Modeling of Psychoacoustics and Auditory Perception: How Far Can We Go?

Matti Karjalainen

Helsinki University of Technology
Laboratory of Acoustics and Audio Signal Processing
Espoo, Finland

This presentation is available in:

www.acoustics.hut.fi/~mak/ICADkeynote.pdf

For refs, see also: www.acoustics.hut.fi/publications

CONTENTS

- Introduction and motivation
- Psychoacoustics and auditory functions
- Computational auditory modeling
- Modeling of basic psychoacoustic features
- Binaural modeling and spatial hearing
- Advanced modeling and CASA
- Applications of auditory modeling
- What cannot be done (yet or ever)?
- Future challenges
MOTIVATION

• Computational modeling of how we hear and perceive sounds is a target of active research because:
 – It adds to our knowledge on human auditory functions by enabling the testing of theories on complex auditory functions
 – It is a key enabling approach to new applications in audio, speech, and multimedia
 – Dream of advanced ”artificial listener”

FRAMEWORKS for MODELING Communication by Sound and Voice

• Sound source modeling
 – physical modeling

• Signal modeling
 – channel modeling and DSP

• Listener modeling
 – auditory modeling
HEARING RESEARCH

• Physiology of hearing
 – Physically/chemically measurable (objective) properties of hearing
• Psychoacoustics (auditory psychophysics)
 – Subjective responses to objective stimuli
• Cognitive properties of hearing
 – High-level functional properties of hearing

PERIPHERAL vs. CENTRAL HEARING

• Auditory periphery
 – Relatively well known
 – Basic properties easy to model
• Central auditory system
 – Relatively weakly known
 – Difficult to model
ICAD’01

Psychoacoustics Concepts: MASKING

- Frequency masking
 - Spreading of masking effect of a sound component in the frequency domain
 - More prominent upwards in frequency

- Temporal masking
 - Spreading of masking in the time domain
 - More prominent forward in time (lasts up to 200 ms)

ICAD’01

Psychoacoustics Concepts: PITCH

- Pitch = subjective sensation of sound on low/high scale
 - Relation to frequency not linear, rather logarithmic-like
 - ERB (Equivalent Rectangular Bandwidth) scale theoretically best motivated
 - Bark scale technically most frequently used
Psychoacoustics Concepts: LOUDNESS

- **Loudness**
 - Unit: 1 sone
 - 1 sone = 40 dB sine at 1 kHz
- **Loudness level**
 - Logarithmic measure
 - Unit: 1 phone
- **Wideband loudness**
 - Each critical band contributes equally to total loudness

COMPUTATIONAL AUDITORY MODELING

- **Physiological models**
 - Goal: accurate simulation of physiological details
- **Psychoacoustical (perceptual) models**
 - Modeling of results of psychoacoustical facts and theories
- **Functional (hypothetical) higher level models**
 - Any potentially useful algorithms simulating auditory functions
- **Cognitive models**
 - Modeling cognitive processes in auditory perception
- **Simplified models for technical applications**
 - Mixtures of auditory, signal, and source modeling
AUDITORY SPECTRUM THROUGH FFT

- A typical frequency-domain auditory spectrum computation principle
 - Frequency domain properties (particularly steady-state loudness) can fairly easily be modeled accurately
 - Zwicker’s model
 - Moore’s model
 - Problem: temporal properties not easily modeled accurately

EXAMPLES OF SIMPLE AUDITORY SPECTRA

- Sine wave (a)
 - Shows the spreading of excitation pattern for sine wave of 400 Hz
- White noise (b)
 - Shows the frequency sensitivity curve of the auditory system
FILTERBANK-BASED AUDITORY MODELS

- Filterbank models of peripheral hearing
 - Bandpass filters simulate the frequency selectivity (critical bands) of the inner ear (basilar membrane and hair cells)
 - Half-wave rectification in each channel by hair cell neural firings
 - Neural firings (statistically) synchronized up to about 1-3 kHz
 - Adaptation of firing rate after onset
 - Temporal integration (lowpass filtering) in loudness formation and temporal masking

GAMMATONE FILTERBANKS

Temporal and magnitude response of a filterbank channel

\[g(t) = at^{n-1}e^{-2\pi f_c t} \cos(2\pi f_c t + \phi) \]
NEURAL ADAPTATION

Neural adaptation model by Dau et al
Automatic gain control feedbacks used

EXAMPLE OF TEMPORAL PROCESSOR

• Neural adaptation, temporal integration, and temporal masking model (Karjalainen 1996):
 – Neural feedback model
 – Adaptation (AGC) in firing rate simulation
 – Loudness (level) computation
 – Temporal masking effect
 – Temporal integration and firing rate adaptation shown to be complementary functions
PERIODICITY (PITCH) ANALYSIS

- Periodicity analysis model (Meddis)
 - Bandpass filterbank + half-wave rectification + lowpass
 - Periodicity analysis in each critical band by autocorrelation
 - Summary autocorrelation function (SACF) a good periodicity indicator in many cases
 - Valid only at low frequencies (< 1kHz)

