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ABSTRACT

In discrete-time digital models of contact of vibrating objects sta-
bility and therefore control over system energy is an important is-
sue. While numerical approximation is problematic in this context
digital algorithms may meat this challenge when based on exact
mathematical solution of the underlying equation. The latter may
generally be possible under certain conditions of linearity. While
a system of contacting solid objects is non-linear by definition,
piece-wise linear models may be used. Here however the aspect
of “switching” between different linear phases is crucial.An ap-
proach is presented for exact preservation of system energywhen
passing between different phases of contact. One basic principle
used may be pictured as inserting appropriate ideal, massless and
perfectly stiff, “connection rods” at discrete moments of phase
switching. Theoretic foundations are introduced and the general
technique is explained and tested at two simple examples.

1. INTRODUCTION AND BACKGROUND

The modelling of contact of solid objects is a prominent challenge
in the fields of sound synthesis and virtual reality (e.g. [1]). For
describing the inner laws and attributes of solid objects the modal
approach [4][2][3] has been very successful [1] [5] [6] [7] which
can be applied under certain conditions of linearity described be-
low. Contact has been modelled in various ways, mostly using
force profiles chosen a priori (e.g. [1]), such that the resulting be-
haviour of the affected object(s) can be seen regarded as a filter
with force(s) as input. The derivation of such temporal force pro-
files is however often very heuristic and there is no clear strategy
for changes of different forms of contact. For example is it not a
priori clear what the characteristic differences of force profiles in
rolling or sliding are. Further on, this approach has stronglimita-
tions in realtime interactive scenarios, e.g. when a virtual object
passes between phases of rolling and of bouncing.

Other models of contact include laws for the forces of contact
in dependence of the configuration of the involved objects. On this
basis, numerical simulations may be implemented in which tempo-
ral force profiles are computed along with the objects’ resonance
behaviour (see e.g. [7]). This latter approach has strong poten-
tial for realtime interaction, in particular in dynamical situations
of continuous or repeated contact, such as in rolling–bouncing in-
teraction [8]. The contact model presented in [7] is used fora
variety of sound design tasks (e.g. [9], [10]). A central problem in
such scenarios of frequent or continuous contact lies in thestabil-
ity of the discrete-time algorithms: since these are generally based
on numerical approximation of differential equations, control over

the exact terms of energy in the system is lost and artifacts such
as a falling object bouncing forever under the influence of gravity
may occur.

As shortly discussed in the next subsections, numerical arti-
facts that affect system energy and thus stability can be avoided for
linear systems by basing discrete-time algorithms onexactmath-
ematical solution rather than numericalapproximation. A simple
argument however shows that a system of two solid objects that in-
teract when in contact and otherwise behave independently can as
a whole (over both phases, contact and no contact)notbe described
by a linear model: here, the interaction force acting between both
objects would form a linear function of the state vectors of both
objects, with value0 on an open subset of the global state (vec-
tor) space. (One may only look at the system at any configuration
where both objects are at some positive distance and note that no
interaction force will occur for any object positions whichare suf-
ficiently close to this initial configuration.) Such a function must
however be identically0 everywhereas the kernel of a linear func-
tion forms a linear subspace. The approach presented in the fol-
lowing allows to guarantee control over the energy of the system in
the discrete-time algorithm and thus complete stability also in any
situation of repeated or continuous contact. The basic ideais here
to apply the modal approach also during contact of both objects,
which is possible if the interaction force is governed by a piece-
wise linear law. Crucial hereby is the aspect of how to “switch”
between different linear phases, for which a simple but satisfactory
— for the present goals — solution is presented in section 2.2.

Since the modal description and formalism are at the core of
the work, the following two subsection very shortly summarise its
main theoretical principle and its practice in the finite-dimensional
case.

