
Proc. of the 11
th

 Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

 DAFX-1

SPECTUTILS, AN AUDIO SIGNAL ANALYSIS AND VISUALIZATION TOOLKIT FOR

GNU OCTAVE

TEMPLATES FOR DAFX-08, FINLAND, FRANCE TEMPLATES FOR DAFX04, NAPLES, ITALY

Kai Lassfolk Jaska Uimonen

Department of Musicology

University of Helsinki

Nokia Devices

Helsinki, Finland

Helsinki, Finland Jaska.Uimonen@nokia.com

Kai.Lassfolk@helsinki.fi

ABSTRACT

Spectutils is a GNU Octave toolkit for analyzing and visualizing
audio signals. Spectutils allows to display oscillograms, FFT

spectrograms as well as pitch detection graphs. Spectutils can
best be characterized as a user interface for GNU Octave, which
integrates signal analysis and visualization functionality into
dedicated function calls. Therefore, signal analysis with Spectu-

tils requires little or no prior knowledge of Octave or MATLAB
programming.

1. INTRODUCTION

Spectutils contains a set of GNU Octave [1] functions and Unix-

style command line utility programs. The main Octave functions
are intended for displaying signal analysis plots from sound files.
Dedicated Octave functions are provided for oscillograms, 2D
spectrum plots, 3D spectrograms, sonograms, and 2D pitch de-
tection plots. The command line programs are intended for pre-

processing sound files for use with the Octave functions. Several
versions of Spectutils have been already released for public dis-
tribution. This paper describes the new Spectutils version 1.0,
which is written specifically for Octave 3.0.

Spectutils is being developed with emphasis on musicologi-
cal applications. There is a growing interest in applying spectrum
analysis for studying musical performances. Therefore, Spectutils
is intended also for users with little or no programming experi-

ence.

Being based on GNU Octave, Spectutils has a text-based user
interface. The initial learning phase is therefore somewhat more
difficult compared to graphical user interface (GUI) based tools.

On the other hand, repeated analysis and handling of large
amounts of input data is considerably easier than with a typical
GUI-based program. Programmability provided by Octave is
another advantage and enables automation of routine tasks.

Spectutils originally started as an attempt to provide con-
venient FFT spectrogram display capability for Octave version
2.0. Octave’s 3D capabilities were at that stage considerably less
convenient than those of MATLAB [2]. In particular, earlier

Octave versions were heavily dependent on Gnuplot [3]. One of
the main purposes of Spectutils was to hide the Gnuplot-specific
details from the user and to provide a simple user interface for
creating spectrograms. Similarity with MATLAB’s spectrum
analysis functions or optimization of computational efficiency

was not considered crucial. Over time, Spectutils grew into a set
of signal analysis tools.

With version 2.9 and, finally, 3.0, Octave’s 3D plotting was
changed for closer syntactical compatibility with MATLAB. This
also required a major rewrite of Spectutils, released as version

0.9. Octave’s latest versions also provided many helpful addi-
tions regarding sound file support and graphics that were also
included in Spectutils. Despite Octave’s closer MATLAB com-
patibility, Spectutils is not currently compatible with MATLAB.

Spectutils is being developed at the Department of Musicol-
ogy, University of Helsinki. It is distributed under the GNU Gen-
eral Public License (GPL). The software package can be down-
loaded from http://www.music.helsinki.fi/research/spectutils/.

The package includes installation instructions for Linux, Win-
dows, and Mac OS X.

2. OCTAVE FUNCTIONS

Spectutils contains five Octave functions for producing graphical

output: oscgram() for oscillograms, spec2dw() for 2D spectrum
plots, spec3dw() for 3D spectrograms, sonogw() for sonograms,
and hps2dt() for pitch detection. Each of the functions can be
used independently and do not require additional Octave pro-
gramming, unless automation or further customization of the

graphical output is desired.

Most of the Spectutils’ Octave functions use standard signal
processing algorithms included in Octave such as Fast Fourier

Transform (FFT) and Short-Time Fourier Transform (STFT).
However, Spectutils contains an implementation of the Harmonic
Product Spectrum (HPS). The implementation is described in
more detail below.

