
JASS: A JAVA AUDIO SYNTHESIS SYSTEM FOR PROGRAMMERS

Kees van den Doel and Dinesh K. Pai

Department of Computer Science
University of British Columbia

Vancouver, Canada�
kvdoel, pai � @cs.ubc.ca

ABSTRACT

We describe a unit generator based audio synthesis program-
ming environment written in pure Java. The environment is based
on a foundation structure consisting of a small number of Java in-
terfaces and abstract classes, and a potentially unlimited number
of unit generators, which are created by extending the abstract
classes and implementing a single method. Filter-graphs, some-
times called “patches”, are created by linking together unit genera-
tors in arbitrary complex graph structures. Patches can be rendered
in real-time with special unit generators that communicate with the
audio hardware, which we have implemented using the JavaSound
API.

1. INTRODUCTION

Several software applications for digital audio synthesis are pre-
sently available. These applications have varying degrees of user
extensibility and customizability. They also differ in price from
free to very expensive, and may require specialized hardware or
a specific operating system. The target application of these sys-
tems varies too, but all systems that we are aware of are primarily
focussed on the synthesis of music.

In our current research [1, 2, 3, 4, 5, 6, 7] we are investigating
models of audio-synthesis suitable for sound-effects, sometimes
called “Foley sounds”, in interactive environments with real-time
user interactions such as computer games, simulations, and im-
mersive environments. All the features we wanted for an audio
synthesis environment for these applications could not be found
in any single existing environment, and we therefore developed an
environment specifically for these kind of sounds, which we have
called “JASS” which stands for “Java Audio Synthesis System”,
but hopefully not for “Just Another Software Synth”.

The features of JASS, besides the obvious one of being capa-
ble of implementing arbitrary synthesis algorithms are:

� Platform independence; obtained by using pure Java.
� Ease of deployment in web documents.
� Simplicity; obtained by omitting support for musically ori-

ented features such as envelopes, MIDI, etc.
� Extensibility; obtained through careful object oriented de-

sign.
� Run-time control through asynchronous method calls.
� Dynamic creation of “patches” at run-time without audio

breakup.
� Efficiency; achieved by vectorizing all processing elements.

� Real-time synthesis.� Free; which we achieve by writing it ourselves and giving
it away.� Low latency; obtained by using small buffers.

The JASS toolkit which is available for download from our
website [8] consists of several software layers, organized in Java
packages:

The engine package provides Java interfaces and abstract
classes which can be extended to create unit generators (UG’s).
There is no strict distinction between a patch and a UG, and we
shall just reserve the name “patch” for a UG which contains other
UG’s. Whenever the distinction is important we shall call UG’s
that do not contain other UG’s “atomic”. UG’s are connected into
filter-graphs, or “patches”, which are also used in computer mu-
sic [9]. These filter graphs are also equivalent to the “timbre trees”
introduced by Takala and Hahn [10]. The fundamental interfaces
are Source and Sink which encapsulate the notion of intercon-
nected filter elements. This is a common design, also used for ex-
ample in the Java Media Framework, which is intended for more
general applications dealing with different media types and is quite
complex. The abstract classes Out, In, and InOut implement
respectively Source, Sink, and both. These abstract classes im-
plement all the plumbing code necessary for UG’s to communicate
and be interconnected into graph structures and leave just a single
method, computeBuffer() unimplemented. This method de-
fines the actual audio processing to be done in the UG. The UG’s
provide only audio-buffers, and have no inherent rendering ca-
pability. The actual rendering is done with the classes from the
render package, but could be implemented independently if so
desired.

The generator package contains instantiable classes which
extend the abstract classes in the engine package. These classes
are the basic UG’s. We have implemented basic audio processing
blocks such as wave-tables, filters, audio file readers, resonance
banks, pitch-shifters, and others as needed. They are very easy to
author.

We provide a render package which contains a Sound-
Player UG to render a patch to the audio hardware through Java-
Sound, low level utility classes for converting between different
audio data formats, and an off-line renderer which produces audio
files. A Controller class is provided which allows the creation
of simple graphical user interfaces with sliders and buttons to ex-
periment with algorithms in real-time.

To show how easy it is to extend the abstract classes on-the-fly,
here is some code to generate a sawtooth signal with a frequency
of 415 Hz (perhaps useful as a virtual tuning fork) and send it to
the audio hardware in real-time:

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-150

http://www.cs.ubc.ca/~kvdoel/jass


float srate = 44100;
float freq = 415;
int bufferSize = (int)(srate/freq);
new SourcePlayer(bufferSize,0,srate,

new Out(bufferSize) {
public void computeBuffer() {

for(int i=0;i<getBufferSize();i++)
buf[i] = i;

}
}

).start();

An unnamed SourcePlayer UG is created. Its last argument,
which defines which Source to play, is an anonymous extension
of an Out class, which is an abstract class from the engine pack-
age. The anonymous derived class implements the compute-
Buffer() function which fills each buffer with a period of a
sawtooth. The start() call on the SourcePlayer starts a
thread which pulls audio-buffers out of the Out UG and sends
them to the audio hardware using JavaSound.

