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ABSTRACT

A supervised learning approach to ambience extraction fromone-
channel audio signals is presented. The extracted ambient signals
are applied for the blind upmixing of musical audio recordings to
surround sound formats. The input signal is processed by means of
short-term spectral attenuation. The spectral weights arecomputed
using a low-level feature extraction process and a neural network
regression method. The multi-channel audio signal is generated
by feeding the computed ambient signal into the rear channels of
a surround sound system.

1. INTRODUCTION

Multi-channel surround sound systems allow for an impressive re-
production of audio recordings in terms of conveying a natural and
enveloping experience. The increasing availability of surround
sound systems (e.g. home theatre and multimedia computer se-
tups) evokes the consumers’ desire to exploit their advantages for
the reproduction of legacy content. The mismatch between the sur-
round sound setup and the legacy content format (either monoor
stereo) creates the need for content format conversion.

The termupmixingrefers to the conversion of an audio signal
to another format with more channels. Two concepts of upmixing
are widely known: Upmixing with additional information guiding
the upmix process (see e.g. [1] for a recent overview) and unguided
(“blind”) upmixing without the use of any side information,which
is what this work relates to.

When processing stereo recordings, the difference betweenthe
left and right channel signals may be evaluated by the upmix pro-
cess. Matrix-based techniques are one particular approachfor up-
mixing in which linear combinations of the left and right input
signal create the multi-channel output signals. Alternatively, some
matrix-based upmix systems dynamically update the gain factors
in the matrix based on a detection of the dominant element of the
audio scene [2, 3]. Statistical techniques have been applied to the
computation of the matrix elements in [4].

More advanced methods [5, 6] operate in the frequency do-
main, such as ambience-based techniques [3, 4, 5]. Their core
component extracts an ambient signal which is fed into the rear
channels of a multi-channel surround sound signal. The ambi-
ent sounds are those that form an impression of a (virtual) listen-
ing environment, including room reverberation, audience sounds
(e.g. applause), environmental sounds (e.g. rain), artistically in-
tended effect sounds (e.g. vinyl crackling) and backgroundnoise.
This technique evokes an impression of envelopment (“immersed
in sound”) by the listener.

These approaches are applicable to audio recordings with more
than one channel. A method for ambience extraction for mono

recordings based on Non-negative Matrix Factorization hasbeen
described in [7]. The disadvantages of this previous methodare
high computational complexity and high latency.

This publication relates to the extraction of an ambient signal
from audio recordings with one channel for the purpose of upmix-
ing. The proposed method incorporates the extraction of low-level
features and a supervised learning method to estimate the spec-
tral weights, which are applied to the input signal in the frequency
domain to compute the ambient signal. This approach is of low
computational complexity and low latency compared to [7].

The processing is influenced by two techniques of audio signal
processing, namely Adaptive Spectral Panoramization (ASP) [8]
and noise suppression for speech enhancement.

1. ASP aims at the automated positioning of a sound source
within a stereo panorama. The left and right channel sig-
nals of a stereo recording are time-varying filtered, whereas
the filter characteristic is controlled by a feature extraction
process applied to the input signal.

2. A prominent family of noise suppression methods for speech
enhancement is based on a time-varying filtering process of
the input signal and is known asshort-term spectral atten-
uation (STSA) [9] or spectral weighting[10], whereas the
filter characteristic is controlled by an estimate of the noise
energy corrupting the speech signal1.

This paper is organized as follows: Section 2 describes the un-
derlying idea of the proposed method. Section 3 gives an overview
of the processing, which is divided into two separate processes
described in Section 4 (ambience estimation) and Section 5 (am-
bience extraction). The evaluation procedure and results are de-
scribed in Section 6 and conclusions are given in Section 7.