The analysis functions read the input audio signal directly
from a sound file. The octave functions support multichannel
WAV files including 16-bit and 24-bit integer as well as 32-bit
floating point. Sampling rate, sample encoding, and channel
count are read from the WAV file header. Raw format sound

files are also accepted but restricted to monophonic 16-bit inte-
ger, or either 32-bit or 64-bit floating point data. There, any float-
ing point sampling rate value is allowed. With raw files, both
sampling rate and sampling encoding can be specified as param-

eters for the Octave functions, but may be omitted for 44,1 kHz,
16-bit integer files.

The Spectutils Octave functions are designed to be self-
documenting: By default, each function outputs its parameters

either on the plot axes or in the title text above the graphical plot.
Also date and time information is included in the title text. The
title text may also be suppressed, if desired. Octave’s standard
graphics functions, such as view(), colormap(), and replot(), can

Proc. of the 11
th

 Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

 DAFX-2

be used for adjusting Spectutils plots as well as for avoiding re-
peated STFT analyses of the same signal.

2.1. Oscillograms

Oscillogram display is provided by the oscgram() function. Its
parameters include a sound file specifier, signal offset and dura-
tion (in seconds), as well as an optional comment text string. The

sound file specifier is either a sound file name (as a text string) or
a structure (enclosed in braces) containing the sound file name
and additional parameters. These enable either to select a channel
from a multichannel WAV file (by default, channel 1 is ana-
lyzed) or to specify the sampling rate and sample encoding for-

mat of a raw format sound file (default is 44.1 kHz, 16-bit).
While the syntax for specifying these additional parameters is a
bit cumbersome, in most cases only the sound file name is suffi-
cient and simple function call syntax is maintained.

A sample function call is as follows:

oscgram('flute.wav', 10.4, 3, 'Solo flute.');

It plots an oscillogram of 3 seconds starting from an offset of

10.4 seconds. The input soundfile name is flute.wav and the
comment text ‘Solo flute.’ is added to the plot title.

As a special feature, oscgram() allows to use spline interpola-
tion for smoothing a closely zoomed signal, where a conven-

tional waveform display would appear as a jagged line. Individ-
ual sample values may be optionally displayed with ‘+’ signs on
top of the interpolated “continuous” signal. Spline interpolation
is specified with an additional parameter, supplied after the

comment text string.

2.2. 2D spectrum display

Spec2dw(), the 2D FFT magnitude spectrum function, follows a

similar calling convention to oscgram(). The file specifier is
treated similarly. Also, a signal offset, comment text, and use of
spline interpolation are specified similarly to oscgram(). As a
distinction, the signal duration is replaced by three FFT specific

parameters: number of FFT points, window length (in samples),
and window type (either Hanning, Hamming, or rectangular).
Furthermore, a frequency range for the plot may be specified.
Spec2dw supports both linear and logarithmic display of both
frequency and magnitude axes.

As a special feature, a high frequency weight parameter is
provided for emphasizing high frequencies in the graphical out-
put. The weighting behaves linearly with respect to frequency.

For example, a weight of 100 multiplies the magnitude value of
the spectrum by 100 at fs/2 (i.e. Nyquist frequency), by 50 at fs/4,
25 at fs/8, etc. Weighting is useful in examining the high fre-
quency content of a signal with a linear magnitude axis display
and when a harmonic overtone structure is difficult to examine

with a logarithmic magnitude display due to high frequency noise
components.

Spline interpolation, as in oscgram(), makes it easier to esti-
mate the peaks in the magnitude spectrum. A sample 2D spec-

trum plot using the spline feature is shown in Figure 1. There, the
individual samples are displayed with +-signs along the spline-
interpolated magnitude spectrum graph.

Figure 1: A sample magnitude spectrum plot from

spec2dw().

2.3. 3D spectrograms

The spec3dw() function produces 3D magnitude spectrograms.

Parameters are almost the same as in spec2dw(), additional pa-
rameters being the duration of the spectrogram (in seconds) and a
window increment parameter (in samples) for controlling the
interleaving factor of consecutive FFT windows. Spline interpo-

lation is currently not implemented. Spec3dw also allows 2D
grayscale sonograms to be plotted, although a dedicated function,
sonogw() is provided especially for that purpose.

Spec3dw() uses Octave’s default settings for the viewing an-

gle and color map for 3D plots. These settings may be adjusted
with Octave’s view() and colormap() functions, respectively. A
sample spectrogram (using a black-only color map and a “-80°,

15°” viewing angle) is shown in Figure 2. The respective func-

tion call is as follows:

spec3dw(‘a2007060701-e01-1-2006-vL.wav’,

 6.3, 0.5, 2048, 1024, ‘hanning’, 512,

 20, 5000, 1,

 ‘Violin II/2006, open D-string’);

Figure 2: A sample spec3dw() plot of a bowed violin

open D string.

