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ABSTRACT

In this article we propose a modification to the combinatorial hid-
den Markov model developed in [1] for tracking partial frequency
trajectories. We employ the Wigner-Ville distribution and Hough
transform in order to (re)estimate the frequency and chirp rate of
partials in each analysis frame. We estimate the initial phase and
amplitude of each partial by minimizing the squared error in the
time-domain. We then formulate a new scoring criterion for the
hidden Markov model which makes the tracker more robust for
non-stationary and noisy signals. We achieve good performance
tracking crossing linear chirps and crossing FM signals in white
noise as well as real instrument recordings.

1. INTRODUCTION

Additive models for sound synthesis are popular due to their po-
tential for high quality synthesis and their flexibility with respect
to sound transformations and control. The additive model is given
as:

x(t) = <

0@L(t)X
l=1

al(t)e
jφl(t)

1A (1)

φl(t) = φl(0) +

Z t

0

ωl(u)du (2)

where al(t), ωl(t), and φl(0) are the amplitude, frequency and ini-
tial phase of the lth partial, respectively. Typically, these param-
eters are evaluated for every t = nH/Fs where n is the sample
number, Fs is the sampling frequency and H is the hop size. The
model parameters are undersampled and will need to be interpo-
lated in order to calculate the signal. Before we can perform this
interpolation we must first organize the parameter estimates into
trajectories (ie: assign each parameter to a trajectory, l, at every
time frame). This process is referred to as peak continuation or
partial tracking. In this paper we adopt the latter terminology.

Many different strategies and algorithms have been developed
for partial tracking over the years. McAulay and Quatieri (MQ)
developed one of the first partial tracking algorithms in the con-
text of speech coding [2]. Their method uses a simple metric de-
signed to minimize local frequency differences between analysis
frames. The MQ method ignores the fact that some peaks may be
spurious and uses a quasi-stationary signal assumption. The MQ
method was modified in [3] to allow partial trajectories to ‘sleep’
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and in [4] for use with a reassigned bandwidth enhanced model.
New strategies based on linear prediction coding (LPC) have been
presented in [5] and [6]. The LPC method uses past samples in
each trajectory to predict the best match in the current frame and
can interpolate missing peaks. In [7] an adaptive method is pre-
sented which uses B-splines to estimate the parameters of the ad-
ditive model. The authors in [1] developed a hidden Markov model
(HMM) for partial tracking which optimizes the partial trajectories
jointly across an analysis window. This method considers spurious
peaks, and performs well in a number of difficult tracking situa-
tions.

In this paper we describe several improvements to the HMM
in [1] that make it even more suitable for non-stationary and noisy
signal analysis. We describe how the Wigner-Ville distribution
can be used to estimate the frequency and chirp rate of spectral
peaks, and then illustrate the potential of this technique for detect-
ing crossing frequency tracks in the presence of noise. We also de-
scribe how to estimate the amplitude and initial phase of detected
peaks. In the second part of this paper we describe our HMM scor-
ing criterion, and provide sample results produced by our system.

The rest of this paper is organized into the following sections.
In section 2 we give an overview of our partial tracking system. In
section 3 we explain the methodology we used to estimate spectral
parameters, and in section 4 we describe the HMM partial track-
ing. In section 5 we show examples which demonstrate the efficacy
of our technique.

2. OVERVIEW

The block diagram in figure 1 shows the basic elements of our ad-
ditive analysis/synthesis system. As illustrated the system can be
roughly divided into three stages: preprocessing, parameter esti-
mation, and synthesis.

The intent of the preprocessing stage is to mitigate the effect of
interference terms due to the quadratic nature of the Wigner-Ville
distribution (discussed in section 3.1).

The short-time spectrum is computed by windowing the input
signal and applying the fast Fourier transform (FFT). The local
maxima are then extracted from the FFT and used to control a bank
of linear phase, finite impulse response band-pass filters. Linear
phase filters are used so that the initial phase can be recovered at
a later stage. Each band-pass filter is centered on a FFT peak, and
cut-off frequencies are taken midway between adjacent peaks.

Ideally, the output from each band-pass filter would be a mono-
component signal, although this is not absolutely required since
our system is capable of estimating the parameters of low order
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multicomponent signals. In section 3 we show how the Wigner-
Ville distribution and Hough transform can be used to estimate the
parameters of each signal produced by the preprocessing stage.
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Figure 1: Block diagram of proposed system.

3. PARAMETER ESTIMATION

3.1. The Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) was first described in [8], in
the context of quantum thermodynamics and then again in [9], in
the context of signal analysis. The WVD is a member of Cohen’s
class of bilinear time-frequency distributions [10] which includes
the often used spectrogram, and many other time-frequency distri-
butions used in the audio community [11][12].

