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Introduction

sinusoidal modeling
sound signal represented as a sum of sinusoids
controlled in amplitude and frequency (or phase)

(short-term) stationarity hypothesis
amplitude and frequency parameters considered as constant

within one (short-time) analysis frame

→ numerous (STFT-based) analysis methods. . .
parabolic interpolation [Smith & Serra (ICMC 1987)]

spectral reassignment [Auger & Flandrin (IEEE Trans. SP 1995)]

derivative algorithm [Desainte-Catherine & Marchand (JAES 2000)]

[Marchand (DAFx 1998)] presented at the first DAFx edition
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Introduction

sinusoidal modeling
sound signal represented as a sum of sinusoids
controlled in amplitude and frequency (or phase)

non-stationary case
linear variation of the (log-)amplitude and frequency

(one step further in the Taylor expansion of these parameters)

→ fewer analysis methods, generalizations of the preceding
quadratic interpolation [Abe & Smith (ICASSP 2005)]

spectral reassignment [Röbel (ICMC 2002), Hainsworth (2003)]

derivative algorithm
[Marchand & Depalle (DAFx 2008)] currently presented. . .
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Sinusoidal Modeling

[McAulay & Quatieri (IEEE Trans. ASSP 1986)]
[Serra & Smith (Computer Music Journal 1990)]

The (analytic) audio signal s is given by:

s(t) =
P∑

p=1

ap(t) exp(φp(t)) with
dφp

dt
(t) = ωp(t)

where P is the number of partials.

The functions ap, ωp, and φp are the instantaneous
amplitude, frequency, and phase of the pth partial, respectively.
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Trajectories of the Partials

frequency

time

amplitude

time

Frequencies and amplitudes, as functions of time,
of the partials of an alto saxophone sound, during ≈ 1.5s
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Non-Stationary Case

For one partial (P = 1), for one frame (centered on time t = 0):

s(t) = exp


(
λ0 + µ0t

)︸      ︷︷      ︸
λ(t)=log(a(t))

+j
(
φ0 + ω0t +

ψ0

2
t2

)
︸                 ︷︷                 ︸

φ(t)


→ How to estimate the instantaneous parameters (at t = 0)?

amplitude exp(λ0) = a0

amplitude modulation µ0

phase φ0

frequency ω0

frequency modulation ψ0

(NB: the stationary case is when µ0 = ψ0 = 0)
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Pick Picking

Short-Term Fourier Transform

Sw (t , ω) =
∫ +∞

−∞

s(τ)w(τ − t) exp (−jω(τ − t)) dτ

w

s

t
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Analysis Window w (e.g. Hann window)

w with finite time support and band-limited in frequency:
for one peak corresponding to one specific partial,
the influence of the other partials can be neglected
(in the general case when P > 1)

Sw (0, ω) = a0e jφ0︸︷︷︸
s0

·Γw (ω0 − ω, µ0, ψ0) where

Γw (ω, µ0, ψ0) =
∫ +∞

−∞

w(t) exp
(
µ0t + j

(
ωt +

ψ0

2
t2

))
dt

(NB: in the stationary case where Γw (ω0 − ω,0,0) =W (ω − ω0),
the peak corresponds to the spectrum W of the analysis window

centered on frequency ω0 and scaled by the complex amplitude s0)
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Reassignment Method

uses the derivatives of the window

ω̂0 = ω̂(0, ωm) where ω̂(t , ω) = ω − =
(
Sw′(t , ω)
Sw (t , ω)

)
︸          ︷︷          ︸

−∆ω

µ̂0 = µ̂(0, ωm) where µ̂(t , ω) = −<
(
Sw′(t , ω)
Sw (t , ω)

)

ψ̂0 = ψ̂(0, ωm) where ψ̂ =
=

(Sw′′

Sw

)
− =

((Sw′

Sw

)2
)

<

(
StwSw′

Sw
2

)
−<

(Stw′

Sw

)
finally â0 =

∣∣∣∣∣∣ Sw (ωm)

Γw (∆ω, µ̂0, ψ̂0)

∣∣∣∣∣∣ and φ̂0 = ∠

(
Sw (ωm)

Γw (∆ω, µ̂0, ψ̂0)

)
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Frequency ω̂0 and Amplitude Modulation µ̂0

uses the derivatives of the signal
(the derivative of an exponential is an exponential. . . )

s′(t) =
(
µ0 + j(ω0 + ψ0t)

)
· s(t)

jψ0t is an odd function =⇒ its spectrum is real. . .

