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ABSTRACT

In discrete-time digital models of contact of vibrating etfs sta-
bility and therefore control over system energy is an imgatrts-
sue. While numerical approximation is problematic in troatext
digital algorithms may meat this challenge when based ontexa
mathematical solution of the underlying equation. Theelattay
generally be possible under certain conditions of lingakivhile

a system of contacting solid objects is non-linear by dedinjt

the exact terms of energy in the system is lost and artifaath s
as a falling object bouncing forever under the influence af/iy
may occur.

As shortly discussed in the next subsections, numerical art
facts that affect system energy and thus stability can bielegdor
linear systems by basing discrete-time algorithmswractmath-
ematical solution rather than numeri@dproximation A simple
argument however shows that a system of two solid objectértha
teract when in contact and otherwise behave independemtliyas

piece-wise linear models may be used. Here however the taspec, \ynole (over both phases, contact and no contaxtt)e described

of “switching” between different linear phases is cruciah ap-

proach is presented for exact preservation of system engngn

passing between different phases of contact. One basicifen
used may be pictured as inserting appropriate ideal, nsssaled
perfectly stiff, “connection rods” at discrete moments blape
switching. Theoretic foundations are introduced and theecp

technique is explained and tested at two simple examples.

1. INTRODUCTION AND BACKGROUND

The modelling of contact of solid objects is a prominent Eraje

in the fields of sound synthesis and virtual reality (eld.).[Hor
describing the inner laws and attributes of solid objectsrttodal
approach[[4[[2][8] has been very successfil [1] [5] [6] [7hieh
can be applied under certain conditions of linearity désctibe-
low. Contact has been modelled in various ways, mostly using
force profiles chosen a priori (e.d. [1]), such that the tésgylbe-
haviour of the affected object(s) can be seen regarded atem fil
with force(s) as input. The derivation of such temporal éopco-
files is however often very heuristic and there is no cleatsgy
for changes of different forms of contact. For example isoit @
priori clear what the characteristic differences of forcefites in
rolling or sliding are. Further on, this approach has striimga-
tions in realtime interactive scenarios, e.g. when a virtigect
passes between phases of rolling and of bouncing.

Other models of contact include laws for the forces of cantac
in dependence of the configuration of the involved objectsthis
basis, numerical simulations may be implemented in whicipte
ral force profiles are computed along with the objects’ resoe
behaviour (see e.g[][7]). This latter approach has strongnpo
tial for realtime interaction, in particular in dynamicatustions
of continuous or repeated contact, such as in rolling—biogno-
teraction [8]. The contact model presented[ih [7] is usedafor
variety of sound design tasks (e.gl [9].]10]). A centralgeon in
such scenarios of frequent or continuous contact lies irstieil-
ity of the discrete-time algorithms: since these are gélydrased
on numerical approximation of differential equations, tcohover
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by a linear model: here, the interaction force acting betwsath
objects would form a linear function of the state vectors athb
objects, with value) on an open subset of the global state (vec-
tor) space. (One may only look at the system at any configurati
where both objects are at some positive distance and ndtedha
interaction force will occur for any object positions whiate suf-
ficiently close to this initial configuration.) Such a furetimust
however be identicallp everywheres the kernel of a linear func-
tion forms a linear subspace. The approach presented irokhe f
lowing allows to guarantee control over the energy of théesysn
the discrete-time algorithm and thus complete stabiliép ah any
situation of repeated or continuous contact. The basiciglkare
to apply the modal approach also during contact of both tdjec
which is possible if the interaction force is governed by ecpk
wise linear law. Crucial hereby is the aspect of how to “shiitc
between different linear phases, for which a simple bustatiory
— for the present goals — solution is presented in se€fign 2.2
Since the modal description and formalism are at the core of
the work, the following two subsection very shortly sumrearits
main theoretical principle and its practice in the finiteadnsional
case.