Figure 1: Example of a usage of JASS in a real-time simulation
environment. The simulator make asynchronous calls on the UG’s,
which are not necessarily atomic, while a JASS synthesis thread
renders audio.

In Fig. 1 we have indicated how an algorithm authored in
JASS can be deployed in a simulation environment with real-time
sound. We show a virtual pot which can be touched by a probe
under user control. The simulator keeps track of position and
velocities and performs collision detection and dynamics simula-
tion. It interacts with JASS by starting the synthesis thread on the
SourcePlayer, and then makes asynchronous calls to the UG’s
that implement the specific algorithms used for audio modeling of
the pot and the contact. These calls occur at simulation time steps,
and are made in a separate thread. At the same time, the simulator
communicates to the graphics display which ensures the synchro-
nization of audio and graphics.

JASS has similarities to Perry Cook’s C++ Synthesis Tool-
kit [11], the main differences are that (1) JASS uses vectorized
UG’s which make it much more efficient, (2) JASS has no support
for event control like MIDI and SKINI, (3) JASS is written in pure
Java.

Another related synthesis package is Burk’s JSyn [12] envi-
ronment, which is a UG based Java API using native methods im-

plemented in C, which is available for Macintosh and Windows.
It is a commercial product, targeted primarily towards musical ap-
plications. No source code is available for the native C imple-
mentations, and the system is not user extendible. It includes a
sophisticated event scheduler and can be deployed on the web via
a browser plug-in. Because JASS is written in pure Java, synthesis
algorithms authored with it can be deployed in a web page with-
out any special plug-in on JavaSound enabled browsers such as
Netscape 6.

SynthBuilder [13] is a UG based synthesis environment devel-
oped at CCRMA and consists of a scripting language describing
patches, a real-time synthesis engine and a sophisticated graphical
interface to design patches.

JMax [14] is a UG based synthesis environment developed
at IRCAM and consists of a graphical patch design environment
which is easy to use for non-programmers. The system can be ex-
tended by writing custom UG’s in C++. THe system runs on Linux
only.

CSound [15] provides a sophisticated synthesis language for
musical instrument synthesis and has a large community of users.
It is however not easy to use programmatically.

Our notation for Java interfaces, classes and inheritance rela-
tions is illustrated in Fig. 2.

Figure 2: Notation for Java objects. In class inheritance relations
the convention is that the object on the right extends the object on
the left.

2. FOUNDATION

The engine package encapsulates the notion of interconnected
unit generators. A UG in JASS is a processing element which can
receive audio inputs and has at most one audio output.

Interfaces for Unit Generators
The Source interface, depicted in Fig. 3, encapsulates the notion

Figure 3: Source interface with temporal state which maintains an
audio buffer. Methods to set and get the time and buffer are not
indicated here.

of a processing element with a temporal state, which maintains an
audio-buffer, which we consider to be an array of float. It is
defined as follows:

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-151



public interface Source {
float[] getBuffer(long t)

throws BufferNotAvailableException;
long getTime();
void setTime(long t);
int getBufferSize();
void setBufferSize(int bufferSize);
void clearBuffer();

}

The most important method is getBuffer(long t) (indicated
by a circle), which requests an audio-buffer at a specific time. De-
pending on the implementation and the relation of t to the time
state such a request may or may not be granted. The exception
thrown when the request fails is specific for the engine package.

The getBuffer() method is intended to be called by ob-
jects implementing the Sink interface, depicted in Fig. 4. The
methods defined in the Sink interface encapsulate the behavior
of an object which is connected to a number of Sources. It is
defined as follows:

public interface Sink {
Object addSource(Source s)

throws SinkIsFullException;
void removeSource(Source s);
Source [] getSources();

}

Figure 4: Sink interface encapsulating an object which contains
sources, which are indicated by incoming arrows.

The method addSource() connects a Source to the Sink.
An Object is returned which is intended to be used by the caller
to interact with the connection. For example, if the Source is
a contact force on a three dimensional solid body, which is the
Sink, the Object returned could contain methods to set the spa-
tial location of the contact. If the Source can not be added, for
example because the implementor only supports one input as is the
case for a filter UG, an exception is thrown.

