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ABSTRACT

A supervised learning approach to ambience extraction froez
channel audio signals is presented. The extracted ambgls
are applied for the blind upmixing of musical audio recogdirio
surround sound formats. The input signal is processed bypsmaa
short-term spectral attenuation. The spectral weights@rsuted
using a low-level feature extraction process and a neutalark
regression method. The multi-channel audio signal is gdadr
by feeding the computed ambient signal into the rear charofel
a surround sound system.

1. INTRODUCTION

Multi-channel surround sound systems allow for an impress-
production of audio recordings in terms of conveying a redtand
enveloping experience. The increasing availability ofreund
sound systems (e.g. home theatre and multimedia computer se
tups) evokes the consumers’ desire to exploit their adgastéor

the reproduction of legacy content. The mismatch betweesuh
round sound setup and the legacy content format (either rapno
stereo) creates the need for content format conversion.

The termupmixingrefers to the conversion of an audio signal
to another format with more channels. Two concepts of upmixi
are widely known: Upmixing with additional information gling
the upmix process (see eld. [1] for a recent overview) andided
(“blind™) upmixing without the use of any side informatiawhich
is what this work relates to.

When processing stereo recordings, the difference bettheen
left and right channel signals may be evaluated by the upmix p
cess. Matrix-based techniques are one particular apprfoacip-
mixing in which linear combinations of the left and right irtp
signal create the multi-channel output signals. Altexedyi some
matrix-based upmix systems dynamically update the gaitoffac
in the matrix based on a detection of the dominant elemerteof t
audio scene[]Z]13]. Statistical techniques have been apidithe
computation of the matrix elements [ [4].

More advanced methodEl [Bl 6] operate in the frequency do-
main, such as ambience-based techniqUE§I[B] 4, 5]. Thedr cor
component extracts an ambient signal which is fed into tlae re
channels of a multi-channel surround sound signal. The -ambi
ent sounds are those that form an impression of a (virtusBnk
ing environment, including room reverberation, audiencensls
(e.g. applause), environmental sounds (e.g. rain), iadlbt in-
tended effect sounds (e.g. vinyl crackling) and backgrouvide.
This technique evokes an impression of envelopment (“inseeer
in sound”) by the listener.

These approaches are applicable to audio recordings with mo
than one channel. A method for ambience extraction for mono
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recordings based on Non-negative Matrix Factorizationbeen
described in[ll7]. The disadvantages of this previous metred
high computational complexity and high latency.

This publication relates to the extraction of an ambientaig
from audio recordings with one channel for the purpose ofixpm
ing. The proposed method incorporates the extraction ofléwel
features and a supervised learning method to estimate #w sp
tral weights, which are applied to the input signal in thefrency
domain to compute the ambient signal. This approach is of low
computational complexity and low latency comparedio [7].

The processing is influenced by two techniques of audio signa
processing, namely Adaptive Spectral Panoramization JAS|P
and noise suppression for speech enhancement.

1. ASP aims at the automated positioning of a sound source
within a stereo panorama. The left and right channel sig-
nals of a stereo recording are time-varying filtered, wherea
the filter characteristic is controlled by a feature eximact
process applied to the input signal.

. Aprominent family of noise suppression methods for speec
enhancement is based on a time-varying filtering process of
the input signal and is known aort-term spectral atten-
uation (STSA) [d] or spectral weightindfL0], whereas the
filter characteristic is controlled by an estimate of thesgoi
energy corrupting the speech sighal

This paper is organized as follows: Section 2 describesrihe u
derlying idea of the proposed method. Section 3 gives arviawer
of the processing, which is divided into two separate preees
described in Section 4 (ambience estimation) and Secti@mb (
bience extraction). The evaluation procedure and restdtsie-
scribed in Section 6 and conclusions are given in Section 7.