1.1. Modal approach — general principle

Contrary to the impression sometimes created in literatacalal
description is not necessarily based on approximation ggabb
behaviour by discrete lumped spatial elements or by sonmeddin
“resonance” filters. Rather, the fundamental underlyiriggiple

of expressing a linear operator acting on state vectors ¢iyaip

cal system by means of eigenvectors is based on an exact-mathe
matical theory and may be applied to spatially discrete dbage
continuous systems. Starting point is a description oféngporal
behaviour of a physical system in the form

Z(t) = AZ(t) + fex(t) 65)

where Z(t) is the state of the system in thetéte spackvector
spaceZ — thus state “vector” — at time ¢, Z(¢) its temporal
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derivative, andA a linear operator defined on this state space. The parameters represented by the matrit€sK andC are in prac-

demand onA to be linear is central for the term of “modes of a
system” to make sense. It is here stressed that the state sEac
be finite- or also infinite-dimensional.

The core idea of the modal approach is to simplify and solve
equation[(1) by expressing the state vectdn a basis of (gener-
alised) eigenvectors of. To only quickly illustrate this principle

one may look at the case of the “homogeneous” form of equation
@, fex(t) = 0, i.e. under absence of external forces, and assume

Z(t) to lie inside one eigenspace df to eigenvalued: (1) then
reduces ta/(t) = d- Z(t) (with d scalar), which is readily solved
by means of an exponential function (in time)t) = e - 2(0).
While this simple example serves to illustrate the geneted iof
solving equation[{1) by representing the operatand state vec-
tors Z' in a suitable form, the exact mathematical theory may be
highly difficult and abstract (in particular in the case ofinite-
dimensional state spaces, see elgl [11]). For the praetigai-
cation at scenarios of contact described in this contidouii is
however sufficient to understand some main facts for the chse
finite-dimensional state spaces, which are shortly suns@drin
the next subsections.

1.2. Finite-dimensional/spatially discrete case

In the case of a finite-dimensional state space the operhtior
equation[(lL) be can represented by (or regarded as) a matthis
case the modal approach of finding the generalised eigergeut
A consists in finding a similarity transformation fat to (e.g.)
Jordan canonical form, i.e. of finding a non-singular matrix
such that

N:=V 1AV )

is of Jordan canonical forni_ [12]. The proof that such a trans-
formation exists for any matri¥l and techniques how it can be
practically derived are results from linear algebra (see §12])
and numerics []. Without going into further detail it is ndtthat

in most practical cases the Jordan canonical form is didgbaa
A=VDV (e D= V‘lAV), whereD is a diagonal matrix.

1.2.1. Stiffness and friction matrices

The most common practical application of the modal apprasch
in the situation of a system of second order differentialetiqus
of the form

MZ(t) + CE(t) + K&(t) = f™(t). 3)
The column vectof = (z; .. . xn)T (“T” denoting matrix transpo-
sition) holds the (finite number of) discrete “displaceniesatri-
ables,f*!is a vector of external forces acting on the system, and

M, K andC are matrices representing the dependence of forces

of inertia, “stiffness” and “friction” on the configuratiaof the sys-
tem. The variables, ..., z, and equation{3) most often derive
from Newton'’s laws for an idealised system of lumped masses o
from Lagrange equations. They may however also be deriosd fr

a spatially continuous system which has first been transfdrdi-
rectly by the modal approach and then simplified to a finite num
ber of “modes”. This latter case is the most common in sound
generation by fhodal synthests Such a situation of using modal
parameters in an already “abstracted” way is also the onalynai
aimed at with the approach to modelling contact describetien
following (as will become clear in subsectibn?.3). Furtrerthe
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tice often derived from measurements at mechanical objects
The inertia matrix\M is generally invertible (most often diag-
onal) and may therefore be omitted by passing flinand C' to
M~'K andM ~'C, so that equatioi{3) becomes
Z(t) + CZ(t) + KE(t) = M~ (). %)
Often (and this is the case covered in most literatéfegndC'
may be diagonalised simultaneously, which is possibledfamy
if one of them can be diagonalised and both commute H.€. =
CK [12]. We here however need to account for the general case
where K andC' do not commute. This is handled by introducing
o E
% %)
whereF denotes the identity matrix (of dimension equakand
0), equation[(#) then takes the form

which is equivalent td{1) (finite-dimensional).