2. PRELIMINARY CONSIDERATIONS

In general, a musical recording contains sound components emit-
ted from one or more sound sources (e.g. instruments and singers)
and reverberations of the room surrounding the sound sources. In
the following, the sources are denoted as “direct sounds” (synony-
mous with the term “primary sound sources” used in e.g. [5]).The
room reverberations add sound components, which evoke an im-
pression of ambience when reproduced properly by the recording.
There may be additional ambient sound sources as well, e.g. the
audience in a live performance (applause), environmental sounds
(like rain and wind) or other background noises.

1Another speech enhancement method is structurally very similar
compared to a previous method for ambience extraction from stereo
recordings[5].

DAFX-1

 http://www.acoustics.hut.fi/dafx08/
mailto:Christian.Uhle@iis.fraunhofer.de
http://www.acoustics.hut.fi/dafx08/
mailto:Christian.Paul@iis.fraunhofer.de


Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

A valid signal model for ambience extraction is to assume an
additive mixture of the direct soundsd[n] and the ambient sounds
a[n], such that the recorded soundx[n] can be written as

x[n] = d[n] + a[n] (1)

A similar signal model has been commonly applied in noise
suppression methods for speech enhancement, e.g. in [11, 12]. For
the following considerations related to speech enhancement, the
observed signalx (e.g. the microphone signal) is assumed to be
an additive mixture of a speech signals[n] (which is the desired
signal) and a background noiseb[n] (which corrupts the desired
signal).

Noise suppression methods based on STSA may filter the in-
put signal by computing a Short-term Fourier Transform (STFT)
and weighting the spectral coefficients according to Equation 2.

S(m,k) = H(m,k)X(m, k) (2)

Here,X(m, k) andS(m, k) denote the STFT coefficients of
x[n] and the estimate of the desired signals[k], respectively. The
spectral weightsH(m,k) are positive and real-valued,k is the
index of the time frame andm is the index of the frequency bin.

The spectral weightsH(m,k) can be computed using an esti-
mateRs(m,k) of the time-frequency representation of the signal-
to-noise ratio or an estimateB(m,k) of the spectral coefficients of
the background noiseb[n]. A particular method isspectral magni-
tude subtraction, in which the spectral weights are computed ac-
cording to Equation 3.

H(m,k) =
Rs(m,k)

Rs(m,k) + 1
(3)

Other gain values are derived by applying the Wiener filter rule
(see e.g. [10]) or the spectral subtraction rule [11].

The STSA approach to noise suppression for speech enhance-
ment can be summarized as two separate processing steps:

1. Noise estimation, i.e. the estimation of the power spectral
density or the instantaneous spectra of the background noise
or the estimation of the SNR in frequency bands.

2. Noise suppression, i.e. the attenuation of the noise in the
observed signal.

The processing described above is equivalently applicableto
the problem of ambience extraction, since the underlying signal
model and the task are similar. The definition of the desired sig-
nal changes from “desired speech signal” to “ambient signal”. The
definition of the background signal changes from “corrupting back-
ground noise” to “direct signal components”.

Consequently, the spectral weights may be computed accord-
ing to Equation 3, whereasRs(m, k) is replaced by an estimate
R(m,k) of the ratio of ambient sound signals and direct sound
signals.

R(m, k) =
A(m,k)

D(m, k)
(4)

The preceding considerations lead to the problem of estimat-
ing theambient-to-direct ratio(ADR) R(m, k). In previous publi-
cations on ambience extraction from stereo recordings, thespectral
weights for the ambience extraction are derived by evaluating the
correlation between the left and right channel signals [4, 5, 6]. The
correlation between the stereo channels in each frequency band is
low in regions dominated by ambience and is therefore a validcue

for ambience extraction from stereo recordings. The sole use of
information based on differences between the signals of a stereo
or multi-channel recording for upmixing is clearly a restriction of
such methods. It prevents them from processing mono signalsor
recordings with negligible inter-channel signal differences.

This publication investigates the application of a supervised
learning method to the task of ambience extraction from mono
signals. The underlying idea originates from the experience that
ambient sounds are recognized even in mono recordings. There
are signal characteristics guiding the discrimination between am-
bience and direct sound components.

