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Context and motivation

Interactive realtime synthesis of sounds of contacting solid
objects: dynamic modelling of continuous and interrupted
contact? (In particular: rolling. . . )

I Modal description successful for many cases of one single
solid object — under clear conditions of mathematical
theory. . .

I Used approaches for force signals: impulsive force
approximation for very short contact, ad-hoc assumptions
for longer single contacts (e.g. cosine half-periods. . . ),
force profiles for continuous interaction on the basis of
more or less heuristic ideas. . .

I But: situations of varying, continuous and interrupted
contact?

I E.g.: ball falling, bouncing, rolling
I Possible answer: models including interaction forces. . .



Motivation, specific scope

Modelling of rolling sound through contact perpendicular to
plane of contact. . . :
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Figure: Reduction of rolling geometry to 1-dimensional impact.

Summary: necessity of a computational model of impact
accounting for “microscopic” interaction behavior and
macroscopic/long-term energy preservation.



Background – Modelling impact interaction using force
laws force laws

Different laws have been proposed for the interrelation of
“global distances” and the interaction force acting on the
involved objects, e.g. by Hertz or by Hunt and Crossley:

f (x , ẋ) =

{
−kxα − λxα · ẋ , x > 0
0, x ≤ 0

(1)

I Non-linearity of scenario, therefore: discrete-time
implementation by numerical approximation

I But: even small inexactnesses lead to uncontrolled
changes of the energy stored in the system and may add
up in long-term behavior.

I (The system as a whole is necessarily non-linear, even
when linearizing the first line of equation (1).)

Central ideas: piece-wise linear behaviour of interaction force,
exact solution in each linear stage, appropriate “switching”.



Background – general principles

Description of the temporal behaviour of a system

~̇z(t) = A~z(t) +~fext(t), (2)

~z(t) state of the system in the “state space” vector space Z —
thus state “vector”, A a linear operator defined on state space.
Remarks:

I The state space may be finite- or also infinite-dimensional.
I The demand on A to be linear is central for the term of

“modes of a system” to make sense.
I Core idea of modal approach: simplify and solve equation

(2) by expressing the state vector ~z in a basis of
(generalised) eigenvectors of A.

I E.g.: if ~z is an eigenvector of A to eigenvalue d , (2) reduces
to ~̇z(t) = d · ~z(t) with d scalar! (no external forces,
~fext(t) = ~0, homogeneous version).



Background – Finite-dimensional state space

Finite-dimensional state space: operator A “is” matrix. General
solution (homogeneous case)

~z(t) = etA~z(0) (3)

then allows for an exact (up to resolution of finite computer
architecture) computation in discrete-time algorithm by means
of the “(state) transition matrix” et∆A (to the time step t∆).

I In this case the modal approach of finding the generalised
eigenvectors of A consists in finding a similarity
transformation

N := V−1AV (4)

to Jordan canonical form, V non-singular.
I In most practical cases Jordan canonical form is diagonal,

i.e. A = VDV−1(⇔ D = V−1AV ), D diagonal matrix.
Transition matrix: et∆A = Vet∆DV−1, with et∆D also diagonal.



Background – Stiffness and friction matrices

Most common practical application: system of second order
differential equations of the form

M~̈x(t) + K ~̇x(t) + C~x(t) = ~f ext(t), (5)

M, K and C matrices representing inertia, “stiffness” and
“friction”.

I Reduction: ~z :=

(
~x
~̇x

)
, A :=

(
O E
−K −C

)
I Most often derived from Newton’s laws for an idealised

system of lumped masses or from Lagrange equations, but
may also be derived from a spatially continuous system
which has first been transformed directly by the modal
approach and then simplified.

I Inertia matrix M is generally invertible (most often diagonal)
and may therefore be omitted (K and C to M−1K and
M−1C).



Modelling contact by modal description

Two systems of the described type of equation (2)

~̇z1(t) = A1~z1(t) +~f1ext and ~̇z2(t) = A2~z2(t) +~f2ext (6)

interacting by means of some interaction force ~f (~z1, ~z2).
For simplicity:

I no other external forces,
I “actio–reactio” principle holds: ~f1(= ~f1ext) = ~f and ~f2 = −~f .

General idea: If ~f is a linear function of ~z1 and ~z2, the system
of both masses during contact may again be written in the form
~̇z(t) = A~z(t) with a linear operator A on the state space
Z = Z1 × Z2, “built from” A1, A2 and the linear expression of ~f .