1.1. Modal approach — general principle

Contrary to the impression sometimes created in literature, modal
description is not necessarily based on approximation of object
behaviour by discrete lumped spatial elements or by some kind of
“resonance” filters. Rather, the fundamental underlying principle
of expressing a linear operator acting on state vectors of a physi-
cal system by means of eigenvectors is based on an exact mathe-
matical theory and may be applied to spatially discrete as well as
continuous systems. Starting point is a description of the temporal
behaviour of a physical system in the form

~̇z(t) = A~z(t) + ~fext(t) (1)

where~z(t) is the state of the system in the “state space” vector
spaceZ — thus state “vector” — at time t, ~̇z(t) its temporal
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derivative, andA a linear operator defined on this state space. The
demand onA to be linear is central for the term of “modes of a
system” to make sense. It is here stressed that the state space may
be finite- or also infinite-dimensional.

The core idea of the modal approach is to simplify and solve
equation (1) by expressing the state vector~z in a basis of (gener-
alised) eigenvectors ofA. To only quickly illustrate this principle
one may look at the case of the “homogeneous” form of equation
(1), ~fext(t) = ~0, i.e. under absence of external forces, and assume
~z(t) to lie inside one eigenspace ofA to eigenvalued: (1) then
reduces tȯ~z(t) = d ·~z(t) (with d scalar!), which is readily solved
by means of an exponential function (in time):~z(t) = edt · ~z(0).
While this simple example serves to illustrate the general idea of
solving equation (1) by representing the operatorA and state vec-
tors ~z in a suitable form, the exact mathematical theory may be
highly difficult and abstract (in particular in the case of infinite-
dimensional state spaces, see e.g. [11]). For the practicalappli-
cation at scenarios of contact described in this contribution it is
however sufficient to understand some main facts for the caseof
finite-dimensional state spaces, which are shortly summarised in
the next subsections.

1.2. Finite-dimensional/spatially discrete case

In the case of a finite-dimensional state space the operatorA in
equation (1) be can represented by (or regarded as) a matrix.In this
case the modal approach of finding the generalised eigenvectors of
A consists in finding a similarity transformation forA to (e.g.)
Jordan canonical form, i.e. of finding a non-singular matrixV
such that

N := V
−1

AV (2)

is of Jordan canonical form [12]. The proof that such a trans-
formation exists for any matrixA and techniques how it can be
practically derived are results from linear algebra (see e.g. [12])
and numerics []. Without going into further detail it is noted that
in most practical cases the Jordan canonical form is diagonal, i.e.
A = V DV −1(⇔ D = V −1AV ), whereD is a diagonal matrix.

1.2.1. Stiffness and friction matrices

The most common practical application of the modal approachis
in the situation of a system of second order differential equations
of the form

M~̈x(t) + C~̇x(t) + K~x(t) = ~f
ext(t). (3)

The column vector~x = (x1 . . . xn)T (“T” denoting matrix transpo-
sition) holds the (finite number of) discrete “displacement” vari-
ables,~fext is a vector of external forces acting on the system, and
M , K andC are matrices representing the dependence of forces
of inertia, “stiffness” and “friction” on the configurationof the sys-
tem. The variablesx1, . . . , xn and equation (3) most often derive
from Newton’s laws for an idealised system of lumped masses or
from Lagrange equations. They may however also be derived from
a spatially continuous system which has first been transformed di-
rectly by the modal approach and then simplified to a finite num-
ber of “modes”. This latter case is the most common in sound
generation by “modal synthesis”. Such a situation of using modal
parameters in an already “abstracted” way is also the one mainly
aimed at with the approach to modelling contact described inthe
following (as will become clear in subsection 2.3). Furtheron, the

parameters represented by the matricesM , K andC are in prac-
tice often derived from measurements at mechanical objects.

The inertia matrixM is generally invertible (most often diag-
onal) and may therefore be omitted by passing fromK andC to
M−1K andM−1C, so that equation (3) becomes

~̈x(t) + C~̇x(t) + K~x(t) = M
−1 ~f

ext(t). (4)

Often (and this is the case covered in most literature)K andC

may be diagonalised simultaneously, which is possible if and only
if one of them can be diagonalised and both commute, i.e.KC =
CK [12]. We here however need to account for the general case
whereK andC do not commute. This is handled by introducing

the state vector~z :=

(

~x

~̇x

)

. DefiningA :=

(

O E

−K −C

)

,

whereE denotes the identity matrix (of dimension equal toK and
C), equation (4) then takes the form

~̇z(t) = A~z(t) +

(

~0

M−1 ~fext(t)

)

, (5)

which is equivalent to (1) (finite-dimensional).