We are motivated to use the WVD because it exhibits a supe-
rior time-frequency resolution to the spectrogram (in fact, it can be
shown that the spectrogram is a smoothed version of the WVD).
The equation for the WVD is given as [13]:

XWVD(t, ω) =

Z ∞
−∞

x(t+ τ/2)x∗(t− τ/2)e−jωτdτ (3)

If x is real, its analytic associate is typically used in order to re-
move negative frequencies. Additionally, the analytic associate
prevents aliasing from negative frequencies in the discrete WVD
(the Nyquist frequency is 4x the highest frequency in the discrete
WVD). It is informative to examine the WVD of a complex linear
chirp. A complex linear chirp is defined as:

x(t) = aejΦ(t) (4)

Φ(t) = φ0 + ω0t+ παt2 (5)

where a is the amplitude, φ0 is the initial phase, ω0 is the fre-
quency at time zero, and α is the chirp rate. The chirp has the
following instantaneous frequency (IF) law:

Φ′(t) =
dΦ

dt
= ω0 + 2παt (6)

The WVD of the chirp is:

XWVD(t, ω) =

Z ∞
−∞

a2ej(Φ(t+τ/2)−Φ(t−τ/2))e−jωτdτ (7)

= a2

Z ∞
−∞

e−j(ω−ωo−2παt)τdτ (8)

= 2πa2δ(ω − ωo − 2παt) (9)

This expression is non-zero when ω = ω0 + 2παt, and thus the
WVD forms a ridge in the time-frequency plane equal to the IF
law of the chirp. For this reason the WVD is well suited to the
analysis of first order FM signals.

A well known problem with the WVD is the occurrence of
inner and outer interference terms which tend to obfuscate its in-
terpretation. Outer interference terms occur in the WVD of mul-
ticomponent signals due to cross terms in the quadratic expansion
of the signal. Figure 2 illustrates cross terms between two lin-
ear chirps. Inner interference terms result from non-linear modu-
lations of the IF-law and may appear in monocomponent signals
such as the FM signal in figure 3.
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Figure 2: WVD of crossing linear chirps. Outer interference
(cross) terms clearly visible.

If we restrict our analysis window such that the windowed sig-
nal has a near linear IF law we can reduce the effect of inner inter-
ference terms. Likewise, if we use a bank of bandpass filters (as in
figure 1) we can largely eliminate the effect of outer interference
terms from out-of-band partials. In the sequel we demonstrate how
the Hough transform can be used to estimate the parameters of lin-
ear FM signals even when there are crossing chirps in the filter
band.

3.2. The Hough Transform

The Hough transform (HT) is an image processing tool used to find
lines and other complex patterns in images [14]. The HT exploits
the point-line duality in order to map image pixels to a 2D slope-
intercept parameter space. We can apply the HT to the WVD in
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Figure 3: WVD of monocomponent signal with sinusoidal IF law.
Inner interference terms clearly visible.

order to search for straight lines (frequency ridges) in the time-
frequency plane. The HT of the WVD is an integration over all
straight lines in the time-frequency plane:

XWH(ω0, α) =

Z
XWVD(t, ω0 + 2παt)dt (10)

Peaks in the HT give the initial frequency ωo, and chirp rate α,
of ridges in the time-frequency plane. It has been shown that the
outer interference terms of the WVD are amplitude modulated and
zero mean so that their energy contribution is reduced via the inte-
gration in equation 10 [15]. The HT of the WVD of two crossing
linear chirps is shown in figure 4. At SNR levels greater than 2dB
estimates from the HT approach the Cramer-Rao bounds [15].

Using the HT in conjunction with the WVD allows us to detect
multiple overlapping chirps which is an advantage over other first
order FM estimators such as [16][17]. As described previously,
we limit the number of partials in the HT by using a bank of linear
phase band-pass filters. This is because the number of outer inter-
ference terms grows at a rate of L(L− 1), where L is the number
of partials in the WVD. Clearly the outer interference terms will
become unwieldy if the number of partials is not limited. Thus
we use band-pass filters to reduce the number of partials in each
analysis.
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Figure 4: Hough transform of WVD of crossing linear chirps.

3.3. Initial Phase and Amplitude Estimation

It is not possible to estimate the initial phase using the WVD be-
cause it is an energy distribution. In order to estimate the initial

phase and amplitude we use a least squares error estimate in the
time domain. This is done by minimizing the following matrix
equation:

x −
ˆ

x̂1 x̂2 · · · x̂N

˜
26664

a1e
jφ1

a2e
jφ2

...
aNe

jφN

37775 (11)

where x is a column vector containing time domain samples from
the original signal, x̂i is a column vector containing time domain
samples from the ith chirp estimate, and aiejφi is the amplitude
and initial phase of the ith chirp to be estimated.