The work begins with the question about the physical nature
of ambience. Room reverberations result in an additive mixture of
differently delayed and attenuated copies of the direct sound due
to reflections of the sound by the walls, the ceiling and the floor.
Consequently, ambient signals recorded by spaced or differently
oriented microphones are less correlated compared to direct sig-
nals. Additionally, the following characteristics are observed:

• The ambient signal components in a stereo recording have
comparable levels when averaged over time [13].

• The direct sounds have shorter attack times and decay times
compared to ambient sounds.

• In general, the absorption of the sound energy by the reflect-
ing surfaces of a room is greater at high frequencies. The re-
verberation time decreases with increasing frequency. Con-
sequently, direct sounds are brighter sounding than ambient
sounds, especially in rooms as used for musical recordings.

3. PROCESSING OVERVIEW

An overview of the presented method is shown in Figure 1. The
processing is performed in the frequency domain. The spectral
coefficientsX(m, k) are computed from the input signalx[n] by
means of the STFT, with time frame indexm and frequency bin
indexk. The reported results are obtained with an STFT of over-
lapping data frames of 11.6 ms length each, a transform length of
23.2 ms and the Hann window function.

A set of low-level featuresZ is computed from the spectral
coefficientsX(m, k) in frequency bands corresponding to the crit-
ical band scale [14], as described in Section 4.1. The features are
fed into a neural network which is trained to estimate the posi-
tive and real-valued spectral weightsHb(m, r) for each frequency
band, with frequency band indexr.

The spectral weights are interpolated to the frequency resolu-
tion of the input spectra, yieldingH(m,k). The STFT coefficients
of the ambient signalA(m,k) are computed by multiplying the
input spectraX(m, k) with the spectral weightsH(m,k). The
ambient time signala[n] is derived by the inverse processing of
the STFT computation.

4. AMBIENCE ESTIMATION

In this section, the estimation of the spectral weightsHb(m, r) is
described. A set of low-level features is computed for each time
frame m from the spectral coefficients in each frequency band.
In the following, the indices of the STFT coefficient correspond-
ing to the lower and upper boundary of the frequency bands are
denoted bylr andur, respectively. The spectral weights are esti-
mated from the low-level features by means of a neural network
regression method.
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Figure 1:Block diagram of the ambience extraction processing.

4.1. Feature extraction

The choice of the extracted features is determined by the character-
istics of ambience as described in Section 2. The initial feature set
is comprised of the spectral energy, the spectral energy difference,
the spectral flux, the spectral flatness, and the spectral centroid.

4.1.1. Spectral centroid

The spectral centroidSC(m, r) corresponding to ther-th frequency
band is computed from the STFT coefficientsX(m,k) with bin
frequencyf(k) according to

SC(m, r) =

Pur

q=lr
|X(m, q)| f(q)

Pur

q=lr
|X(m, q)|

(5)

The spectral centroid is a low-level feature that correlates (when
computed over the whole frequency range of a spectrum) to the
perceived brightness of a sound [15]. It is normalized to thefre-
quency range of the sub-band such that0 ≤ SC(m, r) ≤ 1.

4.1.2. Spectral flatness measure

Various definitions for the computation of the flatness of a vec-
tor or the tonality of a spectrum (which is inversely relatedto the
flatness of a spectrum) exist, e.g. [15, 16]. The spectral flatness
measureSFM used here is computed as the ratio of the geomet-
ric mean and the arithmetic mean of theL spectral coefficients of
the sub-band signal as shown in Equation 6.

SFM(m, r) =
e

“

Pur
q=lr

log(|X(m,q)|)
”

/L

1
L

Pur

q=lr
|X(m, q)|

(6)

4.1.3. Spectral flux

The spectral fluxSF is defined as the dissimilarity between spec-
tra of successive frames [17] and is frequently implementedby
means of a distance function. In this work, the spectral flux is
computed using the Euclidian distance according to Equation 7.