—

the state vectog := ; . Defining A :=

—

0

Z(t) M fa(t)

= AZ(t) + ( (5)

1.2.2. Transition matrix

The most simple way to see the possibility of discrete-timmaus
lation of the temporal behaviour of a finite-dimensional loge-
neous systemi(t) = AZ(t) is by noting that its solution can be
directly given in the form

2(t) = e 2(0). (6)
The exponential function of a matrix’’, may, e.g., be defined by
the series expression of the exponential function. It is1gbat,
just as the value of att = ta can be determined by multiply-
ing 2(0) with e*24 (equation[[B)), in the same wasft + ta) =
e!24Z(t). The matrixe!24 is therefore also called$tate) transi-
tion matrixX’ (to the time stepga) as it allows to pass from any one
temporal state vector to the one at the montentater [2]. et24
can not easily be determined by means of the series expnessib
it is remarked that fod = VDV ~! as in equatior{2) we have

@)

The matrixe however can easily be seen to be of diagonal
form again, with entries given by theealar exponential function

of the entries ofD. Diagonalisation ofA is thus also a technique
to determine the transition matrix and we have closed thé&ecyc
turning back to the modal approach.

In practice one will often not use the transition matefx 4
referring to spatial coordinates (or whatever coordinats ini-
tially been used to formulate the model, e.g. Lagrange @t . ).
Rather, by permanently using the state veetqu(t) := V= 2(t)
one will work with the transition matrix*2” which is, as noted,
of diagonal form and thus computationally much more efiecti
This change of coordinates is particularly convenient wingtrthe
complete spatial behaviour of the modelled system need®to b
known: in sound synthesis it is often sufficient to know thete
poral movement of one or a few “pickup point(s)” of a vibraftin
structure, simular to the situation of an electro-magnati&up of
an electric guitar or piano.

tAA

taDy,—1
e =Ve" 2"V

taD
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2. MODELLING CONTACT BY MODAL DESCRIPTION

Returning to the general abstract formulation of subsa€id in
order to explain our approach to modelling contact, take sy
tems of the described type of equatibh (1)

Z1(t) = A1Z1(t) + frexandzs(t) = A2Za(t) + faext  (8)

interacting by means of some interaction forﬁ(efl,ZQ) which
in this formulation makes part of the external forcgsand fo.
For simplicity we assume for now that no other external ferce
exist and that the “actio-reactio” principle holds sucht tfveith
no restrictions on generalitw_i = fandfg ff. If then fis
given as dinear function of 21 andz: the whole system of both
masses in contact may again be written in the feim) = Az(t)
with alinear operatorA on the spac&Z; x Z, “built from” A4,
As and the linear expression gt While the clean mathematical
formulation of this process in the general case is ratheptisd
(although not complicated), the idea is demonstrated aalizeel
in a concrete example in the following subsections.

2.1. Contact: point-mass — finite-dimensional system

We return to the finite-dimensional system of subsedfiohde2
scribed by equatiofi{4). This object shall be struck by a ‘tmam,
which, in order to keep the overall system possibly simpld an
demonstrate the general idea, is assumed to behave as-aasst
free to move along one spatial direction. In the contact-tége”
configuration the hammer is thus described by the scalatiposi
variablex,,+1 (the reason for choosing the subscript 1 ” will be-
come clear in a minute) and behaving according#gi,+1 = f,
with m, its mass. Again for simplicity we assume that no external
forces other than the hammer—object interaction are presmh
thatf = 0 (thus alsof = 0) when both objects are not in con-
tact. The hammer may touch the object at one specific poitit wit
indexicon (Moving along the same spatial coordinate as this “con-
tact mass”) and when such contact occurs the interactidhtsha
modelled as a massless damped-spring connection withestf
kecon @and friction constantcon. Summing up, the contact forgeis
thus given by the following term:

kicon(l’lcon - $n+1) + Ccon(ilmn - in+1)7
f = for Tn+1 < Llcon (9)
0, otherwise

This force term is analogous to the one used_In [7] exceptithat
is linear. It will be seen in the following that the restranti of
this choice allows big advantages in solving and implenmgrtihe
system.

