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MOTIVATION

• Computational modeling of how we hear
and perceive sounds is a target of active
research because:
– It adds to our knowledge on human auditory

functions by enabling the testing of theories on
complex auditory functions

– It is a key enabling approach to new applications
in audio, speech, and multimedia

– Dream of advanced ”artificial listener”
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FRAMEWORKS for MODELING
Communication by Sound and Voice

• Sound source modeling
– physical modeling

• Signal modeling
– channel modeling and DSP

• Listener  modeling
– auditory modeling

hardware

software

functionware

contentware
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HEARING RESEARCH

• Physiology of hearing
– Physically/chemically measurable (objective)
properties of hearing

• Psychoacoustics (auditory psychophysics)
– Subjective responses to objective stimuli

• Cognitive properties of hearing
– High-level functional properties of hearing
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PERIPHERAL vs. CENTRAL HEARING

• Auditory periphery
– Relatively well known
– Basic properties easy to model

• Central auditory system
– Relatively weakly known
– Difficult to model
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Psychoacoustics Concepts:  MASKING

• Frequency masking
– Spreading of masking effect

of a sound component in the
frequency domain

– More prominent upwards in
frequency

• Temporal masking
– Spreading of masking in the

time domain
– More prominent forward in

time (lasts up to 200 ms)
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Psychoacoustics Concepts:  PITCH

• Pitch = subjective sensation of sound on low/high scale
– Relation to frequency not linear, rather logarithmic-like
– ERB (Equivalent Rectangular Bandwidth) scale  theoretically best

motivated
– Bark scale technically most frequently used
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Psychoacoustics Concepts:  LOUDNESS

• Loudness
– Unit: 1 sone
– 1 sone = 40 dB sine at 1 kHz

• Loudness level
– Logarithmic measure
– Unit: 1 phone

• Wideband loudness
– Each critical band

contributes equally to total
loudness

ICAD’ 01

COMPUTATIONAL AUDITORY MODELING

• Physiological models
– Goal:  accurate simulation of physiological details

• Psychoacoustical (perceptual) models
– Modeling of results of psychoacoustical facts and theories

• Functional (hypothetical) higher level models
– Any potentially useful algorithms simulating auditory functions

• Cognitive models
– Modeling cognitive processes in auditory perception

• Simplified models for technical applications
– Mixtures of auditory, signal, and source modeling
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AUDITORY SPECTRUM THROUGH FFT

• A typical frequency-
domain auditory
spectrum computation
principle
– Frequency domain

properties (particularly
steady-state loudness)
can fairly easily be
modeled accurately

– Zwicker’s model
– Moore’s model
– Problem: temporal

properties not easily
modeled accurately
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EXAMPLES OF SIMPLE AUDITORY SPECTRA

• Sine wave (a)
– Shows the spreading of

excitation pattern for sine
wave of 400 Hz

• White noise (b)
– Shows the frequency

sensitivity curve of the
auditory system
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FILTERBANK-BASED AUDITORY MODELS

• Filterbank models of peripheral hearing
– Bandpass filters simulate the frequency selectivity (critical bands)

of the inner ear (basilar membrane and hair cells)
– Half-wave rectification in each channel by hair cell neural firings
– Neural firings (statistically) sychronized up to about 1-3 kHz
– Adaptation of firing rate after onset
– Temporal integration (lowpass filtering) in loudness formation and

temporal masking
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GAMMATONE FILTERBANKS

Temporal and magnitude response of a filterbank channel
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NEURAL ADAPTATION

Neural adaptation model by Dau et al
Automatic gain control feedbacks used
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EXAMPLE OF TEMPORAL PROCESSOR

• Neural adaptation,
temporal integration,
and temporal masking
model (Karjalainen
1996):
– Neural feedback

model
– Adaptation (AGC) in

firing rate simulation
– Loudness (level)

computation
– Teporal masking

effect
– Temporal integration

and firing rate
adaptation shown to
be complementary
functions
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PERIODICITY (PITCH) ANALYSIS

• Periodicity analysis model (Meddis)
– Bandpass filterbank + half-wave rectification + lowpass
– Periodicity analysis in each critical band by autocorrelation
– Summary autocorrelation function (SACF) a good periodicity

indicator in many cases
– Valid only at low frequencies (< 1kHz)
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MULTIPITCH ANALYSIS

• Enhanced SACF in two channels (Tolonen & Karjalainen 2000)

– Only two channels used in SACF computation (below and above 1 kHz)
– Enhanced SACF (= ESACF) for better resolving multiple pitches by

removing periodic and negative peaks in autocorrelation function
– Can resolve up to 3-5 simultaneous harmonic sounds
– ESACF example mixture of 3 harmonic sounds (a musical chord):
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SOURCE SEPARATION (example)

ESACF 

129 Hz

156 Hz

• Separation of simultaneous vowels (Karjalainen & Tolonen 2000)

– Multipitch analysis applied to find pitch values of two or more vowels
– Iterative technique can be used to improve multipitch analysis

• Pitches are removed one by one from the mixture
– Separated vowel spectra estimated (for 2 vowels)

ICAD’ 01

REVERBERATION VS. AUDITORY MODELING

Quality of late reverberation
vs. modal density (Karjalainen &
Järveläinen 2001)

• How many modes per critical
band needed for perfect
reverberation (or random noise)?