1.2.2. Transition matrix

The most simple way to see the possibility of discrete-time simu-
lation of the temporal behaviour of a finite-dimensional homoge-
neous systeṁ~z(t) = A~z(t) is by noting that its solution can be
directly given in the form

~z(t) = e
tA

~z(0). (6)

The exponential function of a matrix,eM , may, e.g., be defined by
the series expression of the exponential function. It is seen that,
just as the value of~z at t = t∆ can be determined by multiply-
ing ~z(0) with et∆A (equation (6)), in the same way~z(t + t∆) =
et∆A~z(t). The matrixet∆A is therefore also called “(state) transi-
tion matrix” (to the time stept∆) as it allows to pass from any one
temporal state vector to the one at the momentt∆ later [2]. et∆A

can not easily be determined by means of the series expression, but
it is remarked that forA = V DV −1 as in equation (2) we have

e
t∆A = V e

t∆D
V

−1
. (7)

The matrixet∆D however can easily be seen to be of diagonal
form again, with entries given by thescalar exponential function
of the entries ofD. Diagonalisation ofA is thus also a technique
to determine the transition matrix and we have closed the cycle,
turning back to the modal approach.

In practice one will often not use the transition matrixet∆A

referring to spatial coordinates (or whatever coordinateshave ini-
tially been used to formulate the model, e.g. Lagrange equations. . . ).
Rather, by permanently using the state vector~zmod(t) := V −1~z(t)
one will work with the transition matrixet∆D which is, as noted,
of diagonal form and thus computationally much more effective.
This change of coordinates is particularly convenient whennot the
complete spatial behaviour of the modelled system needs to be
known: in sound synthesis it is often sufficient to know the tem-
poral movement of one or a few “pickup point(s)” of a vibrating
structure, simular to the situation of an electro-magneticpickup of
an electric guitar or piano.
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2. MODELLING CONTACT BY MODAL DESCRIPTION

Returning to the general abstract formulation of subsection 1.1 in
order to explain our approach to modelling contact, take twosys-
tems of the described type of equation (1)

~̇z1(t) = A1~z1(t) + ~f1ext and~̇z2(t) = A2~z2(t) + ~f2ext (8)

interacting by means of some interaction force~f(~z1, ~z2) which
in this formulation makes part of the external forces~f1 and ~f2.
For simplicity we assume for now that no other external forces
exist and that the “actio–reactio” principle holds such that (with
no restrictions on generality)~f1 = ~f and ~f2 = −~f . If then ~f is
given as alinear function of~z1 and~z2 the whole system of both
masses in contact may again be written in the form~̇z(t) = A~z(t)
with a linear operatorA on the spaceZ1 × Z2, “built from” A1,
A2 and the linear expression of~f . While the clean mathematical
formulation of this process in the general case is rather tedious
(although not complicated), the idea is demonstrated and realized
in a concrete example in the following subsections.

2.1. Contact: point-mass – finite-dimensional system

We return to the finite-dimensional system of subsection 1.2de-
scribed by equation (4). This object shall be struck by a “hammer”,
which, in order to keep the overall system possibly simple and
demonstrate the general idea, is assumed to behave as a point-mass
free to move along one spatial direction. In the contact-less “free”
configuration the hammer is thus described by the scalar position
variablexn+1 (the reason for choosing the subscript “n+1” will be-
come clear in a minute) and behaving according tomhẍn+1 = f ,
with mh its mass. Again for simplicity we assume that no external
forces other than the hammer–object interaction are present such
that ~f = 0 (thus alsof = 0) when both objects are not in con-
tact. The hammer may touch the object at one specific point with
index lcon (moving along the same spatial coordinate as this “con-
tact mass”) and when such contact occurs the interaction shall be
modelled as a massless damped-spring connection with stiffness
kcon and friction constantccon. Summing up, the contact forcef is
thus given by the following term:

f =







kcon(xlcon− xn+1) + ccon(ẋlcon − ẋn+1),
for xn+1 < xlcon

0, otherwise.
(9)

This force term is analogous to the one used in [7] except thatit
is linear. It will be seen in the following that the restriction of
this choice allows big advantages in solving and implementing the
system.