The method getSources() returns an array of Sources.
The intention is that the implementing UG will call each Source
in order and request audio buffers from it. The ordering of the
Sources is important in general. A Source can be connected to
an arbitrary number of Sinks.

Abstract Classes for Unit Generators
Three abstract classes are defined which implement some or all
of the interfaces defined above. They provide templates for UG’s
which produce audio buffers, consume it, or both. We made some
specific implementation choices, and it is possible to author dif-
ferent UG template implementations, and use them within existing
applications as long as they implement the Source and/or Sink
interfaces.

These abstract UG’s are called Out, In, and InOut. The
class hierarchy is depicted in Fig. 5.

Figure 5: Class hierarchy of the engine package. Classes to the
right of the vertical dotted line represent instantiable classes from
other packages extending the abstract classes.

The Out class, which implements Source, represents a UG
which produces audio buffers, such as a wav file, a noise generator,
or a sine wave generator, etc. It contains member variables to set
the time and contains an audio-buffer of float, see Fig. 6. Time

Figure 6: Abstract class Out, representing an object capable of
producing audio buffers. The output in represented by the circle.
It leaves a single method, computeBuffer(), unimplemented.

is defined as an integer which counts the number of buffers of size
bufferSize that are processed. At a sampling rate of � � and a
buffersize of � this corresponds to time slices of size � � � � . The
most important Source member function implemented by Out
is getBuffer, which is implemented as follows:

public synchronized float[] getBuffer(long t)
throws BufferNotAvailableException {

if(t == getTime()+1) {
setTime(t);
computeBuffer();

} else if(t != getTime()) {
throw new BufferNotAvailableException();

}
return buf;

}

It makes use of the member variable

protected float[] buf;

which is the audio-buffer at the current time. If the time t equals
the current time, the presently held audio-buffer is returned. Al-
ternatively, if the requested buffer lies one time-step in the fu-
ture, the UG will increment time, compute the next buffer by call-
ing computeBuffer(), and return it. The method compute-
Buffer() must be implemented by instantiable classes extend-
ing Out.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-152



The InOut class represents the most general UG which has
audio inputs and a single output. It implements both interfaces by
extending Out and providing an implementation of the methods
in the Sink interface. (Because Java does not support multiple
inheritance, InOut can not derive from both In and Out.) The
methods addSource() and removeSource() are synchro-
nized. It maintains a list of input Sources, which have an as-
sociated audio-buffer cache as indicated in Fig. 7. The method
getBuffer() inherited from Out is overridden by inserting
a call to callSources() between setTime and compute-
Buffer:

...
setTime(t);
callSources();
computeBuffer();
..

This method calls getBuffer(currentTime) on every at-
tached Source in order, and caches the results in the associ-
ated buffers as indicated in Fig. 7. If the filter-graph contains a

Figure 7: Abstract class InOut, representing an object capable of
getting and producing audio buffers. The unimplemented method
computeBuffer() uses the cached input buffers to compute
the output buffer.

closed loop it is possible that this eventually results in another (re-
cursive) call to getBuffer() on the same InOut object. Be-
cause time has been incremented before buffers are requested from
the external Sources, such a call will come with a time argu-
ment equal to the current time and will therefore just return the
cached buffer, which is now actually “stale”, thereby preventing
any further recursion. This means that a closed loop in a patch
acts as a delay line, with the delay equal to the buffer-size. Be-
cause a connected graph can never have UG’s out of synch by
more than a single time-step (at least in this implementation of
the Source and Sink interfaces), the throwing of the exception
BufferNotAvailableException indicates a programming
error.

When implementing computeBuffer(), it is important to
realize that getBuffer() returns a reference to the audio-buffer
for efficiency, and does not copy it. If closed loops occur one of the
cached Source buffers may in fact be the same buffer as the one
that is being computed, which may cause unexpected bugs when
this is not realized.

The In class, depicted in Fig. 8, provides an implementation
of the Sink interface and is derived from the Java class Thread.
It is marked abstract so it can not be instantiated, though it does
not in fact contain any unimplemented methods. This class will be

Figure 8: Abstract class In, representing an object capable of get-
ting audio buffers. It extends the Java class Thread to enable
the creation of synthesis threads which “pull” audio-buffers out of
Sources.

subclassed by UG’s for rendering audio produced by Sources
for example.

JASS patches are usually deployed in a multi-threaded envi-
ronment. For example, in the application depicted in Fig. 1, the
simulator thread will make calls to the UG’s, while the audio ren-
der thread runs simultaneously. For this reason getBuffer() is
implemented as a synchronizedmethod. In order to avoid race
conditions any UG methods that change the state of the UG (for ex-
ample, a filter UG may have the filter coefficients changed) should
be declared synchronized. This ensures that the state of the
UG does not change while the UG is processing a call from get-
Buffer(), which would result in unpredictable behavior. Sim-
ilarly, the methods addSource() and removeSource() are
also declared synchronized, to allow a patch to be “rewired”
from a different thread, without disturbing audio processing done
as a result of getBuffer().