SF (m,r) =

vuut
urX

q=lr

(|X(m, q)| − |X(m − 1, q)|)2 (7)

4.1.4. Spectral energy difference

The spectral energy differenceSD is computed as the mean of the
difference of the spectral energy of successive frames according to
Equation 8.

SD(m, r) =

urX

q=lr

(|X(m, q)|2 − |X(m − 1, q)|2) (8)

Contrary to the spectral flux, the spectral energy difference
distinguishes between the directions of the change in the temporal
progression of the energy in frequency bands.

4.1.5. Spectral energy

The spectral energySE is computed in each time frame and fre-
quency band and normalized by the total energy of the time frame.
Subsequently, the feature values are low-pass filtered overtime by
means of a second-order IIR filter.

4.2. Feature post-processing

The extracted features are accumulated into the feature setand fur-
ther processed prior to the training and the application of the re-
gression method.

4.2.1. Centering and variance normalization

The featuresz ∈ Z are processed to have zero mean and unit
variance according to

ez =
z − E {z}q

E
˘
(z − E {z})2

¯ (9)

to eliminate side effects on the regression process due to differ-
ent scaling of the features values, whereez denotes the transformed
feature and the expectation values are computed from the training
data.
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4.2.2. Feature grouping

The sub-band features computed from a small number of succes-
sive signal frames are subsumed to larger entities (in the following
denoted asgroup) with a hop size of one frame. The rationale
behind the grouping is to evaluate the progression of the features
over time.

The groups are represented by the means and the variances
of the feature values computed from the respective frames. The
reference values for each group are computed as the mean of the
references of the corresponding frames.

4.3. Neural network regression

The neural network is utilized to estimate the spectral weights from
the low-level feature setZ. A training algorithm from theNetLab
toolbox [18] is used in this work. For a given spectral weighting
rule g (·) (as shown in Equation 3), two definitions of the output
of the neural network are appropriate. The neural network can be
trained using the reference values for the ADRRb(m, r) or with
the spectral weights

Hb(m,r) = g (Rb(m,r)) (10)

Figure 2 illustrates the distributions of the ADR and the spec-
tral weights, for six selected sub-bands. The histogram plots re-
veal that the distribution of the ADR is not flat and concentrated at
small values, whereas the spectral weightsHb(m,r) show a rather
flat distribution. In the following, the reference values for the spec-
tral weights are used as the references for the training of the neural
network.
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Figure 2: Histograms ofRb(m, r) (circle) andHb(m, r) (trian-
gle) for six selected frequency band illustrating the relative fre-
quency of occurrence (rfoc).

4.3.1. Structure of the neural network

The neural network hasN input neurons, one hidden layer with
K neurons andM output neurons. WithB being the number of
frequency bands andW the number of features, the number of
input neurons isN = 2BW (if the mean values and the variances
of the features of each group of successive frames are fed into the

neural network). The number of output neurons equals the number
of frequency bands,M = B.

The results presented here are obtained withK = 40 hidden
neurons unless otherwise specified. The activation function of the
hidden neurons is the hyperbolic tangent. The activation function
of the output neurons is the identity, such that the requiredcom-
putations in the output layer are reduced to linear combinations of
the features and the weights of the neural network. Each neural
network is trained using 100 iteration cycles.

4.3.2. Reference data for training and test

A crucial aspect for the application of supervised learningmethods
is the proper choice of the reference values used for the training.
The training of a neural network for the task of ambience estima-
tion requires audio signals whose direct signal and ambientsignal
are separately available. Appropriate audio signals are ideally gen-
erated using anechoic recordings as direct signals and artificially
reverberated copies of the recordings as ambient signals (whereas
the direct path of the reverberation processor is muted).

Since a sufficient amount of anechoic recordings comprising
different musical genres is not available, commercial recordings
with a negligible amount of ambience (i.e. recordings whichare
in general considered as being very “dry”) are considered asdirect
signals. The ambient signals are generated by convolving the audio
signals with recordings of room impulse responses.