Remembering that the force acting on,,, according to the
actio—reactio principle is- f, the dynamical equations for the two
affected masses, i.e. the “hammer” and the mags,, during
contact are

Tnp1 = ——
mp
— kcon Econ Ccon 4 __ Ccon
— my, Licon — mp, Tnt1 + mp, TLlcon mp, Tn+1 (10)
and
(ext)
.. (.m) f, Jlcon __ p(int) / _ p(int)
Lleon = flcon leon — Jlcon
mlcon Micon
kcon kcon Ccon_ 4 Ccon
x - x z - 11
+mlc n+1 Migon leon T+ Micon n+1 Migon lcons ( )

where f{" is the internal force acting om,,, inside the object
(descrlbed by equatiohl(4) in subsecfiod 1.2). We combiaedl-
tor of the positions of the. masses of the object of subsection] 1.2
W|th the position of the hammer,,+1 into a new position vector
i= = (z1...7,41)". The influence of the contact force described
by equationsIII]O) anfl{ll1) on the whole system can then beewrit
in the form

#(t) = — Koo (1) — Coon () + ( f! i”g(t) ) .12

with
0 0
on9...0 —on
Keon:= 0 0...0 0 — loonth
row
0...0 0
0...0 —hen g 0 e
mp mp
13)

and Ccon analogous taicon, kcon replaced byceon. fU™ is here
the vector of all internal forces inside the object, desmtijust by
the matricesk and C in subsectiofi 112, equatiohl (4). We may
therefore combine the matricés andC' with K¢on andCeon (NOte
that the dimensionality of the.s,” matrices is by one higher than
that of K andC') into

, K 0
i (K0

and write the final equation that describes the behaviouhef t
entire system during contact as

C 0

)+Kc0n andC‘::( 00

) + Ceon (14)

#(t) + KZ(t) + C#(t) = 0, (15)
§gain assuming absence of any additional external forbas the
0O-vector on the right side). Equation{15) is exactly of theea
form as equatiori{4) and may be handled in the exact same sy, u

(@] E
Itis noted thatX andC' generally dmotcommute (i.e KC' #

CK) — e.g. whenK andC commute,ccon = 0, andm # my,.

The more general approach of introducing the state vettrd

the matrix A, as described in subsectibn]1.2, is thus necessary:

it is not sufficient to bringf{ (or C‘) to Jordan canonical form to

solve the above equatiop_{15). It is pointed out that the groc

dure just presented is independent of the concrete matkicasd

C describing the object. It is identically applicable for ama-

trices K and C' describing different geometries or physical sys-

tems. Furthermore, the method can also be applied if the sec-

ond object involved, here the “hammer”, is not simply a point

mass, but described in the same general form of equdfjor{3).

nally it is again noted that the general idea is also applécédr

infinite-dimensional state spaces, although this case ypayally

not allow for an analytical solution or be technically muclne
involved.

B ) and amatrix4 := (

ing a state vectof := (
x
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2.2. Discrete-time realization of contact condition

In principle, the temporal behaviour of a system of two cofitey
objects that interact according equatibh (8) can now be Isiied
by using transition matrices®1*~ and e“2*2 during phases of
no contact and a transition matix*2 with A as in the previous
subsection during contact (as explained in subseEfioZ)1.ZThe
time-stepta accords to some chosen “sample rate”. In practice
one will use transformations to suitable “modal coordiratie
both phases, such that the transition matrix turns out td beroe
possibly simple form, as shortly explained in subsedfi@L.The
application of such transformations does not introduce diffiy
culties and does not change the general described approddb a
thus not discussed in detail here. A crucial question howeye
when to “switch” between phases of contact and no contat, i.
when to use either transition matrix (resp. pair of transitma-
trices): In theory one would need to know in advance when both
objects reach just distanée calculate the state vector (or vectors)
in that exact moment, decide from this state if the followgigase
will be one of contact or no contact and finally continue wik t
simulation — and so on...In practice we caat predict these
moments of switching phases at distaficexactly only approx-
imately, and thereby have to account for questions of staloif
the overall discrete-time algorithm as well as costs of cataon.

