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ABSTRACT 

In this paper we propose a method to estimate and transform 
harmonic components in wide-band conditions, out of a single 
period of the analyzed signal. This method allows estimating 
harmonic parameters with higher temporal resolution than typical 
Short Time Fourier Transform (STFT) based methods. We also 
discuss transformations and synthesis strategies in such context, 
focusing on the human voice. 

1. INTRODUCTION 

The concept of narrow or wide-band analysis of a periodic signal 
relates to the ratio between frequency resolution and fundamental 
frequency, and therefore to the number of periods covered by the 
analysis window. Narrow-band analysis takes several periods so 
that in quasi-stationary conditions harmonics appear as clear and 
separated peaks in the spectrum. By contrast, wide-band analysis 
uses one or two periods so that the frequency distance between 
harmonics is similar to the spectral resolution, and therefore the 
spectra produced by each harmonic affects significantly its 
neighbor harmonics, which complicates the estimation of indi-
vidual frequency components. Moreover, narrow-band analyses 
perform with lower temporal resolution than wide-band analyses. 
In general, algorithms based on modeling and tracking spectral 
peaks use a narrow-band approach to facilitate the detection of 
individual frequency components. This is the case of phase-
locked vocoder [1] and sinusoidal models [2]. On the other hand, 
typical time-domain algorithms such as Time Domain Pitch- 
Synchronous Overlap-Add (TD-PSOLA) [3] or Linear Prediction 
Pitch-Synchronous Overlap-Add (LP-PSOLA) [4] use two period 
long frames, so they work in wide-band conditions. 

As pointed out in [3] regarding the spectral interpretation of 
the TD-PSOLA algorithm, if a short-time signal ( )x n  is re-
peated at a rate of 0f  then it can be shown that the discrete-time 
STFT of the resulting signal using a window function ( )h n  is 
given by the convolution of the response of the window function 

( )H f  by the spectrum of ( )X f  sampled at harmonic frequen-
cies 0kf kf= , i.e.  

 ( ) ( ) ( )k k
k

Y f H f f X f= −∑  (1) 

One drawback of the TD-PSOLA approach is that ( )x n  is itself 
a windowed signal of several periods length,  

 ( ) ( ) ( )x n s n w n=  (2) 

where ( )w n  is the window and ( )s n  the signal that’s being 
analyzed. Therefore, ( )X f

 
is the convolution of ( )W f

 
and 

the signal’s true spectrum ( )S f . This means that the sampled 
spectrum is a smoothed version of the true signal’s spectrum, 
with a spectral resolution determined by the width of the window 
function ( )W f , actually wider than several harmonics. This 
happens even in the case of a pure periodical signal. Although 
this is an inherent problem, its effect can be minimized by in-
verse filtering the analyzed signal and processing the residual as 
in LP-PSOLA. 

The mentioned PSOLA algorithms don’t allow modifying 
individual harmonic components. However, our interest is to 
model those frequency components in wide-band conditions and 
at the same time be able to transform them independently, there-
fore combining the good temporal resolution of typical time-
domain techniques with the flexibility of frequency-domain 
methods. In the following sections we present the proposed 
method in detail. 

2. WIDE-BAND HARMONIC ANALYSIS 

Our intention is to estimate the parameters of the harmonics of a 
periodic signal ( )s n

 
in the widest possible band conditions by 

means of a STFT. We assume that the period of the signal has 
been already estimated by any appropriate technique (e.g. [5]). 
Let’s define ( )s n  as a stationary periodic signal sampled at a 
rate of sf , composed of 2T  sinusoids with constant amplitude, 
frequency and initial phase values, and a known fundamental 
period of T samples 

 ( )
2

1
cos 2 ,

T
k s

k k k
k s

f kfs n a n f
f T

π θ
=

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
∑  (3) 

The discrete-time STFT of ( )s n  using a rectangular window 
( )Rw n  is given by 

 ( ) ( ) ( )Rx n s n w n=  (4) 

 ( ) ( ) ( )R k k
k

X f W f f S f= −∑  (5) 

where kf  denotes the harmonic frequencies, and ( )S f  and 
( )RW f  are respectively the Discrete Time Fourier Transform 

(DTFT) of ( )s n
 
and ( )Rw n . Thus the value of ( )X f  at an 

arbitrary frequency f  is the result of the contribution of all 
harmonic components multiplied by the transform of the window 
evaluated at the frequency difference kf f− . 