5. AMBIENCE EXTRACTION

The regression resultsHb(m, r) are interpolated to the frequency
resolution of the input spectra. Prior to the modification ofthe
input spectraX(m, k), the estimated spectral weights are post-
processed by a non-linear mapping function and a low-pass filter.

The non-linear mapping of spectral weights has been applied
previously [5] and aims at increasing the ambient signal compo-
nents in the output signal while reducing the direct signal compo-
nents. The mapping functiong(H) applied here is given in Equa-
tion 11.

g (H) = sin2 (H · π/2) (11)

Subsequently, the spectral weights are low-pass filtered along
time (using a first-order IIR filter) to account for erroneously oc-
curring fast fluctuations in the temporal progression of theestima-
tion results.

The complex STFT coefficients of the ambient signalA(m,k)
are computed from the input spectraX(m, k) and the spectral
weightsH(m,k). The ambient time signal is resynthesized us-
ing the inverse processing of the STFT.

6. EVALUATION

6.1. Data sets

The estimation of the ambience weights is evaluated using a data
set of 80 excerpts of musical recordings with a length of 10 sec-
onds each. These items were recorded with a negligible amount of
room reverberations. Different musical genres are considered in
the choice of the audio items.

An ambient signal of each audio item is computed by convolu-
tion with one of a set of 25 room impulse responses. The impulse
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responses were edited by attenuating the first impulse correspond-
ing to the direct path. The direct signals and the ambient signals
are additively mixed. Different mixing levels were chosen for each
of the impulse responses to ensure that the mixture signals contain
a reasonable amount of reverberation. The audio signals andthe
impulse responses were recorded in a two-channel stereo format.
The mixture signals were downmixed to mono prior to the ambi-
ence estimation processing.

6.2. Regression results

The performance of the ambience estimation is evaluated by means
of

1. the regression error computed as L1-norm of the differences
between reference and estimated value

2. the (normalized) correlation coefficient between references
and estimates

A ten-fold cross validation is applied by dividing the data set
into sets of training data (90%) and test data (10%). If not noted
otherwise, the experimental results are obtained with feature group-
ing of six frames using the mean values and the variances of the
feature.

Figure 3 details the mean regression error of the validation
runs separately for each frequency band. The results for twose-
lected parameter settings are shown. The first simulation iscom-
puted by using the complete feature set without grouping, the sec-
ond simulation uses a reduced feature set{SFM, SF, SD} with
grouping.
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Figure 3:Regression results per frequency band: regression error
(L1-norm) (upper figure) and correlation coefficient between ref-
erences and estimates (lower figure) for two different parameter
settings. The initial feature set without grouping (point)is com-
pared to a reduced feature set with grouping (square).

The results indicate a moderate correlation between the esti-
mated spectral weights and the reference values for the firsteigh-
teen frequency bands, with a mean correlation of 0.49 and 0.52
for the first and second condition, respectively. The regression re-
sults decrease at the upper frequency bands, probably due tothe
decrease in the ambient signal energy in that bands.

Examples of the estimated spectral weights and the reference
values are shown in Figure 4 for three frequency bands of an au-
dio signal with a length of 2.3 seconds from the training dataset.
The upper plot shows the input time signal, the other plots show
the estimation results and the references for the frequencybands
centered at 150 Hz, 845 Hz, and 2510 Hz.
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Figure 4: Input time signal and examples of spectral weights of
frequency band number 2, 8, and 15 for a signal with a length
of 2.3 seconds. References are shown by dashed lines and the
estimated weights by solid lines.

6.3. Experiments on the influence of selected parameters

This section investigates the impact of selected parameters on the
regression result. The following parameters are modified inthe
experiments:

• the feature set

• the grouping parameters

• the number of hidden neurons

6.3.1. Variation of the feature set

The impact of the feature set on the regression result is evaluated
in experiments with backwards feature selection. The results ob-
tained with the initial feature set{SC, SFM, SF, SD, SE} are
compared to conditions where one feature has been removed from
the feature set. The regression results are shown in Figure 5.