2. PRELIMINARY CONSIDERATIONS

In general, a musical recording contains sound componenits e
ted from one or more sound sources (e.g. instruments andrsing
and reverberations of the room surrounding the sound ssutoe
the following, the sources are denoted as “direct soungsiofsy-
mous with the term “primary sound sources” used in &lg. [Biile
room reverberations add sound components, which evoke an im
pression of ambience when reproduced properly by the rewprd
There may be additional ambient sound sources as well,heg. t
audience in a live performance (applause), environmentatds
(like rain and wind) or other background noises.

1Another speech enhancement method is structurally verjlasim
compared to a previous method for ambience extraction frteres

recordingd[b].
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A valid signal model for ambience extraction is to assume an for ambience extraction from stereo recordings. The sodeafis
additive mixture of the direct sound$n| and the ambient sounds  information based on differences between the signals oér@st

aln], such that the recorded sounfh| can be written as or multi-channel recording for upmixing is clearly a restion of
such methods. It prevents them from processing mono sigmals
z[n] = d[n] + a[n] (1) recordings with negligible inter-channel signal diffeces.

This publication investigates the application of a supsdi
learning method to the task of ambience extraction from mono
signals. The underlying idea originates from the expegethat
ambient sounds are recognized even in mono recordings.eTher
are signal characteristics guiding the discriminatiormeein am-
bience and direct sound components.

The work begins with the question about the physical nature
of ambience. Room reverberations result in an additive uméxbf
differently delayed and attenuated copies of the direchdalue
to reflections of the sound by the walls, the ceiling and therflo
Consequently, ambient signals recorded by spaced or eiffigr

_ oriented microphones are less correlated compared tot diigc
S(m, k) = H(m, k)X (m. k) @ nals. Additionally, the following characteristics are ebged:

A similar signal model has been commonly applied in noise
suppression methods for speech enhancement, elgl Il Fdir2
the following considerations related to speech enhancgnties
observed signat (e.g. the microphone signal) is assumed to be
an additive mixture of a speech signgh| (which is the desired
signal) and a background noig@:] (which corrupts the desired
signal).

Noise suppression methods based on STSA may filter the in-
put signal by computing a Short-term Fourier Transform (B)TF
and weighting the spectral coefficients according to Equédi

Here, X (m, k) and S(m, k) denote the STFT coefficients of

z[n] and the estimate of the desired sigs], respectively. The e The ambient signal components in a stereo recording have

spectral weights (m, k) are positive and real-valued, is the comparable levels when averaged over time [13].

index of the time frame and is the index of the frequency bin. e The direct sounds have shorter attack times and decay times
The spectral weight&l (m, k) can be computed using an esti- compared to ambient sounds.

mateR,(m, k) of the time-frequency representation of the signal-
to-noise ratio or an estimaf@(m, k) of the spectral coefficients of
the background noidgn]. A particular method ispectral magni-
tude subtractionin which the spectral weights are computed ac-
cording to Equatiofl3.

e Ingeneral, the absorption of the sound energy by the reflect-
ing surfaces of aroom is greater at high frequencies. The re-
verberation time decreases with increasing frequency- Con
sequently, direct sounds are brighter sounding than arnbien
sounds, especially in rooms as used for musical recordings.

Rs(m, k)
Hm k) = 5+ 1 ®) 3. PROCESSING OVERVIEW

Other gain values are derived by applying the Wiener filtkr ru
(see e.gIT10]) or the spectral subtraction rfild [11].

The STSA approach to noise suppression for speech enhance
ment can be summarized as two separate processing steps:

An overview of the presented method is shown in Fidllre 1. The

processing is performed in the frequency domain. The salectr

coefficientsX (m, k) are computed from the input signaln] by

means of the STFT, with time frame index and frequency bin

1. Noise estimation, i.e. the estimation of the power spéctr  indexk. The reported results are obtained with an STFT of over-
density or the instantaneous spectra of the background nois lapping data frames of 11.6 ms length each, a transformHewigt

or the estimation of the SNR in frequency bands. 23.2 ms and the Hann window function.
A set of low-level featuresZ is computed from the spectral

coefficientsX (m, k) in frequency bands corresponding to the crit-
ical band scale[[14], as described in Secfion 4.1. The featare
The processing described above is equivalently applidable fed into a neural network which is trained to estimate thei-pos

