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linear variation of the (log-)amplitude and frequency
(one step further in the Taylor expansion of these parameters)
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— fewer analysis methods, generalizations of the preceding
@ quadratic interpolation [Abe & Smith (ICASSP 2005)]
@ spectral reassignment  [Rébel (ICMC 2002), Hainsworth (2003)]
@ derivative algorithm
[Marchand & Depalle (DAFx 2008)] currently presented. ..
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Sinusoidal Modeling
[ ]

Sinusoidal Modeling

[McAulay & Quatieri (IEEE Trans. ASSP 1986)]
[Serra & Smith (Computer Music Journal 1990)]

The (analytic) audio signal s is given by:

- L dop
s(t) =) ap(t) exp(p(t) with —2(t) = wp()
p=1

where P is the number of partials.

The functions ap, wp, and ¢, are the instantaneous
amplitude, frequency, and phase of the p" partial, respectively.
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Trajectories of the Partials
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Frequencies and amplitudes, as functions of time,
of the partials of an alto saxophone sound, during =~ 1.5s
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Non-Stationary Case

For one partial (P = 1), for one frame (centered on time t = 0):

s(t) = exp|(Ag + uot) +j (qbo + wot + %tz)
—_—
A(t)=log(a(t))
o(b)
— How to estimate the instantaneous parameters (at t = 0)?

@ amplitude exp(Ag) = ag
@ amplitude modulation Ho
@ phase ®o
@ frequency wo
@ frequency modulation Yo

(NB: the stationary case is when ug = 1o = 0)
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Sinusoidal Analysis
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Pick Picking

Short-Term Fourier Transform

Sw(t,w) = f+°° s(t)w(t — t)exp (—jw(t — 1)) dt

(o]

Amplitude
o o o

0 5000 6000 7000 8000 9000 10000 11000
Frequency (H2)

using local maxima m of short-term magnitude spectrum
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Analysis Window w (e.g. Hann window)

w with finite time support and band-limited in frequency:
for one peak corresponding to one specific partial,

the influence of the other partials can be neglected

(in the general case when P > 1)

Sw(0, w) = aye® Ty(wo — w, 1o, Po) Where

\-\/-_/
So

+00

IT'w(w, to, Yo) = f w(t) exp (yot +j(a)t + %tz)) dt

(NB: in the stationary case where I',(wo — w, 0,0) = W(w — wy),
the peak corresponds to the spectrum W of the analysis window
centered on frequency wy and scaled by the complex amplitude sp)
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uses the derivatives of the window

Sw' (t, a))
Sw(t, )
———
_Am

SW’(tI w)
Sw(t, w)

@9 =®0,wm) where ot,w)=w-3 (

fio = (0, wm) where [(t,w) = (
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Reassignment Method

@

o

N

Yo = P(0,wm) where ¢ =

=00,wm) where o(t,w)=w-3 (

uses the derivatives of the window

Sw (t, w)
Sw(t, w)

A

= [1(0,wm) where [(t,w)= (

: 3(%)-3((%))
)
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o

N

Yo

finally

uses the derivatives of the window

= »(0,wm) where o(t,w)=w-J (\SSW((:Z))))
)
Ay
= ((0,wm) where fi(t,w) = (SSVV:((:Z))))

N

= {(0,wm) where ¥ =

_ Sw(ajm) _ and (2)0 y ( Sw(ajm) _ )
l—'W(Awl Ho, 1zbo) 1—‘W(Aa)/ Ho, 1;DO)
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Frequency @, and Amplitude Modulation fig

uses the derivatives of the signal
(the derivative of an exponential is an exponential. . .)

s'(t) = (po + j(wo + Yot)) - s(1)
JYot is an odd function = its spectrum is real. ..

W=7 (2: (C‘)m))

moreover, its spectrum is null at frequency zero. ..