Discarding eitherSD, SF orSFM leads to higher regression
errors and lower correlation between the estimations and the refer-
ences. The results are only slightly affected by the removalof the
featuresSE or SC from the initial feature set. Experiments with-
out feature grouping and with different STFT parameters (larger
frame size) yield similar ranking of the features. This leads to the
next experiment where both features (SE andSC) are discarded.

Figure 6 illustrates the recognition results for the initial feature
set, and for feature sets where eitherSE or SC or both,SE and
SC, were discarded. It is shown that the regression performance
is improved when using the feature set{SFM, SF, SD}.

DAFX-5



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo,Finland, September 1-4, 2008

5 10 15 20 25

0.12

0.14

0.16

0.18

frequency band index

re
gr

es
si

on
 e

rr
or

5 10 15 20 25
0.3

0.4

0.5

0.6

frequency band index

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 5:Regression results for different feature sets: initial fea-
ture set (plus), without SD (triangle), without SE (x-mark), without
SF (circle), without SC (star), without SFM (point)

6.3.2. Grouping of frames

The influence of the grouping parameters on the regression results
is investigated in the following experiment. Figure 7 illustrates the
result of regressions

• without grouping

• with grouping using the means of the feature values

• with grouping using the means and the variances

• with grouping with varied grouping size.

The experiments indicate an improvement of the regression re-
sults when grouping is applied for the lowest 17 frequency bands,
corresponding to a frequency range up to 3150 Hz. For this fre-
quency range, the best result in terms of regression error and cor-
relation is obtained with grouping using the means and variances
of the feature values and grouping size of six frames, although the
differences are small compared to a smaller grouping size.

The impact of the grouping parameters on the regression re-
sults is different for frequencies larger than 3700 Hz. Thisobser-
vation leads to the assumption that further improvements can be
obtained by using different grouping parameters in different fre-
quency bands, which is not investigated further.

6.3.3. Number of hidden neurons

The number of hidden neurons influences the computational load
of the ambience estimation process, particularly owing to the non-
linear activation function. Therefore, it is desired to determine the
number of hidden neurons such that the use of additional neurons
does not improve the recognition rate significantly.

Figure 8 illustrates the regression result obtained from neural
networks in which the number of input neurons is varied in the
range between 1 and 100. The regression error and the correla-
tion coefficients are averaged over the first 17 frequency bands. It
is shown that only minor improvements are obtained by using a
neural net with more than 40 neurons.
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Figure 6:Regression results for different feature sets obtained by
feature selection: initial feature set (plus), without SE (x-mark),
without SC (star), without SE and SC (square)

6.4. Comparison to ambience extraction from stereo record-
ing

For the purpose of comparison, spectral weights are computed
from stereo recordings by means of the normalized cross-correlation
coefficient between the left and the right channel as used in [5]
from the data base described in Section 6.1 (prior to the downmix-
ing to mono). The normalized cross-correlation coefficientis com-
puted recursively and processed using a non-linear mappingfunc-
tion as described in [5]. The spectral weights are subsequently av-
eraged over the frequency bins corresponding to the critical bands.
It should be noted that no additional criterion for the detection of
signal components panned completely to one side is used for the
computation of the spectral weights for stereo signals.

Figure 9 illustrates the regression error and the correlation co-
efficients between the reference values and spectral weights ob-
tained from the inter-channel cross-correlation coefficient. Sur-
prisingly, the evaluation metrics used in this work indicate com-
parable regression results for the processing of mono recordings
using the method presented here and stereo recordings usinga
method based on the inter-channel correlation.

6.5. Informal listening

In order to gain an impression of the ambient signal in the con-
text of upmixing, various real-world items were processed.Multi-
channel signals were assembled by feeding the unprocessed two-
channel signal into the left and right front channels and by feeding
the ambient signal into the rear channels with a delay of 11 ms.
The rear channel signals were not subjected to additional post-
processing (as e.g. described in [19]).