2. Noise suppression, i.e. the attenuation of the noiseén th
observed signal.

the problem of ambience extraction, since the underlyiggadi tive and real-valued spectral weighs (m, r) for each frequency

model and the task are similar. The definition of the desiigd s band, with frequency band index

nal changes from “desired speech signal” to “ambient sfgiidle The spectral weights are interpolated to the frequencylueso
definition of the background signal changes from “corruptiack- tion of the input spectra, yieldingf (m, k). The STFT coefficients

ground noise” to “direct signal components”. of the ambient signald(m, k) are computed by multiplying the

Consequently, the spectral weights may be computed accord-input spectraX (m, k) with the spectral weight$7 (m, k). The
ing to Equatior[B, whereaB,(m, k) is replaced by an estimate ~ambient time signak[n] is derived by the inverse processing of
R(m, k) of the ratio of ambient sound signals and direct sound the STFT computation.

signals.
4. AMBIENCE ESTIMATION
A(m, k)
R(m, k) = ——% 4
D(m, k) In this section, the estimation of the spectral weighigm, r) is
The preceding considerations lead to the problem of estimat described. A set of low-level features is computed for eatle t

ing theambient-to-direct ratidADR) R(m, k). In previous publi- frame m from the spectral coefficients in each frequency band.
cations on ambience extraction from stereo recordingsbetral In the following, the indices of the STFT coefficient corresg-
weights for the ambience extraction are derived by evaigatie ing to the lower and upper boundary of the frequency bands are
correlation between the left and right channel sigridIEl[@].5The denoted by, andw.., respectively. The spectral weights are esti-

correlation between the stereo channels in each frequearay is mated from the low-level features by means of a neural nétwor
low in regions dominated by ambience and is therefore a vaiil regression method.
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Figure 1:Block diagram of the ambience extraction processing.

4.1. Feature extraction

The choice of the extracted features is determined by thectea-
istics of ambience as described in Secfibn 2. The initialiesset
is comprised of the spectral energy, the spectral energgrelifce,
the spectral flux, the spectral flatness, and the spectrabien

4.1.1. Spectral centroid

The spectral centroidC'(m, r) corresponding to the-th frequency
band is computed from the STFT coefficiedt§m, k) with bin
frequencyf (k) according to

doal 1X(m,q)| f(q)
SC(m,r) = - X o] (5)

q=lr

The spectral centroid is a low-level feature that correléteéhen

4.1.2. Spectral flatness measure

Various definitions for the computation of the flatness of a-ve
tor or the tonality of a spectrum (which is inversely relatedhe
flatness of a spectrum) exist, e.gJ[[5] 16]. The spectraietat
measureS F M used here is computed as the ratio of the geomet-
ric mean and the arithmetic mean of thespectral coefficients of
the sub-band signal as shown in Equafibn 6.

oLy, log(IX(m.q)))) /L
e( q=lr )

SFM(m,r) = o
T gl 1X(m,q)|

(6)

4.1.3. Spectral flux

The spectral fluxS F' is defined as the dissimilarity between spec-
tra of successive frame5_J17] and is frequently implemeiugd
means of a distance function. In this work, the spectral fax i
computed using the Euclidian distance according to EquBtio

SF(m.r) = J S (X(m )] — [X(m - 1Lg)?  (7)

q=lr

4.1.4. Spectral energy difference

The spectral energy differené&D is computed as the mean of the
difference of the spectral energy of successive framesdicepto
Equatior[B.

Ur

SD(m,r) =Y (IX(m,q)* = |X(m=1,9)*) ()

q=lr

Contrary to the spectral flux, the spectral energy diffeeenc
distinguishes between the directions of the change in thpdeal
progression of the energy in frequency bands.