MULTIPITCH ANALYSIS

- Enhanced SACF in two channels (Tolonen & Karjalainen 2000)
 - Only two channels used in SACF computation (below and above 1 kHz)
 - Enhanced SACF (= ESACF) for better resolving multiple pitches by removing periodic and negative peaks in autocorrelation function
 - Can resolve up to 3-5 simultaneous harmonic sounds
 - ESACF example mixture of 3 harmonic sounds (a musical chord):
ICAD’01

SOURCE SEPARATION (example)

• Separation of simultaneous vowels (Karjalainen & Tolonen 2000)
 – Multipitch analysis applied to find pitch values of two or more vowels
 – Iterative technique can be used to improve multipitch analysis
 • Pitches are removed one by one from the mixture
 – Separated vowel spectra estimated (for 2 vowels)

ICAD’01

REVERBERATION VS. AUDITORY MODELING

Quality of late reverberation vs. modal density (Karjalainen & Järveläinen 2001)

• How many modes per critical band needed for perfect reverberation (or random noise)?

• How the auditory system resolves or analyzes a mixture of modes?

• Any perceivable periodicity higher in level than about -30 dB in a critical band envelope signal may degrade or color reverberation
Applications: AUDIO CODING

- Audio coding (such as MPEG-nn) is
 - probably the most important application so far utilizing auditory (perceptual) models
 - based on coding only auditorily relevant and non-redundant information of audio signals: data rate reduction about 10:1

Applications: SOUND QUALITY ESTIMATION

- Objective sound quality measures to correspond subjective perception must be based on auditory (perceptual) models
- Perceptual sound quality models can be applied to many problems, (although quite differently):
 - Quality of audio and speech systems
 - Sound quality of performing spaces, musical instruments, etc.
 - Noise quality (annoyance, disturbance), product sound quality
- Example: auditory principle for audio sound quality (Karjalainen 1981-85)
BINAURAL AUDITORY MODELING

- In binaural (two-ear) listening, modeling of:
 - Sound source direction
 - Sound source distance
 - Binaural loudness, timbre, etc.
- Perceived direction is based primarily on:
 - Interaural time difference (ITD)
 - Interaural level difference (ILD)
 - Spectral cues
- Binaural auditory modeling less developed than modeling of monaural properties, although basic ideas have existed since 1940’s (Jeffress)

BINAURAL AUDITORY MODEL (Example)

- Computational modeling of binaural hearing has turned out to be successful, e.g., in amplitude-panned sound reproduction (Pulkki et al)
- ITD estimated from auditory interaural cross-correlations
- ILD estimated left-right ear signal levels in critical bands
- ITD and ILD features can be combined to perceived direction by various ways (table lookup, neural nets)
- These simple models are successful as far as the precedence effect does not have to be taken into account
PRECEDENCE EFFECT MODELING

- Precedence effect
 - Repetitions of a sound within 1 – 30 ms after initial version don’t affect perceived source direction (dominance of first wavefront)
 - No essential precedence effect found for example for timbre
 - Precedence effect is probably a mixture of high- and low-level processes

Model proposed by Zurek

AUDITORY ANALYSIS OF SOUND FIELD

- Auditory modeling applied to room and concert hall responses (Lokki & Karjalainen 2000)
 - Auditory spectrogram (time-frequency plot) of room impulse response
 - Directional information, such as lateral or front-back 'spectrogram'
FREQUENCY-WARPED DSP vs. AUDITORY MODELING

- We have shown that frequency-warped DSP techniques are often an efficient and straightforward way of including basic auditory features in traditional signal processing algorithms (Härmä et al 2000).
- Frequency warped techniques are based on replacing unit delays by first-order allpass filters.
- By proper parameters, warping makes a very good match to the Bark scale (linear Hz scale mapped to Bark scale, Smith & Abel).

AUDITORY SCENE ANALYSIS AND CASA

- ASA attempts to explain the ability of the auditory system to organize the incoming sound into separate sound objects (streams, events) and their interrelationships.
- CASA (Computational ASA) has been developed for about 10 years based on ASA findings (Cooke, Ellis, etc.).
- Many challenging technical problems are more or less CASA type of problems:
 - Automatic transcription of music
 - Analysis of ambient and environmental sounds
 - Speech recognition in complex noisy environments
 - Audio content analysis
WHAT NEXT?

- Development of useful models for difficult phenomena
 - Precedence effect, separation of more complex sounds, etc.
- More accurate time-frequency modeling
 - Dynamic loudness, pre- and postmasking, level-dependent masking
- Modeling of timbre perception
 - Categorization of timbres
- Modeling specific phenomena in music perception
 - Consonance, dissonance, rhythm, sound textures
- Much improved binaural auditory modeling needed
 - Perceptual and cognitive modeling of sound environments (rooms, concert halls, etc.) including reverberant phenomena
- Integration of existing models into large-scale models
 - Needed for complex applications and for better overall understanding of auditory functions
- Much work needed for high-level and cognitive modeling
- Improved computational auditory scene analysis (CASA)
- Etc, etc

HOW FAR CAN WE GO?

Personal opinion:
In principle everything can be modeled computationally –
(How about in practice?)

Time schedule of progress:
The most difficult (sub)problems take at least tens of years
to solve even tentatively (cf., speech recognition)

Big challenge:
How to achieve much improved automatic self-learning and
organization principles?