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ABSTRACT

Three-dimensional resonators, such as cavities or rooms, affect the
perceived timbral character of any sound source there enclosed. It
is well understood how the resonator size, or the material of the
enclosure, are conveyed to the listener by means of specific fea-
tures of acoustic signals. On the other hand, the perception of the
shape of a resonator is a much subtler issue that we investigate in
this paper, taking the sphere and the cube as reference cases. The
perceptual study is motivated by the availability of a compact res-
onator model whose parameters can be tuned to represent different
shapes.

1. INTRODUCTION

“Can one hear the shape of a drum?” asked Mark Kac in 1966 [1].
His question about the existence of isospectral domains, indeed of
profound mathematical nature, could be turned into the physical
dilemma of knowing whether there are membranes of different ge-
ometries exhibiting the same eigenfrequencies. While it has been
proved that such different membranes exist and can be construc-
tively derived [2], turning the question into perceptual terms (as
the original question seems to suggest) is still difficult. The rea-
son of such difficulty is that there is no clear understanding of the
acoustic features that convey a sense of shape to the listener. Fur-
thermore, such sense of shape is not even firmly assessed.

Even though most of psychoacoustic research has focused on
the perception of signal properties rather than source properties,
the field of ecological psychology has recently been enriched by
several studies looking at the physical and geometric properties of
simple objects. In this paper we are interested in how spatial fea-
tures of objects are conveyed to the listener by means of sound, so
we restrict our attention to those prior works that focused on the
same kind of features. One of the most important spatial features
of an object is its size, and Carello et al [3] showed that listeners
are able to scale the lengths of rods properly without any stan-
dard of comparison. This is not too surprising, since the pitch of
a long and thin resonator is in simple relationship with its length,
and our perception of pitch is very accurate. After assessing the
accuracy in perception of 1-D lengths by sounds, the next natu-
ral question is wether we can give an estimate of 2-D properties
of objects, such as length and height. An answer to this question
was given by Lakatos et al. [4] for the rectangular cross section
of struck bars, and by Kunkler-Peck and Turvey [5] for suspended
rectangular plates. In the latter work two experiments of shape
identification for non-rectangular plates were also reported, and
the analyses showed that the distributions of modal frequencies

are the structural information that are most likely to be used for
shape identification.

Provided that shape information can be encoded into sounds,
our interest is mainly focused on how to do such encoding. In other
words, we would like to be able to control shape parameters in
sound models. In this paper we focus on 3-D objects, as we already
developed compact 3-D resonator models whose form factor can
be controlled by simple parametric changes [6].

The paper is structured as follows. In section 2 we briefly re-
call the acoustics of spherical and cubic resonators, and explain the
additive-synthesis models that have been implemented and used in
subjective experimentation. In section 3 we describe the experi-
ments conducted to test the relationship between pitch and volume,
and the ability to identify the shape of a resonator as it impresses
an acoustic signature onto sound sources. In section 4, a sound
analysis based on auditory models is used to reveal interesting pat-
terns that might be used by the hearing system to estimate the de-
gree of “roundness” of a resonator. In section 5 we discuss how the
results of subjective experimentation can be used to control the pa-
rameters of a versatile and compact resonator model, and how we
can produce “cartoon” acoustic shapes, i.e. over-simplified models
that still retain their shape features.

2. MODELS OF SPHERES AND CUBES FOR
EXPERIMENTATION

An acoustic 3-D resonator is, with excellent approximation, a lin-
ear system and, therefore, it is thoroughly described by its impulse
response or by its frequency domain counterpart, the frequency re-
sponse. A rectangular resonator has a frequency response that is
the superposition of harmonic combs, each having a fundamental
frequency

f0; lmn =
c

2

p
(l=X)2 + (m=Y )2 + (n=Z)2 ; (1)

where c is the speed of sound, l;m; n is a triple of positive integers
with no common divisor, and X;Y; Z are the edge lengths of the
box [8].

A spherical resonator has a frequency response that is the su-
perposition of inharmonic combs, each having peaks at the ex-
tremal points of spherical Bessel functions. Namely, said zns the

sth root of the derivative of the nth Bessel function, the resonance
frequencies are found at

fns =
c

2�a
zns; (2)

where a is the radius of the sphere [7].
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In [6] we extended the ball-within-a-box (BaBo) model [9]
to provide a unified 3-D resonator model, based on a feedback
delay network, that allows independent control of wall absorption,
diffusion, size, and shape. Namely, the shape control is exerted by
changing the parameters of allpass filters that are cascaded with
the delay lines. In this way we can have a single computational
structure that behaves like a rectangular box, or a sphere, or like
an intermediate shape. The availability of such a model raised new
questions about the perceptual significance of this shape control.