3. CONCLUSIONS

The current distribution of the JASS system contains a set of unit
generators for reading and playing audio files, at varying speeds
and volumes, mixers, various filters, and UG’s for rendering and
capturing audio. On the JASS website [8] the full documentation
of all implemented JASS UG’s can be found and read online. The
set is not intended to be comprehensive and users of the system are
expected to write their own UG’s.

The website also contains an extensive set of demos such as
a Karplus-Strong plucked string algorithm, a reverberation algo-
rithm, a granular synthesis patch, and many others. These de-
mos can be heard online in a Java 2 enabled browser (for example
Netscape 6).

The algorithms authored with JASS have an inherent latency
determined by the buffer-size used by the filter-graphs, which can
be as low as one sample in principle. Smaller buffers require more
processing overhead, though. For our applications we have found
that using a buffer-size of 1 sample results in a slowdown by a
factor 4, compared to using a buffer-size of 100. At a sampling
rate of 44100Hz, a buffer-size of 100 translates in a latency of
about 2 ms, which is excellent for most purposes.

Unfortunately current JavaSound implementations require lar-
ge buffers for real-time synthesis on all platforms we are aware
of. On Windows 98 and Linux we found that the lowest latency
we could achieve without breakup of sound was 140ms, which is

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-153



three times higher than the streaming latency of the DirectSound
API. We anticipate this situation will improve when JavaSound
matures.

The JASS system has been used primarily for our research
in contact sound generation, but we hope that it will find more
widespread usage.

4. REFERENCES

[1] K. van den Doel and D. K. Pai, “Synthesis of Shape Depen-
dent Sounds with Physical Modeling,” in Proceedings of the
International Conference on Auditory Displays 1996, Palo
Alto, 1996.

[2] K. van den Doel and D. K. Pai, “The sounds of physical
shapes,” Presence, vol. 7, no. 4, pp. 382–395, 1998.

[3] K. van den Doel, Sound Synthesis for Virtual Reality
and Computer Games, Ph.D. thesis, University of British
Columbia, 1998.

[4] Roberta L. Klatzky, Dinesh K. Pai, and Eric P. Krotkov, “Per-
ception of material from contact sounds,” Presence, vol. 9,
no. 4, pp. 399–410, 2000.

[5] D. K. Pai and J. L. Richmond, “Robotic measurement and
modeling of contact sounds,” in Proceedings of the Interna-
tional Conference on Auditory Display 2000, Atlanta, 2000.

[6] D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd,
J. L. Richmond, and S. H. Yau, “Scanning physical interac-
tion behavior of 3D objects,” in Computer Graphics (ACM
SIGGRAPH 01 Conference Proceedings), 2001.

[7] Kees van den Doel, Paul G. Kry, and Dinesh K. Pai, “Fo-
leyAutomatic: Physically-based Sound Effects for Interac-
tive Simulation and Animation,” in Computer Graphics
(ACM SIGGRAPH 01 Conference Proceedings), 2001.

[8] “http://www.cs.ubc.ca/˜kvdoel/jass,” 2001.

[9] M. V. Mathews, The Technology of Computer Music, MIT
Press, Cambridge, 1969.

[10] T. Takala and J. Hahn, “Sound rendering,” Proc. SIGGRAPH
92, ACM Computer Graphics, vol. 26, no. 2, pp. 211–220,
1992.

[11] Perry R. Cook, “Synthesis Toolkit in C++,” in SIGGRAPH,
1996.

[12] P. Burk, “JSyn: Real-time Synthesis API for Java,” in Pro-
ceedings of the International Computer Music Conference,
San Francisco, 1998.

[13] N. Porcaro, P. Scandalis, J. O. Smith, D. A. Jaffe, and T. Stil-
son, “SynthBuilder–a graphical real-time synthesis, process-
ing and performance system,” in Proceedings of the Interna-
tional Computer Music Conference, Banff, 1995, pp. 61–62.

[14] François Déchelle, Norbert Schnell, and Riccardo Borghesi,
“The JMax Environment: An Overview of New Features,”
in Proceedings of the International Computer Music Confer-
ence, Berlin, 2001.

[15] B. L. Vercoe, “Extended Csound,” in Proceedings of the In-
ternational Computer Music Conference, Hong Kong, 1996.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-154

http://www.cs.ubc.ca/~kvdoel/jass

	1. INTRODUCTION
	2. FOUNDATION
	3. CONCLUSIONS
	4. REFERENCES