• How the auditory system resolves
or analyzes a mixture of modes?

• Any perceivable periodicity
higher in level than about -30 dB in
a critical band envelope signal may
degrade or color reverberation
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Applications:  AUDIO CODING

• Audio coding (such as MPEG-nn) is
– probably the most important application so far utilizing auditory
(perceptual) models
– based on coding only auditorily relevant and non-redundant
information of audio signals:  data rate reduction about 10:1
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Applications:  SOUND QUALITY ESTIMATION

• Objective sound quality measures to correspond subjective perception must
be based on auditory (perceptual) models

• Perceptual sound quality models can be applied to many problems,
(although quite differently):
– Quality of audio and speech systems
– Sound quality of performing spaces, musical instruments, etc.
– Noise quality (annoyance, disturbance), product sound quality

• Example: auditory principle for audio sound quality (Karjalainen 1981-85)

Reference
signal

System
under test

Delay

Auditory
model Comparison

of signals
by auditory

spectral
distance

Auditory
model
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BINAURAL AUDITORY MODELING

• In binaural (two-ear) listening,
modeling of:
– Sound source direction
– Sound source distance
– Binaural loudness, timbre, etc.

• Perceived direction is based
primarily on:
– Interaural time difference (ITD)
– Interaural level difference (ILD)
– Spectral cues

• Binaural auditory modeling less
developed than modeling of
monaural properties, although
basic ideas have existed since
1940’s (Jeffress)
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BINAURAL AUDITORY MODEL (Example)
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• Computational modeling of
binaural hearing has turned
out to be successful, e.g., in
amplitude-panned sound
reproduction (Pulkki et al)

• ITD estimated from auditory
interaural cross-correlations

• ILD estimated left-right ear
signal levels in critical bands

• ITD and ILD features can be
combined to perceived
direction by various ways
(table lookup, neural nets)

• These simple models are
successful as far as the
precedence effect does not
have to be taken into account
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PRECEDENCE EFFECT MODELING

ϕ = 40o

ϕ =-40o

ϕ = 0o

ϕ

So

ST

α=80o
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echo
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first auditory event

• Precedence effect
– Repetitions of a sound within 1 – 30 ms after initial version don’t

affect perceived source direction (dominance of first wavefront)
– No essential precedence effect found for example for timbre
– Precedence effect is probably a mixture of high- and low-level

processes
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Model proposed by Zurek
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AUDITORY ANALYSIS OF SOUND FIELD

• Auditory modeling applied to room and concert hall responses
(Lokki & Karjalainen 2000)
– Auditory spectrogram (time-frequency plot) of room impulse response
– Directional information, such as lateral or front-back ’spectrogram’
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FREQUENCY-WARPED DSP vs.
AUDITORY MODELING

• We have shown that frequency-warped DSP techniques are often an
efficient and straightforward way of inclusing basic auditory features in
traditional signal processing algorithms (Härmä et al 2000)

• Frequency warped techniques are based on replacing unit delays by
first-order allpass filters.

• By proper parameters, warping makes a very good match to the Bark
scale (linear Hz scale mapped to Bark scale, Smith & Abel)
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AUDITORY SCENE ANALYSIS AND CASA

• ASA attempts to explain the ability of the auditory system
to organize the incoming sound into separate sound objects
(streams, events) and their interrelationships

• Important study: Bregman: Auditory Scene Analysis (1990)
• CASA (Computational ASA) has been developed for about

10 years based on ASA findings (Cooke, Ellis, etc.)
• Many challenging technical problems are more or less

CASA type of problems:
– Automatic transcription of music
– Analysis of ambient and environmental sounds
– Speech recognition in complex noisy environments
– Audio content analysis
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• Development of useful models for difficult phenomena
– Precedence effect, separation of more complex sounds, etc.

• More accurate time-frequency modeling
– Dynamic loudness, pre- and postmasking, level-dependent masking

• Modeling of timbre perception
– Categorization of timbres

• Modeling specific phenomena in music perception
– Consonance, dissonance, rhythm, sound textures

• Much improved binaural auditory modeling needed
– Perceptual and cognitive modeling of sound environments

(rooms, concert halls, etc.) including reverberant phenomena
• Integration of existing models into large-scale models

– Needed for complex applications and for better overall
understanding of auditory functions

• Much work needed for high-level and cognitive modeling
• Improved computational auditory scene analysis (CASA)
• Etc, etc ....

WHAT NEXT ?
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HOW FAR CAN WE GO ?

Personal opinion:

In principle everything can be modeled computationally –
(How about in practice?)

Time schedule of progress:

The most difficult (sub)problems take at least tens of years
to solve even tentatively (cf., speech recognition)

Big challenge:

How to achive much improved automatic self-learning and
organization principles?