The least squares technique allows us to estimate the ampli-
tude and initial phase for crossing chirps, which would be difficult
using the short time Fourier transform (STFT). Figure 5 shows the
phase error from two crossing constant amplitude FM modulated
partials. The solid line shows the error in the STFT phase estimate,
and the dashed line shows the error in the least squares phase esti-
mate.
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Figure 5: Phase error for two crossing constant amplitude FM
modulated partials. Partial 1 (left). Partial 2 (right). The STFT
phase error is shown using a solid line, and the least squares phase
error is shown using a dashed line.

4. HMM PARTIAL TRACKING

Hidden Markov models are used to describe processes which emit
observable/measurable symbols that occur jointly with a set of un-
derlying hidden states [18]. The partial tracking problem can be
formulated as an HMM if we consider spectral peaks as the ob-
servable symbols emitted from a set of underlying partial trajecto-
ries.

Using the same notation and definition from [1], the elements
of the HMM are:

• hk is the number of spectral peaks at time k.

• Ik(j) is the trajectory assigned to peak j at time k. For
useful trajectories Ik(j) > 0. Ik(j) = 0 is reserved for
spurious trajectories.

• Sk = (Ik−1, Ik) is the hidden state at time k (the set of
partial trajectories connecting peaks at frame k − 1 to the
peaks at frame k).

• ωk(j), αk(j), ak(j) are the frequency, chirp rate, and am-
plitude of the jth peak at time k. Notice that in the work
presented here the chirp rate is explicitly measured, whereas
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in [1] the chirp rate was deduced as a frequency difference
between consecutive analysis frames.

• θk(j, r, t) is the matching criterion between peaks j, r and
t at times k, k − 1, and k − 2, respectively. The match-
ing criterion is used to develop an analytical expression for
the state transition probabilities in the HMM. The principal
difference between our HMM and the one developed in [1]
is our definition of the matching criterion.

In this model the probability of observing a set of spectral
peaks either zero or one, and thus the HMM is purely combina-
torial. The fact that some peaks may be due to noise/noisy mea-
surements is taken into account when defining the state transition
probabilities.

4.1. State Transition Probabilities

The matching criterion assigns a score to every three point path
defined by the peaks j, r, and t in frames k, k − 1, and k − 2,
respectively (T = H/Fs is the time between analysis frames):

θk(j, r, t) =

8>>>><>>>>:
e
−∆ωk(j,r)2+∆ωk(r,t)2

σ2
ω e

−∆ak(j,r,t)2

σ2
a if Ik(j) > 0

1− (1− µ)e
−∆ωk(j,r)2+∆ωk(r,t)2

σ2
ω ·

e
−∆ak(j,r,t)2

σ2
a if Ik(j) = 0

(12)
where:

∆ωk(j, r) =

»
ωk−1(r) + 2παk−1(r)

T

2

–
−»

ωk(j)− 2παk(j)
T

2

–
(13)

and:

∆ak(j, r, t) = [ak(j)− ak−1(r)]− [ak−1(r)− ak−2(t)] (14)

When evaluating the matching criterion we consider each peak as
either a useful peak or spurious peak. We must enumerate ev-
ery possible combination of useful and spurious paths in order to
capture the underlying trajectory. Equation 13 evaluates the inter-
frame frequency error based on the estimated chirp rate (figure 6
depicts this equation). Equation 14 records the difference in am-
plitude change between frames. Small values of ∆ωk and ∆ak
will lead to high useful scores (low spurious scores) in the match-
ing criterion. In other words the matching criterion promotes the
continuity of frequency and amplitude trajectories, and penalizes
discontinuities. The parameters σω , σa, µ are used to control the
sensitivity of the matching criterion.

In [1] the matching criterion was also designed to preserve
the continuity of frequency slopes, however, with no explicit chirp
rate estimate their criterion was maladjusted in certain tracking
situations. For example consider the set of peaks shown in figure
7. The peaks in the highlighted path have a very high continuity
according to the criterion in [1]. Our new criterion, which benefits
from the chirp rate estimate, would reject this path as spurious
since the chirp rate estimate leads to a discontinuous frequency
trajectory.

Given the matching criterion in equation 12 we define the state
transition score as:

Figure 6: Illustration of frequency scoring from equation 13.

Figure 7: Spectral peaks at three analysis frames. Solid lines indi-
cate all possible trajectories.