4.1.5. Spectral energy

The spectral energ§ E' is computed in each time frame and fre-
guency band and normalized by the total energy of the tintadra
Subsequently, the feature values are low-pass filteredtiomerby
means of a second-order IIR filter.

4.2. Feature post-processing

The extracted features are accumulated into the featuemddtir-
ther processed prior to the training and the applicatiorhefre-
gression method.

4.2.1. Centering and variance normalization

The features: € Z are processed to have zero mean and unit
variance according to

s z—E{z} )
E{(z~ E{z})*}

to eliminate side effects on the regression process duééo-di

computed over the whole frequency range of a spectrum) to theent scaling of the features values, whemenotes the transformed

perceived brightness of a soud][15]. It is normalized tofthe
quency range of the sub-band such that SC'(m,r) < 1.

feature and the expectation values are computed from timéniga
data.
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4.2.2. Feature grouping

The sub-band features computed from a small number of succes
sive signal frames are subsumed to larger entities (in thenfimg
denoted agroup with a hop size of one frame. The rationale
behind the grouping is to evaluate the progression of thifes
over time.

The groups are represented by the means and the varianceg1

of the feature values computed from the respective framém T
reference values for each group are computed as the meaa of th
references of the corresponding frames.

4.3. Neural network regression

The neural network is utilized to estimate the spectral sifrom
the low-level feature sef. A training algorithm from théNetLab
toolbox [I8] is used in this work. For a given spectral weiight
rule g (-) (as shown in Equatiof 3), two definitions of the output
of the neural network are appropriate. The neural netwonkbea
trained using the reference values for the ABRR(m, r) or with
the spectral weights

Hy(m,r) = g (Ry(m, 1)) (10)
Figurel2 illustrates the distributions of the ADR and thecspe

tral weights, for six selected sub-bands. The histograrts pke-
veal that the distribution of the ADR is not flat and concetetticat
small values, whereas the spectral weighitgm, ) show a rather
flat distribution. In the following, the reference valuestioe spec-
tral weights are used as the references for the trainingeafidlural
network.
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Figure 2: Histograms ofRy,(m, r) (circle) and Hy(m, r) (trian-
gle) for six selected frequency band illustrating the nefatfre-
quency of occurrence (rfoc).

4.3.1. Structure of the neural network

The neural network had/ input neurons, one hidden layer with
K neurons and\/ output neurons. WittB being the number of
frequency bands andd” the number of features, the number of
input neurons isV = 2BW (if the mean values and the variances
of the features of each group of successive frames are fedhat
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neural network). The number of output neurons equals théorum
of frequency bands)/ = B.

The results presented here are obtained With= 40 hidden
neurons unless otherwise specified. The activation funaifdhe
hidden neurons is the hyperbolic tangent. The activatioctian
of the output neurons is the identity, such that the requiad-
utations in the output layer are reduced to linear comtainatof
e features and the weights of the neural network. Eachaheur
network is trained using 100 iteration cycles.

4.3.2. Reference data for training and test

A crucial aspect for the application of supervised learmreghods
is the proper choice of the reference values used for theitigi
The training of a neural network for the task of ambiencenassti
tion requires audio signals whose direct signal and amisignal
are separately available. Appropriate audio signals aalliylgen-
erated using anechoic recordings as direct signals arfitiaity
reverberated copies of the recordings as ambient signalsréas
the direct path of the reverberation processor is muted).

Since a sufficient amount of anechoic recordings comprising
different musical genres is not available, commercial réicgs
with a negligible amount of ambience (i.e. recordings whicé
in general considered as being very “dry”) are consideretirast
signals. The ambient signals are generated by convolvingutio
signals with recordings of room impulse responses.