S/
fo =R (—:(@o))

(NB: in theory, equivalent to spectral reassignment estimators)
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Frequency Modulation ¢

with the second derivative. . .
s”(t) = (uo® — wo? —2woPot — Yo t2) +j(Yo +2owo + 2o Yot) - (1)
using the same kind of properties. . .

" Sy o
Yo=3 (S (wo)) = 2[o@o.
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Amplitude &, and Phase ¢

finally
Sw(d)O)

FW(OI [:lO/ I1[}0)

A SW(CDO) )
¢O ‘ (rw(or ‘aOI LﬁO)

& =
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Discrete Derivative

practical problem:
How to get the derivatives s’ from the (discrete-time) signal s?
s(t) = lim s(t + 2 - (1)

e—0
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Discrete Derivative

practical problem:
How to get the derivatives s’ from the (discrete-time) signal s?

s(t) = lim s(t+¢€)—s(t)
- €

e—0

@ abad idea: approximate it by the difference (¢ = 1/F;)
@ a good idea: use the ideal differentiator filter. . .

1"

hin] = Fo—

forn#0, and h[0] =0

...windowed by the Hann window (of length 1023)
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Discrete Derivative

approximation of the first derivative

ofF X;éxxxx****xxxxxx*xxxxxxx**xxx_
*;{XX
* X

*
% *

maximal relative error (log10 scale)

0F f difference  x ]
Idifferen\iator .

: i 115 I2 25 3
frequency of the sinusoid (rad/sample)

(high frequencies — above 3/4 Nyquist — are problematic)
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Experimental Results
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Experiments

3 methods tested:

@ reassignment (R) (the champion)
@ 2 flavors of the derivative (D) (the challenger)

o TD: theoretic derivative (derivative known analytically)
o ED: estimated derivative (with the differentiator filter h)

(frame size N = 511, sampling frequency Fs = 44100Hz)

— estimation precision for each parameter,

compared to the Cramér-Rao Bound (CRB)

(the best performance achievable by an unbiased estimator),
in presence of Gaussian white noise with various SNRs;
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Experiments

with 5 parameters to test. . .
@ wo: 99 frequencies linearly distributed in (0, 3F5/8)Hz,
@ ¢o: 9 phases linearly distributed in the (-7, +m) interval,
@ Lo: either O (stationary case) or in [-100, +100] (AM),
@ Yy: either O (stationary case) or in [-10000, +10000] (FM),
@ amplitude ag setto 1.

(conditions similar to [Betser et al. (IEEE Trans. SP 2008)], where
the reassignment performs best, at least regarding frequency estimation)
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estimation of the amplitude estimation of the amplitude
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variance of the error (log10 scale)
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Results: Amplitude Modulation (i
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Results: Phase ¢,

estimation of the phase estimation of the phase

variance of the error (log10 scale)
variance of the error (logl0 scale)

2 W 6 2 % 0
sianal-to-noise ratio (dB) sianal-to-noise ratio (dB)

D performs better in the non-stationary case
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Results: Frequency &

estimation of the frequency estimation of the frequency

variance of the error (log10 scale)
variance of the error (logl0 scale)

E) ) E)
sional-to-noise ratio (dB)

E) &
sional-to-noise ratio (dB)

although R and ED perform equally, TD indicates that
ED can beat R in the stationary case, with a better derivative
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Results: Frequency Modulation 1,130

estimation of the frequency modulation estimation of the frequency modulation

variance of the error (log10 scale)
]
variance of the error (log10 scale)

EY ) &0 2 w0 &
sional-to-noise ratio (dB) sianal-to-noise ratio (dB)

R performs better in the non-stationary case
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Conclusion

Summary:
@ the derivative method is generalized to the non-stationary case,
@ computing the discrete derivative is not a problem anymore,

@ the derivative method outperforms the reassignment method in
all cases except for the estimation of the frequency modulation.

Future Work:
@ understand why the reassignment method is better in this case,

@ study the behavior of the methods in more complex AM/FM
conditions (such as sinusoidal tremolo/vibrato),

@ propose a very fast algorithm for the new method. ..
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