G(Sk−1, Sk) =

hkY
j=1

θk(j, r, t) (15)

where r and t are chosen such that trajectories are matched across
states: Ik−2(t) = Ik−1(r) = Ik(j). G is a state transition matrix,
which can be normalized to make the state transitions scores into
true probabilities. Since our HMM is not intended to be generative
(our application is decoding) we do not need to normalize our state
transition matrix. The optimal path through the trellis of spectral
peaks is then decoded by applying the Viterbi algorithm [18].

4.2. High Level Considerations

We use the same high-level procedure to detect partial birth/death
as was used in [1]. The Viterbi decoding is performed on a win-
dow of several analysis frames, and this window slides along the
temporal axis one frame at a time. The birth/death of partials is de-
tected by searching for appearing/disappearing partials from frame
to frame.

4.3. Computational Cost/Implementation Details

The computational tractability of the HMM is strongly dependant
on the number of peaks in each analysis frame. If hk is the number
of peaks in the current frame, then there areNk = hk ·hk−1 ·hk−2

paths that can be drawn between the peaks in frames k− 2, k− 1,
and k. For these Nk paths we must consider all cases (ie: that
there are 0 useful trajectories and hk spurious trajectories, 1 useful
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trajectory and hk−1 spurious trajectories, ..., hk useful trajectories
and 0 spurious trajectories). The number of states that must be
computed for a single frame are:

hkX
p=0

Nk!

p!(Nk − p)!
(16)

Clearly, the number of states grows exponentially with the num-
ber of peaks detected in each analysis frame. In order to make the
HMM computationally tractable we have employed a number of
strategies. First, we disallow trajectories that have large frequency
deviations. Second, we partition the frequency domain into a num-
ber of overlapping windows. This reducesNk and hk in each win-
dow, and significantly reduces the number of combinations com-
puted in 16. In our implementation we use a variable window size
and frequency overlap factor of 50 % and then join overlapping
trajectories into single trajectories after the Viterbi algorithm runs.

5. RESULTS

Figure 8 shows tracking results for two crossing chirps in a short
burst of white gaussian noise. The signal is well modeled as evi-
denced by the lack of chirp signals in the residual.
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Figure 8: Spectrogram of crossing chirps with white gaussian
noise burst (SNR -10 dB). Detected partial tracks superimposed
in dashed black lines (left). Residual spectrogram (right).

We are able to track even highly non-stationary signals such as
crossing FM modulated signals embedded in white gaussian noise
(see figure 9).

Figure 9: Spectrogram of crossing FM signals in white gaussian
noise (SNR 2 dB). Detected partial tracks superimposed in dashed
black lines.

Figure 10 compares the tracking performance of our HMM
with the one from [1]. Notice how our system is able to track fast
modulations, whereas the tracker from [1] has trouble distinguish-
ing between partials at key frames.
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Figure 10: Tracking performance of the HMM from [1] (top) vs.
the system presented in this paper (bottom).

In the following examples we use the reconstruction signal to
noise ratio (R-SNR) to help quantify our results. The R-SNR is
defined as:

R-SNR = 10log10

 PN−1
n=0 x

2(n)PN−1
n=0 (x(n)− x̂(n))2

!
(17)

where x(n) is the original signal, and x̂(n) is the estimated signal
from the additive model. The R-SNR is a useful measure if the
residual signal energy is primarily due to analysis errors (and not
noise). Figure 11 shows the tracking results for an upward glis-
sando on a violin. The R-SNR of the glissando is 39.5 dB.
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Figure 11: Spectrogram of upward glissando on a violin. Detected
partials superimposed in white. 39.5 dB R-SNR.

Figure 12 shows the tracking results for a vocal falsetto with
strong vibrato. The R-SNR for this signal is 60.7 dB.

Figure 13 shows overlapping upward and downward glissandi
on a violin. We are able to detect many of the crossing partials in
this difficult example. The R-SNR of this signal is 10.2 dB.
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Figure 12: Spectrogram of vocal falsetto with strong vibrato. De-
tected partials superimposed in white. 60.7 dB R-SNR.
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Figure 13: Spectrogram of overlapping upward and downward
glissandi on a violin. Detected partials superimposed in white.
10.2 dB R-SNR.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have outlined the major elements in an HMM-
based partial tracker for additive synthesis. We have demonstrated
how the Wigner-Ville and Hough transforms can be used to es-
timate the parameters of a first order FM model, and shown how
these estimates can improve the matching criterion for HMM-based
partial tracking. We have devised a number of strategies to make
the HMM computationally tractable, and have implemented the
complete system in Matlab. We have achieved good tracking re-
sults for synthetic sounds and monophonic instrument recordings.
At present we are working to improve the management of crossing
partials in polyphonic instrument recordings. We are also experi-
menting with linear prediction in order to interpolate/join closely
spaced trajectories.
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