The DTFT of a normalized rectangular window of N  sam-
ples is given by  
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 ( )
1 0 1

0 0, 1
R

for n NNw n
for n N

⎧ ≤ ≤ −⎪= ⎨
∉ −⎡ ⎤⎪ ⎣ ⎦⎩

 (6) 
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( )1 2 1

0

sin
1

sin

s s

f fT j n j N
sf f

R
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s

f N
f

W f e e
N fN

f

π π
π

π

− − − −

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  (7) 

Note that it has zeros at frequencies ( )g sf gf N= , 
1,2,..., 1g N= − . 
Since the fundamental period is known, the harmonic fre-

quencies are also known ( k sf kf T= ) and therefore we would 
like to arrive to ( ) ( )k kX f S f= . Observing eq. (5), this will be 
true if the energy contribution of a given harmonic to other har-
monic frequencies is zero. In other words,  

 0 1, 1s
R

kfW k T
T

⎛ ⎞ = ∀ ∈ −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

 (8) 

The previous condition will happen whenever the length of the 
rectangular window is a multiple of the signal’s period (

,N gT g= ∈ ). Therefore, the maximum widest-band condi-
tion is achieved for N T= , when the rectangular window covers 
exactly one period of the signal. 

In practical implementations it is inefficient to compute the 
DTFT. Instead, the Discrete Fourier Transform (DFT) is used, 
which actually samples the DTFT at frequencies equidistant by 

sf N . Denoting the DFT of ( )x n  as ( )X k  we obtain 

 ( ) ( )
1 2

0

kN j n sN

k

kfX k x n e X
N

π− −

=

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑  (9) 

For N T=  we obtain 

 ( ) ( ) ( )s
k k

kfX k X X f S f
T

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 (10) 

This means that each bin of the DFT actually corresponds to one 
harmonic of ( )s n , and that from its complex value we can 
simply compute harmonic parameters as 

 ( )
( )

1,...,
2

s
k

k

k

kff
T

Ta X k k

X kθ

=

= =

=

 (11) 

This way we can efficiently estimate the harmonic parameters 
from one individual signal period without spectral smoothing due 
to the windowing process. For computational efficiency, it is 
preferred to use the Fast Fourier Transform (FFT) algorithm for 
computing the DFT. However, if T  is not a power of 2, using 
the FFT algorithm will often1 require to zero-pad the signal and 
this will modify the frequency of the spectral bins so that they 
won’t correspond anymore to a harmonic. Moreover, the FFT is 
limited to an integer number of samples but not the period T 
which is a real value.  

                                                           
1 Some implementations of the FFT allow non-power-of-2 window sizes 
at the cost of some increased computation 

2.1. Non-integer size FFT 

There are several ways for computing the spectrum of a non-
integer number of samples using the FFT algorithm: 

• PERIODIZATION: one period of the input signal is win-
dowed with ( )Rw n , and repeated several times at the rate 
defined by T  so that the FFT buffer of length M covers in 
the end several periods. The repetition implies interpolating 
both the signal samples and the window function. Then the 
resulting signal ( )rs n  is windowed by an analysis window 
function ( )Aw n , and the spectrum obtained is actually the 
convolution of such analysis window response ( )AW f  by 
the spectrum of ( )rS f  sampled at harmonic frequencies, 
i.e. 

  ( ) ( ) ( )A
k

k kr rX f W f f S f= −∑  (12) 

where actually ( )rS f  is the STFT of  length T . In general, 
the frequencies of the spectral bins don’t correspond to the 
harmonic frequencies but to  

  ( ) ( )
1 2

0

bM j n sM
r r

b
r

bfX b x n e X
M

π− −

=

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑  (13) 

Therefore estimating harmonic parameters (i.e. frequency, 
amplitude and phase) requires interpolating the spectral bins 
around harmonic peaks. Besides, zero-padding can help to 
improve the estimation accuracy. This method is depicted in 
Figure 1, although a rectangular window of T  samples is not 
used but a longer one so to overlap samples at borders and 
therefore avoid discontinuities. In the following subsection it 
will be shown the need of this overlapping method. 

• UPSAMPLING: Another way of computing the STFT of a 
non-integer number of samples is to upsample the input sig-
nal so that one period matches the closest FFT size M , i.e. 