A possible solution to this challenge is presented in thiefiohg,
once again at the example of the previous subsedfich (2.1).

We start with hammer and object in well defined initial states
att = 0. Without loss of generality these shall be such that both
objects are not in contact, i.e. of positive distance. Frioas¢ ini-
tial states we compute both states at ¢, using the transition
matrices for the “no contact” phase. As long as both objeetg s
at positive distance, this state update is exact, sincebésed on
an analytical solutionnot some approximation (compare subsec-
tion[I.Z:2). In an audio applicatiam will typically be according
to some chosen constant sample rate. Repeating this ssep-wi
state update the distance of both objects will at some pant b
come negative for the first time. The last update step befdie w
then have been wrong, as contact must occur sometime béatore t
end of the time step and a switch to the “contact phase” would

have been in place. However, a use of the transition mattiz
for the “contact phase” for the last update step (the oneljast

The approach used by the author consists in adding at each
contact some spatial offset to the distance of both objefcjissb
such amount that distance zero occurs exactly at the begirofi
one update step. Physically, this may be seen as introdaciag-
ditional massless, perfectly stiff connecting elementeein one
object and the “contact spring”. This geometrical manipata
assures that system energyeisactlypreserved at the switch from
“no contact” to “contact”. From the moment when zero dis&nc
is reached, which now falls exactly on the beginning of oneeti
step, the system is updated by means of the transition nfatrix
the “contact phase”, until a positive distance (under aersition
of the “offset elemefi} is first found again. We then switch back
to “no contact”, hereby loosing some system energy as atresul
the discrete-time artifact of “cutting” the stretched @mitspring.

In the whole however, discrete-time artifactsverlead to an in-
crease of energy, such that the system is always stablect&ffe
such as an object bouncing forever under the influence of-grav
ity can not occur. Of course the offset connection elemesttba
be adapted at each occurring contact which might seem arrathe
strong geometric manipulation. It is however harmless incomn-

text since unpredictable dynamical changes in surfacetsies
form part of the modelled situations we are mostly interdste
such as in rolling interaction. Also, the level of these effgalues
may be well estimated and controlled a priori by the choicthef
sample rate in dependence of initial system energy. In igact
implementation examples, values of thiéset elemenivere in an
order of 10~° smaller than the amplitudes of the audible object
vibrations.

Figure[1 shows phases of an impact computed by the algo-
rithm just described, of a free mass with “contact springd @an
“string” approximated by;0 lumped masses and handled by the
modal formalism. Parameters of elasticity and frictiontaf tring
are such that the lowest modal frequency is arods@ Hz. The
algorithm runs in realtime at a sample ratetdi 00 Hz on an av-
erage notebook (even with more than t@0) masses resp. modes,
depending on the exact hardware). Of course, a one-dinraisio
string will in practice rather be modelled by using wavegutiech-
niques [[18] which are computationally more economic (altjio

fore the first occurrence of negative distance) would be wrong as more demanding in terms of processing memory, a fact that may

well, since both objects are at positive distance at the érideo
previous time step. To make things worse, both errors — afgusi
the transition matrix for the “contact phaseo earlyor too late

be relevant when working with certain specific dsp hardwarag
example is here just used to demonstrate the general [abititie
of the presented approach. The phenomenon of wave propagati