To investigate the perception of resonator shapes in an exper-
imental framework, we prefer to construct impulse responses by
additive synthesis rather then using the BaBo model, as the lat-
ter relies on some approximations whose significance has not been
thoroughly assessed. The impulse response of a sphere or a rect-
angular box can be modeled by summing the contributions of ex-
ponentially damped sinusoids, each tuned at the position of a the-
oretical resonance frequency.

The additive-synthesis models for the sphere and the rectan-
gular box have been implemented as MATLAB functions1. The
functions have, as parameters, the size of the resonator, the mate-
rial of its enclosure, the sample rate, and a flag that allows to in-
troduce randomization of amplitude and/or phases in the damped
sinusoids. This makes sense because, by changing the position of
the source or the listener within the cavity, we apply different com-
plex weighting at the eigenmodes. The material of the enclosure
can be chosen from a small set of options, specified by frequency-
dependent absorption curves. So far, we have only coded specific
varieties of marble, wood, and drape.

3. SUBJECTIVE EXPERIMENTS

The main problem, in assessing the capabilities of humans in dis-
tinguishing shapes from acoustic signatures, is the dominance of
pitch as a perceived feature. Pitch is associated with size, as smaller
cavities tend to resonate at higher pitches, but it is not clear how
to equalize the pitches of two different shapes. Indeed, 3-D shapes
such as cubes and spheres have spectra that are far from harmonic,
so that it is difficult to define mathematically what the perceived
pitch is. The first step in our tests has the objective to understand
how people compare the pitches of two impulse responses, one
of the sphere and one of the cube. A first result from this pre-
liminary stage is that we can correlate the perceived pitch with
the volume of the object, a fact that was already noticed in [6].
In a second stage, we tried to measure human performance in a
3D-shape matching task. In all these experiments, subjects were
volunteer computer science students and they listened to stimuli
played through closed headphones (Beyerdynamic DT-770) at a
comfortable level. In the first stage (pitch comparison) they lis-
tened to the impulse responses of the cavities. In the second stage
(shape matching), they listened to the convolution of a complex
sound with the impulse response of the cavities.

3.1. Pitch equalization of spheres and cubes

Both cubic and spherical resonators do not have harmonic or quasi-
harmonic spectra. Therefore, it is not clear whether we can have
a sensation of pitch and, if this is the case, what frequency value
corresponds to such pitch. According to standard definitions in
psychoacoustics, pitch is that acoustic attribute that allows to rank

1The models are available from
http://www.soundobject.org

a sound as higher or lower than a reference. Therefore, the sim-
plest way to know the pitch properties of 3-D cavities is to compare
the impulse responses by means of the method of constant stimuli,
i.e. by comparison of a fixed stimulus (namely, the spherical im-
pulse response) with another stimulus (namely, the cubic impulse
response) chosen from a finite set. For our purpose, this method is
advantageous over up-down methods [10] because it is not clear a
priori if pitch is well defined as a monotonic function of size. With
the method of constant stimuli we can use a small set of precom-
puted responses and collect data about the pitch proximity of each
couple of responses of different shapes.

To generate the impulse responses we used the additive-syn-
thesis models described in section 2. In order to give the maximum
richness to the stimuli, we set maximum excitation for all modes,
and we randomized phases to avoid artifacts due to modal phase
alignment. The decay time of each modal frequency was computed
using the Sabine reverberation formula

T = 0:163 � V:=(� �A) ; (3)

where V is volume, A is surface area, and � is the absorption
coefficient. The absorption curve was computed by interpolation
between the following values, which can be considered as repre-
sentative of a smooth wood-like enclosure:

f = [0; 125; 250; 500; 1000; 2000; 4000; Fs=2] Hz ; (4)

� = [0:19; 0:15; 0:11; 0:10; 0:07; 0:06; 0:07; 1:00] ; (5)

and the sample rate was set to Fs = 22050Hz. We investigated
sizes ranging from 30cm to 100cm in diameter. The use of Sabine
formula might be criticized, especially for the range of sizes that
we investigated. Indeed, using the Eyring formula or even exact
computation of decay time does not make much difference for
these values of surface absorption [11]. Moreover, it has been as-
sessed that we are not very sensitive to variations in decay time [13],
so we decided to use the simplest formula. This choice, together
with the absorption coefficients that we chose, give quite a rich
and long impulse response, even too much for a realistic wooden
enclosure. However, for the purpose of this experiment it is defi-
nitely better to have rich responses so the ear has more chances to
discover shape-related information.