( )( )22 ^ log 1M T⎢ ⎥= +⎣ ⎦ . Downsampling is not desirable in 
this case because some of the higher harmonics should be 
removed to avoid aliasing. Computing the FFT of the upsam-
pled signal ( )us n  would result into 

  
( ) ( )

( )

s
g

s s
u u R g u g

gfg f
T

u k

kf kfX k X W f S f
T T

S f

=

⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

∑
 (14) 

where ( )uS f  is the STFT of length T  and only the first 
bins up to 2T  would be relevant. 

Ideally both methods would output exactly the same results. 
However, due to inaccuracies of the sample and spectral interpo-
lation methods used some differences are expected, although 
insignificant. 

2.2. Inter-harmonic energy contribution 

We saw before that in order to achieve ( ) ( )kX k S f=  the en-
ergy contribution of each harmonic to other harmonic frequen-
cies should be zero. Thus, in order to have an initial evaluation of 
the goodness of the proposed approach, we explore the inter-
harmonic energy contribution by computing the one-period-
STFT of a sinusoid with the upsampling method. This gives us a 
measure of the noise present at other harmonic frequencies. 
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Figure 7a-f show the one-period-STFT of a signal containing 
only one sinusoid at the fundamental frequency, whereas Figure 
7g-h show the result when the sinusoid frequency corresponds to 
different multiples of the fundamental frequency. Inaccuracies 
introduced by any of the estimators or interpolation methods will 
degrade the analysis performance. We consider the following 
aspects: 
• UPSAMPLING: the upsampling process is performed using 

a polyphase implementation. Figure 7a shows the case of in-
teger period values where contributions are negligible since 
they fall below -100dB. Periods between 65 and 127 are up-
sampled to have a length of 128 samples. 

• NON-INTEGER PERIODS: In Figure 7b we observe negli-
gible contributions for several real-valued periods between 
64 and 128.  

• PITCH ESTIMATION ERRORS: Figure 7c shows the con-
tributions for pitch estimation errors up to 20 cents. The con-

tribution to the adjacent harmonic goes from -65.45dB/1cent 
to -36.73dB/20cents. The reason for this bias relies both in 
the discontinuity between borders of the STFT input signal 
and the fact that bins frequencies depart from harmonic fre-
quencies. In (d) we see how the numbers can be greatly im-
proved by interpolating the values around borders in the way 
shown in Figure 1. 

• NON-STATIONARY SIGNALS: Figure 7e shows the re-
sults in the case of both non-stationary sinusoids and pitch 
estimation errors. The sinusoid frequency shifts approxi-
mately from 125 to 133Hz along the analysis window, and 
the estimation errors go from 0 to 20 cents. Obviously the 
best case is when the fundamental frequency is well detected, 
with contributions around -50 and -60dB for the two closest 
partials, and slowly decaying to -90dB for the 15th harmonic. 
These values are good enough for real world signals. How-
ever, the worst case of 20 cents is not that good. The contri-
butions range from -38dB for the 2nd harmonic to -45dB for 

Figure 1 Block diagram of the analysis phase using the periodization method 
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the 15th harmonic. Applying interpolation around borders as 
previously exposed the results can be greatly improved, as 
shown in Figure 7f, with values falling from -39 to -80 dB, 
good enough for practical uses. 

• OTHER HARMONICS THAN FUNDAMENTAL: Figure 
7g shows the comparison between the contribution from fun-
damental and higher harmonics (2nd, 4th and 8th), with and 
without pitch estimation errors of 20 cents. Clearly, the con-
tribution increases significantly for higher harmonics. For in-
stance, the 8th harmonic estimated with a bias of 20 cents 
contributes to the surrounding ten harmonics with more than 
-40dB. Overlapping around the borders improve the results, 
as shown in Figure 7h, increasing significantly the contribu-
tion decay. It is important to mention that most common mu-
sical sounds and human voice tend to present spectra with 
energy decaying along frequency. Therefore, the observed 
increase of inter-harmonic contribution along frequency is 
not that relevant for achieving good results. 