— lead to an erroneous increase of energy in the whole system,that may be observed in figure 1 is thereby a good confirmafion o

since both amount to ad-hoc insertion of the “contact sprimg
stretched state, while the overall kinetic energy in théesyds not
affected by switching from “no contact” to “contact”. Fongie
short impact events this increase of energy may probablyhe
trolled to remain small enough not to disturb the global béha
of interest, but for situations of repeated contact, suchfaEn an
object bounces back under the influence of gravity, the teng-
stability of the system or the “macroscopic quality” of iespo-
ral behaviour might be affected. Before suggesting a swiutid
this problem it is remarked that the situation is just opggogihen
switching from “contact” to “no contact”: in this situatiadhe ar-
tifact of inexact, only approximate, knowledge of the timbem
contact ends always leads to a decrease of the overall eofttyy
system, since then a stretched “contact spring” is cut axleing
it “too early” or “too late”.
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the validity and exactness of all involved operations (diegisa-
tion, discrete-time transition matrix, impact algorithm). since it
does in this approachot follow for reasons of the computational
structure itself, as in the case of digital waveguides, logtics as

a result of superposition of the computed “modes”, i.e. mige-

tors and their time-dependent multiplicities. It is notbattthe
approach may be applied to more complex structures as weh, s
as membranes, whose modelling in terms of waveguides issnot a
straightforward as in the case of a one-dimensional sttimgrac-

tice one will often gain modal data not from spatially lumpedd-

els but analytically or from mechanical measurements aerd th
reduce the system to finite dimensions. The applicationeptle-
sented technique of contact modelling in the case of sucle afus
modal data in a somewhat more abstract way is demonstrated in
the next subsection.
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Figure 1:Snapshots of a string struck by a free mass “hammer”.

2.3. Contact of “abstract” finite-dimensional modal object

In most practical cases of sound generation by modal syisthes
objects are described in a “more abstract” way, starting éaiim
ately with the modal parameters of eigenfrequencies andydec
times (compare e.g.[J[1][7]). These modal parameters ane the
used independently of their initial origin. They may havetbe
derived by diagonalisation of a finite point-mass system es d
scribed in subsectidn 1.2, from analytical solution of Edtdis-
tributed systems (with therefore infinite-dimensionatestgpace),

or, most often, from measurements of “real” mechanical ectel

cal systems. Examples of infinite-dimensional systems tachv

an analytical derivation of according eigenvectors anduesis
possible are certain one-dimensional systems with honemyen
mass distribution such as beams or strings (for which e&japg
are commonly known to be the integer multiples of one “funda-
mental frequency”) and two- or three-dimensional systerith w
strong symmetries such as rectangluar or circular membrane
plates [14]. In practical implementations the number of e®d
is necessarilly finite, which generally demands a simplifbcaof

the system to be modelled, being it a partial differentialaipn

or a real distributed object. Strategies and guideline Heen
studied to perform such reduction of the number of modes in a
way such that consequences in terms of auditory percept®n a
possibly small[[I5]. In particular, “overdamped” and “frbedy”
modes[[2] can generally be neglected for sound synthessthat
finally, an “abstract” modal object consists of a finite numbé
pairs of modal frequencies and according decay times (coampa
[7] [@]). In matrix notation as in subsectibn 1% andC are then

of diagonal form. Analog to equatiofl(4) the temporal bebawi

of an abstract object in “modal coordinates” is describedhsy
equation

frooa(t)-

Dy andD.. are here the diagonal matrices corresponding tand
C andf,?}ﬁd is the vector of the sum of external forces acting on the
objectexpressed in modal coordinates

The connection between the modal coordinates of the abstrac
modal object and spatial coordinates is finally given by rseain
weighting factors associated to each mode at each poteuoiial
of contact. These weighting factors form a reduction of fstem
of eigenvectors — in the finite-dimensional case of subsefii2
the matrixV (resp.V ') of eigenvectors. For one single (scalar)
force f(t) acting on the modal object at one point of contact, we
have for the external force vector in modal coordinates ab&qn

@as:

Zmod(t) + DeFmod(t) + Diemod(t) = (16)

frod(t) = £(t) -, a7
wherew is the vector of the weighting factors at the point of con-
tact. « is of the same dimensionality as the the vectors of modal
displacementmoq and velocitiesé‘mod, i.e. the number of modes.
Vice versa, the scalar spatial displacemegt and velocitycon

at the same point are calculated from the modal displacearght
velocity vectors by