The resulting multi-channel signals evoke the impression of
envelopment when played back on a 5.0 surround sound system
with moderate ambience volume level. However, the localization
of the direct sound sources remains in the front as desired.

Listening to the extracted ambient signals over headphonesre-
veals that their sound characteristics are very similar to that of the
room reverberations. Prominent direct signal components are sig-
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Figure 7:Regression results for different grouping configurations:
without grouping (plus), grouping using mean values with group-
ing size 4 (x-mark), grouping using mean values and variances
with grouping size 4 (point), grouping using mean values andvari-
ances with grouping size 6 (square)

nificantly although not completely attenuated. Minor pumping ar-
tifacts may result from the processing but are masked by the front
channel signals when played back on a surround sound system.

6.6. Listening test

The novel method was compared to unprocessed audio signals
and to a previous approach to ambience-based upmixing of one-
channel audio signals by means of a listening test. The previous
method computes an ambient signal using a Non-negative Matrix
Factorization of a spectrograms of the input signal of overlapping
segments of a 4 seconds length each [7].

Six excerpts from commercial recordings from a variety of
musical genres with a length between 8 and 16 seconds each were
presented. The signal levels of the audio items were adjusted
such that the audio items under comparison were perceived tobe
equally loud. The audio signals were presented using a surround
sound setup with 5 loudspeakers Genelec 8250A arranged accord-
ing to ITU-R BS.775. A group of 11 subjects participated in the
test, 8 of them participated in listening tests with surround sound
before. The listeners were asked to rate the test conditionsaccord-
ing to their personal preference.

The results of the listening test are illustrated in the box plot
in Figure 10. The two conditions with surround sound were rated
higher compared to the original. The listening test indicates no
significant difference between the two upmix methods.

6.7. Computational complexity

The computational load of the presented method is mainly caused
by the STFT, the feature extraction and post-processing, and the
regression function. The regression takesC (see Equation 12) real-
valued multiplications and additions plusK computations of the
hyperbolic tangent for each frame.

C = K · (2BW + B) (12)
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Figure 8: Influence of the number of hidden neurons on the re-
gression error and the correlation between estimated values and
references.

A typical configuration of the regression function as used in
the presented experiments may result in 7000 operations (without
the computations of the hyperbolic tangent) per frame. The com-
putational complexity of the feature extraction and post-processing
is moderate. However, the computational load of the proposed am-
bience extraction process is much lower compared to the method
for ambience extraction of mono signals as described in [7],which
takes about 120000 operations per frame for each iteration of the
numerical optimization method.

7. CONCLUSIONS

A novel approach to ambience extraction from audio recordings
which is applicable to one-channel audio signals has been pre-
sented. The core component of the proposed method is the esti-
mation of spectral weights which relate to the energy ratio of the
ambience signal components and the direct signal components for
each time frame and frequency band.

The results of the ambience estimation are evaluated by means
of the averaged magnitude differences and the correlation coeffi-
cient between the references and the regression results of the spec-
tral weights. The evaluation of the regression results indicates that
the correlation between the references and the estimates iscompa-
rable to the correlation between the same references and spectral
weights computed using the inter-channel cross-correlation coeffi-
cient between the left and right channel of a stereo recording.

Listening to the extracted ambience signals over headphones
and to multi-channel surround sound produced by the presented
method reveal that the sound characteristics of the recorded am-
bience are successfully captured. The result of a listeningtest
confirms that surround sound produced by the presented method
is preferred compared to the unprocessed audio signal. There was
no significant difference in the listeners’ preference compared to
a previous method with distinctly higher computational complex-
ity and higher latency. The results are promising and indicate that
ambience-based upmixing is applicable to mono recordings.
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Figure 9: Regression error (L1-norm) (upper figure) and cor-
relation coefficient (lower figure) between references and cross-
correlation-based weights in stereo recordings. Weights are com-
puted without mapping (dotted line), with mapping (dashed line)
and with mapping and additional low-pass filtering (solid line)
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