2.3. Sinusoidal modeling 

Figure 3 shows the spectra obtained from a synthetic signal using 
those methods and a regular narrow-band STFT. The input signal 
consists on ten sinusoids whose frequencies are multiples of the 
lower one. The fundamental frequency increases along time, as 
can be seen in the top view (a) where periods on the left are 
longer than those on the right. (b) shows the waveform resulting 
of repeating the period in the center, whereas in (c) we see the 
upsampled period. Finally, (d) and (e) show respectively the 
amplitude and phase spectra of the previous signals, where (a) is 
drawn with dashed lines, (b) with solid lines, and (c) with thick 
solid lines. The STFT of (a) presents clear amplitude peaks only 
at the lower frequency harmonics, getting noisy for higher fre-
quencies due to the non-stationary nature of the analyzed signal. 
Instead, the STFT of (b) presents clear peaks at expected har-
monic frequencies, but also above 5Khz where no harmonics are 
present. This is explained by the inter-harmonic energy contribu-
tions previously discussed. On its turn, the STFT of (c) has one 
bin per harmonic with values matching those of (b). The exact 
harmonic parameters values are displayed as circles. Clearly, (b) 
and (c) STFTs approximate much better the input signal than (a). 
For instance, (a) shows bias of up to -10 dB and 0.5 radians for 
harmonics above 3Khz. 

With the two methods presented in section 2.1 the resulting 
audio signals are purely periodic. Therefore, their spectra can be 
perfectly represented by a set of stationary sinusoids. It is then 
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straightforward to use a sinusoidal model for the proposed wide-
band analysis. Moreover, since the harmonic frequencies depend 
only on the estimated fundamental period, there is no need to use 
any complex method for building the harmonic trajectories along 
consecutive periods, but simply to connect the harmonics with 
the same index.  

3. PROCESSING FRAMEWORK 

The proposed method can be divided in three main phases, 
namely analysis, transformation and synthesis, as shown in Fig-
ure 2. In the analysis phase, the input signal is segmented into 
consecutive periods which are modeled with a set of sinusoids as 
already explained in the previous section. In the following sub-
sections we detail both transformations and synthesis phases, and 
then discuss how the proposed method is adapted to the case of 
the human voice and to unvoiced signals. 

3.1. Synthesis 

Figure 4 and Figure 5 show the steps involved in the synthesis 
phase using the periodization method. For each mth period to 
synthesize, its spectrum ( )j

rY e Ω  is rendered by convolving the 
synthesis window transform ( )mW f′  by each of the harmonics. 
It is sufficient to use a small number of coefficients per har-
monic, as proposed in [6]. Next, an IFFT is applied to obtain the 
time domain signal ( )my n , consisting of a windowed sequence 
of identical periods at the synthesis pitch rate mT ′ . Then this 
signal is windowed by ( ) ( )m mh n w n′  obtaining ( )mp n′ , where 

( )mw n′  is the window whose transform was used in the sinusoi-

dal rendering process, and ( )mh n  is the synthesis overlapping 
window. All the synthesis periods are then overlapped according 
to the synthesis period onset sequence and the signal ( )y n

 
is 

obtained.  
It is also possible to use an analogous synthesis method to the 

upsampling process used in the analysis. In that case each spec-
tral bin of ( )j

rY e Ω  corresponds uniquely to one harmonic, and 
the IFFT computes the upsampled version of the synthesis pe-
riod, ( )my n . Therefore, ( )my n  has to be downsampled to the 
analysis sampling rate sf , and then overlapped with the other 
synthesized periods following the synthesis period onset se-
quence. 

Both methods are equivalent and generate almost the same 
signal, with insignificant differences introduced by the down-
sampling and sinusoidal rendering steps. Although the second 
method is usually more efficient in terms of computation, when-
ever inharmonic components are being synthesized the first 
method is the most efficient one. On the other hand, it’s impor-
tant to point out that the input signal cannot be perfectly recon-
structed when no transformations are applied due to the overlap-
ping applied at the borders of the analysis window (see Figure 1). 
However, informal listening tests have shown that in most cases 
the synthesized signal is indistinguishable from the original one. 

3.2. Transformations 

There are two main types of transformations, the ones related to 
the period onset sequence and the ones related to each individual 
period, as depicted in Figure 2. Thinking of the traditional 
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source-filter voice model, we could say that the former group of 
transformations are related to the voice source whereas the latter 
to the vocal tract. Traditional transformations such as time-
scaling and pitch transposition involve scaling the period onset 
sequence, and repeating, removing or interpolating periods, in the 
same way as done in typical time-domain PSOLA techniques. 
However, pitch transposition also requires modifying the har-
monic components of each period in order to match the target 
fundamental frequency, although phase continuation is not 
needed since consecutive period onsets are distant by one period. 