Another question is what step size should be used to differenti-
ate contiguous stimuli. We converted frequency JNDs, as found in
psychoacoustic textbooks and measured for pure tones, into length
differences:

�l = c=�f ; (6)

where c is the speed of sound in the cavity.
In a pre-experiment with 9 subjects, we chose a spatial step

equal to twice �l and we extended our range along 9 steps. The
central size for the cubic box was chosen so that it has the same
volume as the fixed comparison sphere, the latter having diameter
d = 36cm. Since we found that most subjects could easily answer
to the higher vs. lower question for most of the box sizes, we
refined the spatial step to match a single frequency JND, and we
used 13 steps, with 7 subjects.

Keeping the sphere size fixed, each subject was asked to listen
to all the sphere-cube pairs, each repeated ten times. The whole set
of 130 couples was played in random order. The question was “is
the second sound higher or lower in pitch than the first sound?”.

In figure 1 (left) we report the mean and standard deviation of
the pitch judgement for different box sizes in comparison with the
ball (d = 36cm), for 7 subjects. In practice, such statistics are
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Figure 1: Mean and standard deviation of pitch comparison be-
tween a sphere (d = 36cm) and cubes differing by an integral
number of length JNDs.

computed on one of the two rows of the confusion matrix of the
responses of each subject. On the other hand, if we compute the
difference of the two rows of the confusion matrix, we can come
up with a sort of pitch proximity index, where maximum prox-
imity corresponds to maximum confusion, i.e., it is found where
the difference between the two rows is minimal. Figure 1 (right)
depicts the mean and standard deviation of the pitch proximity in-
dex. The peak corresponds to the point of maximal confusion,
which can be identified with the point of equal pitches. We de-
cided to keep all of the 7 subjects, even though a pair of them gave
answers very different from the average curve of fig. 1. All of the
subjects of this test were volunteer computer science students, and
no one classified himself as a musician. Even by including the
outliers in the analysis, we have a very clear pitch effect (ANOVA:
F (12; 78) = 12:23, Fcrit = 1:88, p < 0:05). Looking at the peak
of the pitch proximity index, we can say with reasonable accuracy
that pitch equalization occurs for equal volumes.

We repeated the experiment with more subjects (14) and with
larger resonators (d = 100cm for the sphere) and we got the re-
sults reported in fig. 2. The pitch effect is confirmed (ANOVA:
F (12; 169) = 11:87, Fcrit = 1:81, p < 0:05). Again, we did not
remove the outliers from the statistics even though a few subjects
performed very differently from the average. For instance, one
subject almost systematically ranked the cube as lower in pitch
than the sphere, and another one did the opposite. Most of the
subjects were computer science students, and can be classified as
“naive” listeners. However, one of the outliers is a trained mu-
sician, so his response may be due to analytic rather than casual
listening. In fact, he said that he could hear two pitches in the
cube, and he was confused by this fact. Another expert listener
reported that, while he could give a definite pitch to the sphere, he
had a definite problem to do that with the cube.

At room temperature, the lowest resonance for the ball of di-
ameter d = 36cm is found at about 640Hz, corresponding to the
fundamental frequency of the modal series associated with the
order-1 Bessel function. For the same volume, the lowest reso-
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Figure 2: Mean and standard deviation of pitch comparison be-
tween a sphere (d = 100cm) and cubes differing by an integral
number of length JNDs.

nance of the cube is below 600Hz. The JND at that frequency is
lower than 4Hz. So, the pitch of the two shapes can not be triv-
ially associated with the fundamental frequency. Looking at the
frequency responses of the two cavities (see fig. 3) does not help
much the task of deducing a “reasonable” pitch. However, with
other representations (see sec. 4) the task may be easier.
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Figure 3: Low-frequency spectra of the responses of a ball (d =
0:36 - solid line) and a box having the same volume (dashed line).

3.2. Shape matching

When there is a pitch sensation, this tends to dominate over other
acoustic cues, so it is important to know how to equalize the pitch
of sounding objects in order to highlight other subtler timbral fea-
tures. From an ecological viewpoint, one such feature is certainly
the resonator shape, and we are now interested in understanding
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whether a cubic and a spherical resonator can be correctly classi-
fied.