ω̂0 = =

(
S′w
Sw

(ωm)
)

moreover, its spectrum is null at frequency zero. . .

µ̂0 =<

(
S′w
Sw

(ω̂0)
)

(NB: in theory, equivalent to spectral reassignment estimators)
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Frequency Modulation ψ̂0

with the second derivative. . .

s′′(t) = (µ0
2
−ω0

2
−2ω0ψ0t−ψ0

2t2)+ j(ψ0+2µ0ω0+2µ0ψ0t) ·s(t)

using the same kind of properties. . .

ψ̂0 = =

(
S′′w
Sw

(ω̂0)
)
− 2µ̂0ω̂0.
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Amplitude â0 and Phase φ̂0

finally

â0 =

∣∣∣∣∣∣ Sw (ω̂0)

Γw (0, µ̂0, ψ̂0)

∣∣∣∣∣∣
φ̂0 = ∠

(
Sw (ω̂0)

Γw (0, µ̂0, ψ̂0)

)
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Discrete Derivative

practical problem:
How to get the derivatives s′ from the (discrete-time) signal s?

s′(t) = lim
ε→0

s(t + ε) − s(t)
ε

a bad idea: approximate it by the difference (ε = 1/Fs)
a good idea: use the ideal differentiator filter. . .

h[n] = Fs
(−1)n

n
for n , 0, and h[0] = 0

. . . windowed by the Hann window (of length 1023)
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Discrete Derivative
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Experiments

3 methods tested:
reassignment (R) (the champion)
2 flavors of the derivative (D) (the challenger)

TD: theoretic derivative (derivative known analytically)
ED: estimated derivative (with the differentiator filter h)

(frame size N = 511, sampling frequency Fs = 44100Hz)

→ estimation precision for each parameter,
compared to the Cramér-Rao Bound (CRB)
(the best performance achievable by an unbiased estimator),
in presence of Gaussian white noise with various SNRs;
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Experiments

with 5 parameters to test. . .
ω0: 99 frequencies linearly distributed in (0,3Fs/8)Hz,
φ0: 9 phases linearly distributed in the (−π,+π) interval,
µ0: either 0 (stationary case) or in [−100,+100] (AM),
ψ0: either 0 (stationary case) or in [−10000,+10000] (FM),
amplitude a0 set to 1.

(conditions similar to [Betser et al. (IEEE Trans. SP 2008)], where
the reassignment performs best, at least regarding frequency estimation)
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Results: Amplitude â0
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D performs better in the non-stationary case
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Results: Amplitude Modulation µ̂0
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Results: Phase φ̂0

-14

-12

-10

-8

-6

-4

-2

0

-20 0 20 40 60 80 100

va
ri

an
ce

 o
f 

th
e 

er
ro

r 
(l

og
10

 s
ca

le
)

signal-to-noise ratio (dB)

estimation of the phase

R
TD
ED

CRB

-12

-10

-8

-6

-4

-2

0

-20 0 20 40 60 80 100

va
ri

an
ce

 o
f 

th
e 

er
ro

r 
(l

og
10

 s
ca

le
)

signal-to-noise ratio (dB)

estimation of the phase

R
TD
ED

CRB

D performs better in the non-stationary case
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Results: Frequency ω̂0
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although R and ED perform equally, TD indicates that
ED can beat R in the stationary case, with a better derivative
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Results: Frequency Modulation ψ̂0
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R performs better in the non-stationary case
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Conclusion

Summary:

the derivative method is generalized to the non-stationary case,

computing the discrete derivative is not a problem anymore,

the derivative method outperforms the reassignment method in
all cases except for the estimation of the frequency modulation.

Future Work:

understand why the reassignment method is better in this case,

study the behavior of the methods in more complex AM/FM
conditions (such as sinusoidal tremolo/vibrato),

propose a very fast algorithm for the new method. . .
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