Remembering that the force acting onmlcon according to the
actio–reactio principle is−f , the dynamical equations for the two
affected masses, i.e. the “hammer” and the massmlcon, during
contact are

ẍn+1 =
f

mh

= kcon
mh

xlcon −
kcon
mh

xn+1 + ccon
mh

ẋlcon−
ccon
mh

ẋn+1 (10)

and

ẍlcon = f
(int)
lcon

+
f

(ext)
lcon

mlcon

= f
(int)
lcon
−

f

mlcon

= f
(int)
lcon

+ kcon
mlcon

xn+1 −
kcon

mlcon
xlcon + ccon

mlcon
ẋn+1 −

ccon
mlcon

ẋlcon, (11)

wheref
(int)
lcon

is the internal force acting onmlcon inside the object
(described by equation (4) in subsection 1.2). We combine the vec-
tor of the positions of then masses of the object of subsection 1.2
with the position of the hammerxn+1 into a new position vector
~́x := (x1 . . . xn+1)

T. The influence of the contact force described
by equations (10) and (11) on the whole system can then be written
in the form

΅
~x(t) = −Kcon~́x(t)− Ccon

˙́
~x(t) +

(

~f (int)(t)
0

)

, (12)

with

Kcon :=





























0 . . . 0
...
. . .

... kcon
m

0 . . . 0 − kcon
m

0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0
0 . . . 0 − kcon

mh

0 . . . 0 kcon
mh





























← lconth
row

(13)
and Ccon analogous toKcon, kcon replaced byccon. ~f (int) is here
the vector of all internal forces inside the object, described just by
the matricesK andC in subsection 1.2, equation (4). We may
therefore combine the matricesK andC with Kcon andCcon (note
that the dimensionality of the “con” matrices is by one higher than
that ofK andC) into

Ḱ :=

(

K 0
0 0

)

+ Kcon and Ć :=

(

C 0
0 0

)

+ Ccon (14)

and write the final equation that describes the behaviour of the
entire system during contact as

΅
~x(t) + Ḱ~́x(t) + Ć

˙́
~x(t) = ~0, (15)

again assuming absence of any additional external forces (thus the
~0-vector on the right side). Equation (15) is exactly of the same
form as equation (4) and may be handled in the exact same way, us-

ing a state vectoŕ~z :=

(

~́x
˙́
~x

)

and a matrixÁ :=

(

O E

−Ḱ −Ć

)

.

It is noted thatḰ andĆ generally donotcommute (i.e.ḰĆ 6=

ĆḰ) — e.g. whenK andC commute,ccon = 0, andm 6= mh.
The more general approach of introducing the state vector~́z and
the matrixÁ, as described in subsection 1.2, is thus necessary:
it is not sufficient to bringḰ (or Ć) to Jordan canonical form to
solve the above equation (15). It is pointed out that the proce-
dure just presented is independent of the concrete matricesK and
C describing the object. It is identically applicable for anyma-
tricesK and C describing different geometries or physical sys-
tems. Furthermore, the method can also be applied if the sec-
ond object involved, here the “hammer”, is not simply a point-
mass, but described in the same general form of equation (3).Fi-
nally it is again noted that the general idea is also applicable for
infinite-dimensional state spaces, although this case may typically
not allow for an analytical solution or be technically much more
involved.
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2.2. Discrete-time realization of contact condition