In shape matching and classification experiments, we did not
use the impulse responses, as we found them very unnatural. In
fact, most people never experienced the impulse response of small
cavities and we verified in informal experiments that the task was
very difficult using the bare impulse response. It is much more nat-
ural to experience the shape of a resonator by means of the filtering
effect that it impresses onto a known sound source. The choice of
the sound source was driven by the need of exciting a large part
of the frequency response without destroying the identity of the
source. We tried with an anechoic voice source, but results were
poor, probably because the voice has a strong harmonic content
and only a few resonances of the frequency response can be ex-
cited in a short time segment. A source such as an applauding
audience turned out to be unsuitable because its identity changes
dramatically when it is filtered by a one-meter box. This is an inter-
esting phenomenon that should be investigated, but for the scope
of this work we sticked with a sound source that keeps its identity
and that is rich enough to reveal the resonances of the cavities. We
chose a snare drum pattern as a source.

We prepared three couples of stimuli, each couple correspond-
ing to the snare drum convolved with the impulse responses of
a sphere and a cube of the same volume. We chose volumes of
spheres having diameters 106cm, 60cm, and 36cm. These three
couples of stimuli where used to train the subjects, who could lis-
ten to the sounds as many times as they liked, and they could read
the shape that each sound came from. For the real test, five dif-
ferent volumes were used, corresponding to spheres having diam-
eters 100cm, 90cm, 70cm, 50cm, and 30cm. We did not choose
the same sizes used in the training phase because we would like to
avoid short-term memory effects and we want to assess the gener-
alization ability of the subjects. In principle, a good listener should
be able to decouple shape from pitch during training and to apply
the cues of shape perception to other pitches.

One might argue that shape recognition should be assessed
without any training. However, as it was pointed out in [6], the au-
ditory shape recognition task is difficult for most subjects just be-
cause in real life we can use other senses to get shape information
more reliably. This might not be the case for blind subjects [16],
but with our (sighted) subjects, we found that training was nec-
essary. Therefore, the task may be described as classification by
matching [15].

We used 19 subjects. Each of them listened to 100 sounds and
had to say, for each of them, if it came from a sphere or from a
cube. The 100 sounds were composed by random shuffling of ten
responses for each size for each shape. The results of the experi-
ment are summarized in fig. 4, where we can see two interesting
phenomena:

� The classification is significantly better than random choice
for both shapes. For the large cubes, classification is around
the threshold chosen in 2AFC experiments (e.g., 75%);

� The task is easier for larger volumes, converging to random
choice for volumes of diameter smaller than 50cm. This ob-
servation is supported by the ANOVA run on the cumulative
data represented in the third plot of fig 4 (F (4; 90) = 3:07,
Fcrit = 2:47, p < 0:05).

Looking at fig. 4 one might say that the classification task
is easier for the cube than for the sphere. Indeed a column-by-
column t-test run on these data does not allow us to draw such
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Figure 4: Results of the shape classification task. Left: correct
classification for spheres. Center: correct classification for cubes.
Right: correct classifications.

conclusion, since the variability is too high. However, looking at
the direction of the difference in subjective performance is also
important [14]. In this case, shape classification seems to be more
reliably done for boxes, regardless of size. We found that, by re-
moving the four subjects with the poorest perfomances, we got
curves similar to those of fig. 4, with an incrase by about 5��10%
in the number of correct responses.

Indeed, in the analysis we didn’t throw away any outliers even
though there were some. In particular, some subjects classified res-
onators of certain sizes (especially the smaller ones) consistently
with the same label. This may be due to a non-accurate training
or to a mental association between pitch and shape. On the other
hand, there were subjects who performed very well, such as the
one whose responses are depicted in fig. 5. In that chart, color
black in the lower row (and white in the top row) indicates that
spheres (or cubes) have been consistently classified throughout the
experiment. Grey-levels are used to indicate mixed responses. It is
clear that for this subject the task was easy for larger volumes and
more difficult for smaller volumes.
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Figure 5: Results of shape classification for the best subject.
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3.2.1. On the role of brightness

Brightness, often measured by the spectral centroid, plays a key
role in sound source recognition [15]. When subjects were asked
to give a qualitative description of the sounds played in the two dif-
ferent cavity shapes, they often said that the sphere sounds brighter.
This is confirmed by measuring the brightness of the impulse re-
sponses. We did that using the routine used to compute the spec-
tral centroid of sounds contained in the repository of the COST-
G6 Action on Digital Audio Effects 2. For instance, for cavities
with wooden walls and volume of 1m3, the centroid is 5570Hz
and 5760Hz for the cube and the sphere, respectively. This change
in brightness could be expected since, for the same volume, the
sphere has a smaller surface area than the cube. Therefore, ab-
sorption acts more effectively in the cube than in the sphere.

