a DC shift to the output signal, and in
order to avoid numerical overflows the DC shift can be removed by
placing an additional scaling factor on either side of the delay of
the filter [16]. However, in the proposed filter structure this scaling
factor has been omitted.

The distortion effect obtained by the filter is illustrated in Fig-
ure 4, where three modulation signal examples for an individual
sinusoidal input signal are given. When the modulating signal gets
both positive and negative values, the filter applies a larger distor-
tion than when the modulation signal gets only values of one sign.
In addition, when the modulation signal is positive, the distortion
obtained is larger than that obtained with a negative modulation
signal. In Figure 5, the same modulation signal examples are given
for a sinusoidal input of another frequency.

The examples given in Figures 4 and 5 illustrate another as-
pect of the operation of the proposed filter. With the choice of
the modulating signal different frequencies of the input signals are
modified differently, and the effect acts like a selective frequency
modulator. The low frequencies are affected the most with all
modulation signals, but when m(n) gets only positive values high
frequencies are affected more than when m(n) gets only negative
values. When the input signal contains energy also at high fre-
quencies, the conventional distortion effects modifying the signal
amplitude would suffer from aliasing if no oversampling is used.
Using the coefficient modulated allpass filter that applies the effect
only at low frequencies the aliasing issue can be reduced.

4. MODULATION SIGNAL CHOICE FOR ELECTRIC
GUITAR PLAYING

The distortion effects used in electric guitar playing vary a lot both
with respect to the amount of distortion applied and the describing
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Figure 4: The output of the effect applied by the coefficient-
modulated first-order allpass filter to a 1000 Hz sinusoid in time-
and frequency-domains obtained by using (a) m(n) = 0.9x(n),
(b) m(n) = 0.45+0.45x(n), and (c) m(n) = −0.45−0.45x(n).
The sampling frequency used is 44.1 kHz.
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Figure 5: The output of the effect applied by the coefficient-
modulated first-order allpass filter to a 500 Hz sinusoid in time-
and frequency-domains obtained by using (a) m(n) = 0.9x(n),
(b) m(n) = 0.45+0.45x(n), and (c) m(n) = −0.45−0.45x(n).
The sampling frequency used is 44.1 kHz.
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names. One may call a certain type of distortion ”crunch” while
someone else may use that name for a different distortion type.
Here, some practical choices of the modulation signal m(n) for
different distortion effects are discussed without using any names
for the distortion effects.

When only a mild distortion is desired, the amplitude of the
signal is subject to be modified lightly, whereas for a heavier dis-
tortion the amplitude modifications are more drastic. These ampli-
tude modifications map to phase distortions similarily; for a larger
distortion a larger phase modification and vice versa. In addition,
the desired type of distortion is also affected by the range of values
where the modulation signal m(n) is varied as the range defines
how the phase distortion is applied to different frequencies. This
aspect was illustrated in Figures 4 and 5.

However, one question still remains open: What kind of mod-
ulation signal must be used to obtain a proper distortion effect?
One could use the input signal to drive the modulation, but, since
in many cases the input signal is non-smooth, thus producing faster
phase distortion variations and hence larger distortion, the input
signal should be lowpass filtered in order to smoothen the phase
distortion variations. Yet, one could use a constant modulation
signal, e.g. a sinusoid of a certain frequency, thus reducing the
complexity of the modulation signal retrieval. However, a con-
stant modulation signal would produce slightly different distor-
tion effects for different input signals, which is in conflict with
the output obtained by the conventional distortion effects. Yet, the
resulting signal can be interesting, and some sound examples of
such cases can be found at http://www.acoustics.hut.
fi/~jpekonen/Papers/dafx08/.

5. CONCLUSIONS

A novel approach to implement a distortion effect was introduced.
The proposed approach was based on time-varying phase distor-
tion of the input signal, and its implementation as a coefficient-
modulated first-order allpass filter was presented. The properties
of the presented implementation were discussed, and the property
of being a selective frequency modulator was illustrated. Practi-
cal guidelines for the choice of the modulation signal for different
types of distortion were also discussed.
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