5. AMBIENCE EXTRACTION

The regression resuld, (m, r) are interpolated to the frequency
resolution of the input spectra. Prior to the modificationttoé
input spectraX (m, k), the estimated spectral weights are post-
processed by a non-linear mapping function and a low-pass fil

The non-linear mapping of spectral weights has been applied
previously [%] and aims at increasing the ambient signal mmm
nents in the output signal while reducing the direct sigmahpo-
nents. The mapping functiof( /) applied here is given in Equa-
tion[.

g(H) =sin® (H -7/2) (11)

Subsequently, the spectral weights are low-pass filtex@thal
time (using a first-order IIR filter) to account for erronelyusc-
curring fast fluctuations in the temporal progression ofasgéma-
tion results.

The complex STFT coefficients of the ambient sigiéin, k)
are computed from the input spect’&(m, k) and the spectral
weights H (m, k). The ambient time signal is resynthesized us-
ing the inverse processing of the STFT.

6. EVALUATION

6.1. Data sets

The estimation of the ambience weights is evaluated usirgta d
set of 80 excerpts of musical recordings with a length of 18 se
onds each. These items were recorded with a negligible anadun
room reverberations. Different musical genres are consitien
the choice of the audio items.

An ambient signal of each audio item is computed by convolu-
tion with one of a set of 25 room impulse responses. The ingpuls
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responses were edited by attenuating the first impulse spnel-

ing to the direct path. The direct signals and the ambiemtassg
are additively mixed. Different mixing levels were chosendach

of the impulse responses to ensure that the mixture signatsio

a reasonable amount of reverberation. The audio signalshend
impulse responses were recorded in a two-channel steremfor
The mixture signals were downmixed to mono prior to the ambi-
ence estimation processing.

6.2. Regression results

The performance of the ambience estimation is evaluateddaynm
of

the regression error computed as L1-norm of the diffeaenc
between reference and estimated value

the (normalized) correlation coefficient between refees
and estimates

A ten-fold cross validation is applied by dividing the daé&t s
into sets of training data (90%) and test data (10%). If ndédo
otherwise, the experimental results are obtained witlufeagroup-
ing of six frames using the mean values and the varianceseof th
feature.

Figure[® details the mean regression error of the validation
runs separately for each frequency band. The results foisewvo
lected parameter settings are shown. The first simulaticons
puted by using the complete feature set without groupirgystt-
ond simulation uses a reduced feature{sef'M, SF, SD} with

grouping.
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Figure 3:Regression results per frequency band: regression error
(L1-norm) (upper figure) and correlation coefficient betweef-
erences and estimates (lower figure) for two different pastem
settings. The initial feature set without grouping (poirgt)com-
pared to a reduced feature set with grouping (square).

The results indicate a moderate correlation between tlie est
mated spectral weights and the reference values for theefgist
teen frequency bands, with a mean correlation of 0.49 an@l 0.5
for the first and second condition, respectively. The resioesre-
sults decrease at the upper frequency bands, probably dhe to
decrease in the ambient signal energy in that bands.
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Examples of the estimated spectral weights and the referenc
values are shown in FiguEd 4 for three frequency bands of an au
dio signal with a length of 2.3 seconds from the training dia
The upper plot shows the input time signal, the other plotsvsh
the estimation results and the references for the frequbangs
centered at 150 Hz, 845 Hz, and 2510 Hz.

input

time [s]

Figure 4: Input time signal and examples of spectral weights of
frequency band number 2, 8, and 15 for a signal with a length
of 2.3 seconds. References are shown by dashed lines and the
estimated weights by solid lines.

6.3. Experiments on the influence of selected parameters

This section investigates the impact of selected parasetethe
regression result. The following parameters are modifiethen
experiments:

e the feature set
e the grouping parameters

e the number of hidden neurons

6.3.1. Variation of the feature set

The impact of the feature set on the regression result isiaied
in experiments with backwards feature selection. The tesld-
tained with the initial feature setSC, SFM, SF,SD,SE} are
compared to conditions where one feature has been remawed fr
the feature set. The regression results are shown in Higure 5
Discarding eitheS D, SF or SF M leads to higher regression
errors and lower correlation between the estimations aadfer-
ences. The results are only slightly affected by the remof/éte
featuresSFE or SC from the initial feature set. Experiments with-
out feature grouping and with different STFT parametersggéa
frame size) yield similar ranking of the features. This ketalthe
next experiment where both featureésH and SC) are discarded.
Figurd® illustrates the recognition results for the iniéature
set, and for feature sets where eitl$df’ or SC or both,SE and
SC, were discarded. It is shown that the regression performanc
is improved when using the feature §&F M, SF, SD}.
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Figure 5: Regression results for different feature sets: initial-fea
ture set (plus), without SD (triangle), without SE (x-makithout
SF (circle), without SC (star), without SFM (point)

6.3.2. Grouping of frames

The influence of the grouping parameters on the regresssuitse
is investigated in the following experiment. Figllie 7 ithages the
result of regressions

without grouping

with grouping using the means of the feature values

with grouping using the means and the variances

e Wwith grouping with varied grouping size.

The experiments indicate an improvement of the regression r
sults when grouping is applied for the lowest 17 frequencydsa
corresponding to a frequency range up to 3150 Hz. For this fre
guency range, the best result in terms of regression ercbcan
relation is obtained with grouping using the means and magsa
of the feature values and grouping size of six frames, athdbe
differences are small compared to a smaller grouping size.
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Figure 6: Regression results for different feature sets obtained by
feature selection: initial feature set (plus), without S&nfark),
without SC (star), without SE and SC (square)

6.4. Comparison to ambience extraction from stereo record-
ing

For the purpose of comparison, spectral weights are compute
from stereo recordings by means of the normalized crosgladion
coefficient between the left and the right channel as use#]in [
from the data base described in Secfion 6.1 (prior to the duwn
ing to mono). The normalized cross-correlation coefficisgbm-
puted recursively and processed using a non-linear mapping
tion as described ifi[5]. The spectral weights are subsédiyuan
eraged over the frequency bins corresponding to the dritarads.

It should be noted that no additional criterion for the détecof
signal components panned completely to one side is usedhédor t
computation of the spectral weights for stereo signals.

Figure[® illustrates the regression error and the cormiato-
efficients between the reference values and spectral veeait
tained from the inter-channel cross-correlation coefficieSur-
prisingly, the evaluation metrics used in this work indecabm-
parable regression results for the processing of mono dews

The impact of the grouping parameters on the regression re-using the method presented here and stereo recordings asing

sults is different for frequencies larger than 3700 Hz. Tdtiser-
vation leads to the assumption that further improvementshea
obtained by using different grouping parameters in diffierfee-

guency bands, which is not investigated further.

6.3.3. Number of hidden neurons

The number of hidden neurons influences the computatioaal lo
of the ambience estimation process, particularly owingdpéorton-
linear activation function. Therefore, it is desired toatetine the
number of hidden neurons such that the use of additionabneur
does not improve the recognition rate significantly.

Figure[® illustrates the regression result obtained froorale
networks in which the number of input neurons is varied in the

method based on the inter-channel correlation.

6.5. Informal listening

In order to gain an impression of the ambient signal in the- con
text of upmixing, various real-world items were procesdddilti-
channel signals were assembled by feeding the unprocessed t
channel signal into the left and right front channels andemdfng
the ambient signal into the rear channels with a delay of 11 ms
The rear channel signals were not subjected to additionst- po
processing (as e.g. described[inl[19]).

The resulting multi-channel signals evoke the impressibn o
envelopment when played back on a 5.0 surround sound system
with moderate ambience volume level. However, the locabna

range between 1 and 100. The regression error and the correlaof the direct sound sources remains in the front as desired.

tion coefficients are averaged over the first 17 frequencyg$al

Listening to the extracted ambient signals over headphaes

is shown that only minor improvements are obtained by using a veals that their sound characteristics are very similanab of the

neural net with more than 40 neurons.

room reverberations. Prominent direct signal componesig-
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Figure 7:Regression results for different grouping configurations:
without grouping (plus), grouping using mean values witbug-
ing size 4 (x-mark), grouping using mean values and varignce
with grouping size 4 (point), grouping using mean values\aauit
ances with grouping size 6 (square)

nificantly although not completely attenuated. Minor pungpar-
tifacts may result from the processing but are masked byrtre f
channel signals when played back on a surround sound system.