In principle, the temporal behaviour of a system of two contacting
objects that interact according equation (8) can now be simulated
by using transition matriceseA1t∆ and eA2t∆ during phases of
no contact and a transition matrixeÁt∆ with Á as in the previous
subsection during contact (as explained in subsection 1.2.2). The
time-stept∆ accords to some chosen “sample rate”. In practice
one will use transformations to suitable “modal coordinates” in
both phases, such that the transition matrix turns out to be of some
possibly simple form, as shortly explained in subsection 1.2.2. The
application of such transformations does not introduce anydiffi-
culties and does not change the general described approach and is
thus not discussed in detail here. A crucial question however is,
when to “switch” between phases of contact and no contact, i.e.
when to use either transition matrix (resp. pair of transition ma-
trices): In theory one would need to know in advance when both
objects reach just distance0, calculate the state vector (or vectors)
in that exact moment, decide from this state if the followingphase
will be one of contact or no contact and finally continue with the
simulation — and so on. . . In practice we cannot predict these
moments of switching phases at distance0 exactly, only approx-
imately, and thereby have to account for questions of stability of
the overall discrete-time algorithm as well as costs of computation.
A possible solution to this challenge is presented in the following,
once again at the example of the previous subsection (2.1).

We start with hammer and object in well defined initial states
at t = 0. Without loss of generality these shall be such that both
objects are not in contact, i.e. of positive distance. From these ini-
tial states we compute both states att = t∆, using the transition
matrices for the “no contact” phase. As long as both objects stay
at positive distance, this state update is exact, since it isbased on
an analytical solution,not some approximation (compare subsec-
tion 1.2.2). In an audio applicationt∆ will typically be according
to some chosen constant sample rate. Repeating this step-wise
state update the distance of both objects will at some point be-
come negative for the first time. The last update step before will
then have been wrong, as contact must occur sometime before the
end of the time step and a switch to the “contact phase” would
have been in place. However, a use of the transition matrixeÁt∆

for the “contact phase” for the last update step (the one justbe-
fore the first occurrence of negative distance) would be wrong as
well, since both objects are at positive distance at the end of the
previous time step. To make things worse, both errors — of using
the transition matrix for the “contact phase”too earlyor too late
— lead to an erroneous increase of energy in the whole system,
since both amount to ad-hoc insertion of the “contact spring” in a
stretched state, while the overall kinetic energy in the system is not
affected by switching from “no contact” to “contact”. For single
short impact events this increase of energy may probably be con-
trolled to remain small enough not to disturb the global behaviour
of interest, but for situations of repeated contact, such aswhen an
object bounces back under the influence of gravity, the long-term
stability of the system or the “macroscopic quality” of its tempo-
ral behaviour might be affected. Before suggesting a solution to
this problem it is remarked that the situation is just opposite when
switching from “contact” to “no contact”: in this situationthe ar-
tifact of inexact, only approximate, knowledge of the time when
contact ends always leads to a decrease of the overall energyof the
system, since then a stretched “contact spring” is cut ad-hoc, being
it “too early” or “too late”.

The approach used by the author consists in adding at each
contact some spatial offset to the distance of both objects of just
such amount that distance zero occurs exactly at the beginning of
one update step. Physically, this may be seen as introducingan ad-
ditional massless, perfectly stiff connecting element between one
object and the “contact spring”. This geometrical manipulation
assures that system energy isexactlypreserved at the switch from
“no contact” to “contact”. From the moment when zero distance
is reached, which now falls exactly on the beginning of one time
step, the system is updated by means of the transition matrixfor
the “contact phase”, until a positive distance (under consideration
of the “offset element”) is first found again. We then switch back
to “no contact”, hereby loosing some system energy as a result of
the discrete-time artifact of “cutting” the stretched contact spring.
In the whole however, discrete-time artifactsneverlead to an in-
crease of energy, such that the system is always stable. Effects
such as an object bouncing forever under the influence of grav-
ity can not occur. Of course the offset connection element has to
be adapted at each occurring contact which might seem a rather
strong geometric manipulation. It is however harmless in our con-
text since unpredictable dynamical changes in surface structures
form part of the modelled situations we are mostly interested in,
such as in rolling interaction. Also, the level of these offset values
may be well estimated and controlled a priori by the choice ofthe
sample rate in dependence of initial system energy. In practical
implementation examples, values of theoffset elementwere in an
order of10−5 smaller than the amplitudes of the audible object
vibrations.