Conversely, timbre transformations work as in typical fre-
quency-domain techniques, by modifying the individual fre-
quency components as depicted in Figure 5. Initially, the spectral 
envelope is computed by interpolation of the estimated sinusoids 
and properly modified. Preferably both spectral and phase enve-
lopes should be modified by the same scaling function, with the 
aim of preserving the resonance-to-phase relationship. If the 
phase envelope is interpolated then the inherent phase wrapping 
has to be considered. Finally, synthesis sinusoidal components 
are computed out of the target fundamental frequency and both 
timbre and phase envelopes. Inharmonic components can be 
synthesized as well, although require to propagate phase so to 
avoid discontinuities in the synthesized signal. Figure 5 shows an 
example of transposition to a lower pitch and timbre stretching. 
Note that the phase envelope is not interpolated but a mapping 
function is used to determine which input harmonic’s phase is 
used for each output harmonic. 

3.3. Voice signals. 

In a simplified model of voice production, a train of impulses 
(i.e. glottal pulses) at the pitch rate excites a resonant filter (i.e. 

the vocal tract). According to this model, a speaker or singer 
changes the pitch of his voice by modifying the rate at which 
these impulses occur. An interesting observation is that the shape 
of the time-domain waveform signal around the impulse onsets is 
roughly independent of the pitch, but it is dependant mainly on 
the impulse response of the vocal tract. This characteristic is 
called shape invariance. In terms of frequency domain, this shape 
is related to the amplitude, frequency and phase values of the 
harmonics at the impulse onset times. Thus, if a given transfor-
mation method is able to preserve the phase relation at analysis 
frame times, then it is desirable (in order to obtain the best proc-
essing quality) that analysis times match those impulse onsets 
mentioned before. In order to illustrate this issue, one representa-
tive example is shown in Figure 6. Left and middle figures corre-
spond to spectra obtained when the analysis window is centered 
at the voice pulse onset and between two pulse onsets. In the 
middle figure new harmonics (in gray) are added to perform one 
octave down transposition. In the right figure, it is shown the 
spectrum of the transformed signal with the window centered at 
the voice pulse onset. The resulting doubled phase alignment 
adds an undesired roughness characteristic to the voice signal. 
Besides, the waveform doesn’t have one voice pulse per period 
as expected, but two with strong amplitude modulation 

Therefore, as depicted in Figure 1, voice pulse onsets are de-
termined before performing the wide-band analysis, so that the 
analyzed periods are centered on them. Different algorithms 
detect voice pulse onsets relying on the minimal phase character-
istics of the voice source (i.e. glottal signal) (e.g. [7]). Following 
this same idea we proposed in [8] a method to estimate the voice 
pulse onsets out of the harmonic phases based on the property 
that when the analysis window is properly centered, the un-
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wrapped phase envelope defined by the harmonics is nearly flat 
with shifts under each formant, thus being close to a maximally 
flat phase alignment (MFPA) condition. This is the method we 
have used in our experiments. 

On the other hand it is interesting to point out that both har-
monic and aspirated noise components present in voiced utter-
ances are represented exclusively by sinusoids. Actually, since 
the analysis is performed pitch-synchronously, the noise pro-
duces differences between consecutive periods that result into 
amplitude and phase modulations of the detected harmonics. 

3.4. Unvoiced signals 

Unvoiced signals can be processed as if they were voiced by 
assigning an arbitrary fundamental frequency. However, even 
when no transformations are applied, the analysis fundamental 
frequency can be slightly perceived in the synthetic signal. This 
can be avoided and a perfect reconstruction achieved by using a 
shorter period value for the period onset sequence than for the 
period analysis, so that from the signal obtained by the IFFT only 
the section not affected by the border overlapping is used to 
compute the output signal. 

4. CONCLUSIONS 

We have presented in this paper a method for wide-band sinusoi-
dal-based modifications of harmonic signals, which combines the 
control of the period sequence typical of time-domain techniques 
with the flexibility of transformation found in frequency-domain 
techniques. The proposed method has been implemented as a 
real-time VST plug-in. Informal listening test show that the 
sound quality of the algorithm is at least as good as that of state-
of-the-art PSOLA methods. Audio examples can be obtained 
from [9]. As future work we plan to perform a perceptual test to 
compare the sound quality of the proposed algorithm with other 
techniques. Besides, we plan to compare the estimation of non-
stationary harmonic sinusoidal components with state-of-the-art 
methods such as the one in [10]. Finally, another interesting idea 
to explore is to separate and independently transform harmonics 
and surrounding noise by considering the former as slow varying 
signals compared to the latter. 
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Figure 7: Inter-harmonic contribution 
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