6.6. Listening test

0.14,

0.135f, i

regression error

<)
N =]
N R
0w
T
.

40 50 60 70 80 90
number of hidden neurons

0.12 . . y
10 20 30

100

0.61 ]

0.55r o B

0.5¢ 1

correlation coefficient
e}

40 50 60 70 80 90
number of hidden neurons

0.45 : - y

10 20 30 100

Figure 8: Influence of the number of hidden neurons on the re-
gression error and the correlation between estimated \sataed
references.

A typical configuration of the regression function as used in
the presented experiments may result in 7000 operatiorduti
the computations of the hyperbolic tangent) per frame. Tma-c
putational complexity of the feature extraction and pastepssing
is moderate. However, the computational load of the prapase-
bience extraction process is much lower compared to theadeth
for ambience extraction of mono signals as described inffdiich
takes about 120000 operations per frame for each iterafitimeo

The novel method was compared to unprocessed audio signals, merical optimization method.

and to a previous approach to ambience-based upmixing ef one

channel audio signals by means of a listening test. The qusvi
method computes an ambient signal using a Non-negativeiMatr
Factorization of a spectrograms of the input signal of amying
segments of a 4 seconds length each [7].

Six excerpts from commercial recordings from a variety of

7. CONCLUSIONS

A novel approach to ambience extraction from audio recgslin

musical genres with a length between 8 and 16 seconds eaeh werWhich is applicable to one-channel audio signals has been pr -
presented. The signal levels of the audio items were adjuste Sented. The core component of the proposed method is the esti

such that the audio items under comparison were perceivbd to
equally loud. The audio signals were presented using asutiro
sound setup with 5 loudspeakers Genelec 8250A arrangeddacco
ing to ITU-R BS.775. A group of 11 subjects participated ia th
test, 8 of them participated in listening tests with suriosound
before. The listeners were asked to rate the test conditicesrd-
ing to their personal preference.

The results of the listening test are illustrated in the blmt p
in Figure[I0. The two conditions with surround sound weredat
higher compared to the original. The listening test indisato
significant difference between the two upmix methods.

6.7. Computational complexity

The computational load of the presented method is mainlgexhu
by the STFT, the feature extraction and post-processingtiae
regression function. The regression take@&ee Equatiof12) real-
valued multiplications and additions pld§ computations of the
hyperbolic tangent for each frame.

C=K-(2BW + B) (12)

mation of spectral weights which relate to the energy ratithe
ambience signal components and the direct signal compef@nt
each time frame and frequency band.

The results of the ambience estimation are evaluated bysnean
of the averaged magnitude differences and the correlateffie
cient between the references and the regression results spec-
tral weights. The evaluation of the regression resultciatgis that
the correlation between the references and the estimatemiga-
rable to the correlation between the same references awttape
weights computed using the inter-channel cross-coroelatoeffi-
cient between the left and right channel of a stereo recgrdin

Listening to the extracted ambience signals over headphone
and to multi-channel surround sound produced by the predent
method reveal that the sound characteristics of the redoade
bience are successfully captured. The result of a listetesy
confirms that surround sound produced by the presented thetho
is preferred compared to the unprocessed audio signale s
no significant difference in the listeners’ preference carad to
a previous method with distinctly higher computational pbex-
ity and higher latency. The results are promising and iriditaat
ambience-based upmixing is applicable to mono recordings.

DAFX-7
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regression error

correlation coefficient

Figure 9: Regression error (L1-norm) (upper figure) and cor-
relation coefficient (lower figure) between references ar$ss
correlation-based weights in stereo recordings. Weighescam-
puted without mapping (dotted line), with mapping (dashed)I
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