Proc. of the 11
th

 Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

 DAFX-3

The function call parameters are (listed from left to right) sound
file name, start offset, duration, number of FFT points, window

length, type and increment, low and high frequency limits, high
frequency weight factor and comment text.

With an optional parameter, spec3dw() allows to flip the fre-

quency axis for viewing the spectrogram from a reverse angle.
Also, logarithmic display of both magnitude and frequency is
supported. The syntax of these additional parameters is demon-
strated in the spec3dw() function call below:

spec3dw(‘a2007060701-e01-2-2006-vL.wav’,

 6.3, 0.5, 2048, 1024, ‘hanning’, 512,

 20, 5000, 1,

 ‘Violin I/2006, open D-string’,

 ‘revfreq,magdb,logfreq’);

2.4. Sonograms

The sonogw() behaves almost similarly to spec3dw(). The main

difference is that the spectrogram is displayed as a 2D gray scale
image view instead of a waterfall plot. The parameters are also
basically the same as in spec3dw(). For example, linear and loga-
rithmic display of both frequency and magnitude are supported.

A sample sonogw() plot is shown in Figure 3. The respective
function call is as follows:

sonogw(‘flute.wav’, 0, 15, 2048, 2048,
 ‘hanning’, 512, 20, 12000, 1,

 ‘Solo flute.’, ‘magdb’);

Figure 3: A sample sonogram from sonogw().

By default, sonogw() uses a preset image contrast setting, but
manual control is also provided through additional function call
parameters. Also the high frequency weight parameter, similar to

spec2dw() and spec3dw(), can be used for adjusting the contrast
balance between low and high frequencies.

2.5. 2D harmonic product spectrum

There are a number of methods used to discover the fundamental
frequency of a pitched sound. For a list and description of differ-
ent methods the reader is recommended to refer to the paper by
de la Cuadra et al. [4]. Spectutils includes an implementation of

one of these methods called Harmonic Product Spectrum (here-

after HPS). The HPS method was discovered independently by
both Schroeder and Noll [5] and in recent studies HPS is used for

example to recognize musical instruments [6] and speech [7].

The implementation of HPS uses Fast Fourier Transform
(FFT) to compute the instantaneous frequency content of a

sound. First a segment of digitized sound samples is multiplied
with a window function to smooth the errors in the finite trans-
form. After this the FFT of the frame is computed, absolute
values are taken and the negative frequencies are removed. The
frequency bins are then scaled down by integers from n to N (N

ranging usually from 3 to 5) and the scaled down spectra are
multiplied together (see equation 1).

!

Y f() = S(
f

n
)

n=1

N

" (1)

In this process the possible harmonic components align on top of

the fundamental and the frequency content in the other regions is
reduced. It must be noted, that the method in equation 1 is pre-
sented in [4] and [6], but it differs from the HPS algorithm intro-
duced originally by Schroeder in [5]. Instead of multiplication

Schroeder sums the scaled down spectrums and weights the end
result with a logarithm. Schroeder also states that Noll has used
multiplication, but on the cepstrum domain.

Finally the component with the maximum value is searched

and kept as the estimate of the fundamental pitch (see equation
2).

!

Y
"

=max
i
f

Y (fi){ } (2)

It is also possible to calculate an error value for the fundamental
frequency estimate in each frame. This is usually the relation of
the maximum valued component to the other components in the

frame. Nielsen et al. [6] calculate the relation of the maximum
value to the total energy in the frame and this method is also used
in Spectutils. Zolnay et al. [7] for example calculate a speech
"voicing" value, which is the relation of the maximum valued

FFT bin to the geometric mean of the neighbouring bins.

The HPS algorithm is used in function hps2dt(), which calcu-
lates the HPS of every consecutive Short Time Fourier Trans-
form frame of a sound. This way the complete melody line and

its reliability can be plotted as a function of time. A sample func-
tion call is made as follows:

hps2dt(‘test.wav’, 1.5, 2, 1024, 1024,

 ‘hanning’, 512, 50, 3000, 3

 ‘test figure’, ‘logfreq’);

The function reads from a file “test.wav” from offset 1.5 seconds
a 2 second window. It then computes 1024-point FFT with 1024-
point hanning window (also ‘hamming’ and ‘rectangle’ can be
used) with 512-sample overlap. The frequency scale is limited

into the range 50-3000 Hz and the HPS algorithm is iterated 3
times. The comment “test figure” is printed on the plot and fre-
quency is plotted on a logarithmic scale (if not specified a linear
scale is used). The output can be seen in Figure 4.