Contact of finite-dimensional systems – example,
point–mass “hammer”

Modal object as in equation (5) struck by a point-mass
“hammer” (to keep the overall system possibly simple and
demonstrate the general idea),

mhẍn+1 = f . (7)

One contact point lcon, contact modelled as a massless
damped-spring connection:

f =


kcon(xlcon − xn+1) + ccon(ẋlcon − ẋn+1),

for xn+1 < xlcon

0, otherwise.
(8)



Contact of finite-dimensional systems – example,
point–mass “hammer”

Accelerations on hammer and contact point (flcon = −f
according to the actio–reactio principle):

ẍn+1 =
kcon

mh
xlcon −

kcon

mh
xn+1 +

ccon

mh
ẋlcon −

ccon

mh
ẋn+1 (9)

and

ẍlcon =
kcon

mlcon

xn+1−
kcon

mlcon

xlcon +
ccon

mlcon

ẋn+1−
ccon

mlcon

ẋlcon + f (int)
lcon

, (10)

f (int)
lcon

internal force acting on mlcon inside the object.
Combine positions of the n masses of the object with position
of the hammer xn+1 into ~́x := (x1 . . . xn+1)

T:

΅
~x(t) = −Kcon~́x(t)− Ccon

˙́
~x(t) +~f (int)(t), (11)

with



Contact of finite-dimensional systems – example,
point–mass “hammer”

Kcon :=



0 . . . 0
...
. . .

... kcon
m 0 . . . 0 −kcon

m
0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0
0 . . . 0 −kcon

mh
0 . . . 0 kcon

mh


← lconth

row
(12)

Ccon analogous.
Combine matrices K and C with Kcon and Ccon into

Ḱ :=

(
K 0
0 0

)
+ Kcon and Ć :=

(
C 0
0 0

)
+ Ccon, to gain the

final equation of the entire system during contact as
΅
~x(t) + Ḱ ~́x(t) + Ć

˙́
~x(t) = ~0. (13)



Modelling contact by modal description

Remarks:
I Presented procedure applicable in an analogous way

I for modal objects given by abstract attributes of modal
frequencies, decay times, and weights at the point of
contact,

I if the “hammer” is not as simple as a point mass, but
describable by means of a finite-dimensional linear
operator.

I The principal idea also holds for systems with
finite-dimensional state spaces, but its application is then
generally much more involved and no general “receipt” for
concrete solution can be given.



Discrete-time realization
Main points:

I Update steps in each linear phase (with transition
matrices) are exact because based on analytical solution;
in particular energy-preserving.

I Crucial point: “phase switching” — Exact moments of
transition between different linear phases will not be at
sample steps.

Figure: Single objects at discrete sampled moments just before and
after occurence of contact.

How to switch between non-contact and contact?



Discrete-time realization
Unbreakable constraints (here):

I Overlap of objects must not occur.
I Inserting a “contact spring” in streched state means

erroneous insertion of energy into system.

Present solution: usage of appropriate ideal, massless,
perfectly stiff, connecting element.

Figure: Energy-preserving update at start of contact



Discrete-time realization

Steps of discrete-time algorithm:
I No contact phase: update seperate objects with individual

transition matrices
I Check if contact starts. If yes: go back one step and set

contact. Use “offset element” to preserve energy.
I Contact phase: update with transition matrix of system in

contact.
I Check if still in contact. If no: release contact. Loss of

energy at cut of compressed spring, but never insertion of
energy.



Example implementation: string struck by “hammer”
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Figure: Snapshots of a string struck by a free mass “hammer”.



Example implementation: string struck by “hammer” –
slow motion view



Example implementation: string struck by “hammer” –
realtime view, gravity



Example implementation: string struck by “hammer” –
continuous contact and energy behaviour
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Conclusions and outlook

I An approach and technique has been developed for
dynamic modelling of contact interaction, under complete
control of system energy.

I The model has been implemented and runs at low
computational load on standard hardware.

I The current realization is very simple but will be refined for
more complex scenarios:

I Contact force laws with several linear phases approximating
laws s.a. Hertz’s or Hunt and Crossley’s, or stick–slip
friction.

I More complex scenarios than one point-mass.
I Currently offline diagonalization, therefore fixed contact

points. Idea: direct online computation of transition
matrix. . .



Thank you!
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