Tcon = wamody
Tcon = wamod (18)

We now return to the example of subsection] 2.1 of a point-
massmy, interacting with an object vibrating according to a lin-
ear equation[{3) with the interaction force modelled acicgydo
equation[(P). The vibrating object shall however now be iire
abstract form as by equations116).1(17) (18). For a ihewer
of the scenario during contact we again combine the displaots
of the vibrating object and of the point-mass “hammer” intoesv
displacement vecta := (Zmodzn+1)" . In order to formulate the
equations in terms of this new vector we now have to inseraequ
tion (I8) into [10) and replace equatiéni11) by the vectaatign

rext

%mod(t) = fTrrTng(t) + fmod(t): (19)

£int

with fioq(t) denoting the internal forces inside the modal object

depending oD, andD... For f24,(t) we finally have to inserf{9)
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with a negative sigrfcompare subsectidn 2.1) into equatibnl(17) ./
and replacer;,,, by (I8). When tracing these replacements we get
an equation as ifi.{12) whe#€con is now found to be

—

w
Keon := kcon - ( -1 ) . (wT7_1>
mp,

wi1w1 w1w2 - w1 Wn —Ww1
w2w1 wW2wW2 . wW2Wn — W2
=hen- | P 10| (@)
Wpw1 WpwW2 ... WpnWnp —Wn
W _wn 1
mp, e mp, mp,

and Ccon analogous withkcon replaced byecon. We are now in the
same situation as in subsect{on]2.1 and may apply the proeedu
described in subsectign 2.2.

Figure[2 shows the temporal trajectory (x-axis in samples at
rate44100 Hz) of a point-mass bouncing under the influence grav-
ity on a surface. The vibratory behaviour of the surface aptbint b) "t o .
of contact is described by an abstract modal object with frfoela
quencies 0R20Hz, 950Hz and3500Hz. In figurel3 the behaviour
of the overall energy of the system is plotted over time (stime
scale as in figurE]l2 a) ). This overall energy consists of time su
of potential and kinetic energy of the free mass as well avithe
brating object and the energy stored in the “contact springf’
each contact energy is transferred from the free mass to ¢laalm
object. The artefacts of energy loss at the end of each dontac
(compare subsectidn 2.2) are too small to be resolved irptbts L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
It can be seen (also at any zooming stage) that the overall sys ()
tem energy decays monotonically. As explained in subseid
effects of the discrete-time implementation never leadt@aeci-
dential increase of energy. The algorithm is thus alwaysistand Figure 2: Temporal trajectory of a point-mass (red) hitting a vi-
effects such as never-ending bouncing behaviour due to @omp brating object under influence of gravity. Global bouncing- b
tational artefacts can not occur. It can be seen in fiflliret2a) t  haviour a), detail of one single impact b); c) shows the deti
finally continuous contact is reached. The algorithm thlewed to the last single bounces until continous contact is reached.
model scenarios where both distinct impacts and continaons
tact may occur, such as in sliding or rolling interaction.

3. CONCLUSIONS

A discrete-time algorithm modelling contact of solid oliggbas & :
been developed. It is based on a model of both, the involved ob
jects and the interaction force and therefore allows to rdge
namic situations of repeated and continuous contact. Blyegp ‘ ‘ . ] .

the modal approach to both phases, of contact and withcatersy
energy is controlled and an accurate, economic and staduleetie-

time implementation is reached. The presented generahitpoh .

may be applied to a wide range of scenarios of contactingl soli Figure 3:Temporal decay of the overall energy of the system of a
objects, also such of continuous interaction such as gpdirslid- point-mass falling onto a vibrating object.

ing, which suffer from energetic instabilities of previoogntact

models.

[3] Vitali Dymkou, Rudolf Rabenstein, and Peter Steffen,isD
crete simulation of a class of distributed systems using-fun
tional analytic methods,Multidimensional Syst. Signal Pro-
cess, vol. 17, no. 2-3, pp. 177-209, 2006.
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