Proc. of the 11
th

 Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

 DAFX-4

Figure 4: Fundamental frequency plotted from a 2 sec-

ond clip of a solo viola performance. Upper curve repre-

sents the reliability of the pitch estimate.

3. UTILITY PROGRAMS

Spectutils versions prior to 0.9 were restricted to raw format
sound files. Therefore, a set of command line programs was de-
veloped mainly for converting WAV files to monophonic raw

format. Even with the current WAV file support, the utility pro-
grams are sometimes useful and are thus still included in Spectu-
tils. The file conversion programs are named stripwhdr, st2m,
and cdda2mono. The stripwhdr simply skips the header sections

of an input WAV file and outputs only the contents of audio data
as a raw signal stream. The st2m program converts a 2-channel
raw stereo stream into mono by selecting either its left or right
channel or by calculating either the sum or difference signal of
the two stereo channels.

Cdda2mono is an “audio CD to raw mono sound file” con-
version program. It is implemented as a front end to st2m and the
cdda2wav CD extraction program included in many Linux distri-

butions. Therefore, cdda2mono requires cdda2wav, which re-
stricts its portability.

The program pronsets is a tool that attempts to find and print
the onsets of individual sound events (separated by a pause) from

a raw format sound file. Pronsets was written specifically for
analyzing string instrument tones.

4. CONCLUSION

Spectutils provides a set of tools for analyzing and visualizing

audio files with GNU Octave. Although installation and basic use
of Octave and its support programs (e.g. Gnuplot) requires some
expertise (or help from an experienced user), Spectutils is rea-
sonably easy to learn, especially compared to achieving the same
graphical output by using standard Octave 3.0.

The intension in designing the function call syntax was to
keep the amount of required parameters small. Nevertheless, the
functions allow a high level of control over the analysis process
and the graphical output. The aim was also to allow experienced

users access to as many parameters as possible. The payoff is that
in practice the function calls typically contain extensive lists of
parameters, where the syntax is not particularly intuitive. Fortu-
nately, Octave’s command line memory relieves the user from

repeated typing of these long parameter lists and helps in analyz-
ing large sets of sound files.

Standard MATLAB-style online help texts are included in
the Octave functions and Unix-style “man” pages are included
for the command line programs. Also included is a Finnish lan-

guage HTML-tutorial; an English language translation is being
prepared.

An advantage in using Octave for performing spectral ana-
lyses is its flexibility and programmability. Moreover, processing

of large amounts of sound files is often more convenient than
with graphical interactive user interfaces. A downside is that
Octave is not computationally efficient in handling large data
structures. Especially 3D spectrograms and HPS plots are not
instantaneous even with modern microcomputers.

The graphical output of some of the Octave functions looks
still somewhat unpolished, partly due to Octave itself. Moreover,
support for soundfile formats other than WAV and raw and more

flexible handling of multichannel files would enhance usability.
Future development of both Spectutils and Octave will address
these issues.

5. REFERENCES

[1] http://www.octave.org/, Accessed June 10, 2008.

[2] http://www.mathworks.com/products/matlab/, Accessed

June 10, 2008.

[3] http://www.gnuplot.info/, Accessed June 10, 2008.
[4] P. De la Cuadra, A. Master and C. Sapp, “Efficient Pitch

Detection Techniques for Interactive Music,” in Proceed-

ings of the International Computer Music Conference, Ha-

vana 2001, Sept. 18-22, pp. 403-406.
[5] M. R. Schroeder, “Period Histogram and Product Spectrum:

New Methods for Fundamental-Frequency Measurement,”

in The Journal of the Acoustical Society of America, Vol-

ume 43, Number 4, pp. 829-834, April 1968.
[6] A. B. Nielsen, L. K. Hansen and U. Kjems, “Pitch Based

Sound Classification,” in Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing,

Toulouse, France, May 14-19, 2006, pp. 788-791.
[7] A. Zolnay, R. Schlüter and H. Ney, “Extraction Methods of

Voicing Feature for Robust Speech Recognition,” in Proc.

European Conference on Speech Communication and Tech-

nology, Vol. 1, Geneva, Switzerland, September 2003, pp.

497-500.