Figure 1 shows phases of an impact computed by the algo-
rithm just described, of a free mass with “contact spring” and a
“string” approximated by50 lumped masses and handled by the
modal formalism. Parameters of elasticity and friction of the string
are such that the lowest modal frequency is around350 Hz. The
algorithm runs in realtime at a sample rate of44100 Hz on an av-
erage notebook (even with more than ca.100 masses resp. modes,
depending on the exact hardware). Of course, a one-dimensional
string will in practice rather be modelled by using waveguide tech-
niques [13] which are computationally more economic (although
more demanding in terms of processing memory, a fact that may
be relevant when working with certain specific dsp hardware). The
example is here just used to demonstrate the general practicability
of the presented approach. The phenomenon of wave propagation
that may be observed in figure 1 is thereby a good confirmation of
the validity and exactness of all involved operations (diagonalisa-
tion, discrete-time transition matrix, impact algorithm.. . ) since it
does in this approachnot follow for reasons of the computational
structure itself, as in the case of digital waveguides, but occurs as
a result of superposition of the computed “modes”, i.e. eigenvec-
tors and their time-dependent multiplicities. It is noted that the
approach may be applied to more complex structures as well, such
as membranes, whose modelling in terms of waveguides is not as
straightforward as in the case of a one-dimensional string.In prac-
tice one will often gain modal data not from spatially lumpedmod-
els but analytically or from mechanical measurements and then
reduce the system to finite dimensions. The application of the pre-
sented technique of contact modelling in the case of such a use of
modal data in a somewhat more abstract way is demonstrated in
the next subsection.
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Figure 1:Snapshots of a string struck by a free mass “hammer”.

2.3. Contact of “abstract” finite-dimensional modal objects

In most practical cases of sound generation by modal synthesis
objects are described in a “more abstract” way, starting immedi-
ately with the modal parameters of eigenfrequencies and decay
times (compare e.g. [1][7]). These modal parameters are then
used independently of their initial origin. They may have been
derived by diagonalisation of a finite point-mass system as de-
scribed in subsection 1.2, from analytical solution of spatially dis-
tributed systems (with therefore infinite-dimensional state space),
or, most often, from measurements of “real” mechanical or electri-
cal systems. Examples of infinite-dimensional systems for which

an analytical derivation of according eigenvectors and -values is
possible are certain one-dimensional systems with homogeneous
mass distribution such as beams or strings (for which eigenvalues
are commonly known to be the integer multiples of one “funda-
mental frequency”) and two- or three-dimensional systems with
strong symmetries such as rectangluar or circular membranes or
plates [14]. In practical implementations the number of modes
is necessarilly finite, which generally demands a simplification of
the system to be modelled, being it a partial differential equation
or a real distributed object. Strategies and guidelines have been
studied to perform such reduction of the number of modes in a
way such that consequences in terms of auditory perception are
possibly small [15]. In particular, “overdamped” and “free-body”
modes [2] can generally be neglected for sound synthesis such that
finally, an “abstract” modal object consists of a finite number of
pairs of modal frequencies and according decay times (compare
[7] [1]). In matrix notation as in subsection 1.2K andC are then
of diagonal form. Analog to equation (4) the temporal behaviour
of an abstract object in “modal coordinates” is described bythe
equation

~̈xmod(t) + Dc~̇xmod(t) + Dk~xmod(t) = ~f
ext
mod(t). (16)

Dk andDc are here the diagonal matrices corresponding toK and
C and ~fext

mod is the vector of the sum of external forces acting on the
objectexpressed in modal coordinates.

The connection between the modal coordinates of the abstract
modal object and spatial coordinates is finally given by means of
weighting factors associated to each mode at each potentialpoint
of contact. These weighting factors form a reduction of the system
of eigenvectors — in the finite-dimensional case of subsection 1.2
the matrixV (resp.V −1) of eigenvectors. For one single (scalar)
forcef(t) acting on the modal object at one point of contact, we
have for the external force vector in modal coordinates of equation
(16):

~f
ext
mod(t) = f(t) · ~w, (17)

where~w is the vector of the weighting factors at the point of con-
tact. ~w is of the same dimensionality as the the vectors of modal
displacements~xmod and velocities~̇xmod, i.e. the number of modes.
Vice versa, the scalar spatial displacementxcon and velocityẋcon

at the same point are calculated from the modal displacementand
velocity vectors by

xcon = ~w
T
~xmod,

ẋcon = ~w
T
~̇xmod. (18)

We now return to the example of subsection 2.1 of a point-
massmh interacting with an object vibrating according to a lin-
ear equation (3) with the interaction force modelled according to
equation (9). The vibrating object shall however now be given in
abstract form as by equations (16), (17) and (18). For a description
of the scenario during contact we again combine the displacements
of the vibrating object and of the point-mass “hammer” into anew
displacement vectoŕ~x := (~xmod xn+1)

T. In order to formulate the
equations in terms of this new vector we now have to insert equa-
tion (18) into (10) and replace equation (11) by the vector equation

~̈xmod(t) = ~f
int
mod(t) + ~f

ext
mod(t), (19)

with ~f int
mod(t) denoting the internal forces inside the modal object

depending onDk andDc. For ~fext
mod(t) we finally have to insert (9)
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with a negative sign(compare subsection 2.1) into equation (17)
and replacexlcon by (18). When tracing these replacements we get
an equation as in (12) whereKcon is now found to be

Kcon := kcon ·

(

~w
−1

mh

)

·
(

~w
T
,−1

)

= kcon ·















w1w1 w1w2 . . . w1wn −w1

w2w1 w2w2 . . . w2wn −w2

...
...

. . .
...

...
wnw1 wnw2 . . . wnwn −wn

− w1

mh

. . . − w1

mh

1

mh















(20)

andCcon analogous withkcon replaced byccon. We are now in the
same situation as in subsection 2.1 and may apply the procedure
described in subsection 2.2.

Figure 2 shows the temporal trajectory (x-axis in samples at
rate44100 Hz) of a point-mass bouncing under the influence grav-
ity on a surface. The vibratory behaviour of the surface at the point
of contact is described by an abstract modal object with modal fre-
quencies of220Hz, 950Hz and3500Hz. In figure 3 the behaviour
of the overall energy of the system is plotted over time (sametime
scale as in figure 2 a) ). This overall energy consists of the sum
of potential and kinetic energy of the free mass as well as thevi-
brating object and the energy stored in the “contact spring”. At
each contact energy is transferred from the free mass to the modal
object. The artefacts of energy loss at the end of each contact
(compare subsection 2.2) are too small to be resolved in thisplot.
It can be seen (also at any zooming stage) that the overall sys-
tem energy decays monotonically. As explained in subsection 2.2
effects of the discrete-time implementation never lead to an acci-
dential increase of energy. The algorithm is thus always stable and
effects such as never-ending bouncing behaviour due to compu-
tational artefacts can not occur. It can be seen in figure 2c) that
finally continuous contact is reached. The algorithm thus allows to
model scenarios where both distinct impacts and continuouscon-
tact may occur, such as in sliding or rolling interaction.

3. CONCLUSIONS

A discrete-time algorithm modelling contact of solid objects has
been developed. It is based on a model of both, the involved ob-
jects and the interaction force and therefore allows to model dy-
namic situations of repeated and continuous contact. By applying
the modal approach to both phases, of contact and without, system
energy is controlled and an accurate, economic and stable discrete-
time implementation is reached. The presented general technique
may be applied to a wide range of scenarios of contacting solid
objects, also such of continuous interaction such as rolling or slid-
ing, which suffer from energetic instabilities of previouscontact
models.
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