The effect of brightness is mitigated by the fact that the lis-
teners heard to different combinations of pitch (size) and shape in
random order, and brightness is also pitch dependent. If the anal-
ysis of sec. 4 has any perceptual relevance, the role of brightness
does not seem to be central in shape perception. However, this has
to be carefully verified with further experiments.

From a theoretical standpoint, our approach to shape classifi-
cation is purely ecological, as it uses models that are completely
determined by physical features of objects (size, shape, material).
In this framework, the role of brightness might be neglected. How-
ever, signal attributes such as brightness or harmonic structure are
important to understand how shape information are conveyed to
the listener. Such understanding is a prerequisite for the develop-
ment of simplified yet effective sound models.

4. ANALYSIS BASED ON AUDITORY MODELS

The correlogram is a representation of sound as a function of time,
frequency, and periodicity [12]. Each sound frame is passed through
a cochlear model and split into a number of cochlear channels,
each representing a certain frequency band. Cochlear channels are
nonlinearly spaced according to the critical bands. The signal in
each band is autocorrelated to highlight its periodicities. The au-
tocorrelation magnitude is expressed in grey levels in a 2-D plot.

We use the correlogram to analyze the impulse responses of
the cube and the sphere. Since the cavities are linear and time
invariant, a single frame is enough to characterize the behavior
of the whole impulse response. We use the impulse responses of
resonators having marble walls, just because the images are more
contrasted. However, using wooden resonators does not change
the visual appearance of correlogram patterns appreciably. Fig-
ure 6 depicts the correlogram of the impulse response of a cube
(edge length equal to 0:5m) and that of the impulse response of a
sphere having the same volume. Superimposed on the figure, we
notice some patterns that emerge from the analysis and that, we
conjecture, are the signature of the particular shape.

To support our conjecture, we make the following remarks:

� The cube has more than one vertical alignment of peaks,
which corresponds to the fact that expert listeners could in-
deed hear the superposition of more than one pitch;

� The curved pattern of the sphere gets more clear as the size
is increased (see figures 7 and 8). For small spheres it is
barely noticeable, and this is confirmed by the poor results
in shape discrimination for small cavities;

2http://echo.gaps.ssr.upm.es/COSTG6/
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Figure 6: Correlograms for the cube (edge 0:5m) and for the
sphere having the same volume.

� The pitch of the spherical impulse responses, as found in
the subjective experiments, may lay close to the asymptotic
value of the pattern depicted in figure 6.

Even though we should be cautios in inferring that this is the
kind of preprocessing that is used by the hearing system to make
the shape identification, we can certainly say that the correlogram
can be a useful tool to do the shape-from-sound detection.

Correlogram Sphere − frame 1/74

Lag [samples]

C
ha

nn
el

 n
um

be
r

50 100 150 200 250

20

40

60

80

Correlogram Cube − frame 1/60

Lag [samples]

C
ha

nn
el

 n
um

be
r

50 100 150 200 250

20

40

60

80

Figure 7: Correlograms for the cube (edge 1:0m) and for the
sphere having the same volume.

5. THE SHAPE-ENHANCED BABO MODEL

The BaBo model was proposed in [9] as a rectangular-resonator
physical metaphor that can be used to control a feedback delay
network. The model was extended in [6] to spherical cavities, and
it was proposed that a shape control handle could control the de-
gree of “roundness” by proper selection from a set of allpass filter
coefficients.
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Figure 8: Correlograms for the cube (edge 0:2m) and for the
sphere having the same volume.

The analysis of section 4 suggests that only a few resonances
are responsible for the patterns of figures 6 and 7 and, maybe, only
these resonances have to be properly located to convey the correct
sense of shape. For instance, fig. 9 shows a correlogram frame
obtained by keeping only the modal frequencies f11, f22, f02, and
f42 of the spherical frequency response. The curve of the pattern is
preserved. Similarly, only a few resonances are needed to preserve
most of the vertical alignments visible in fig. 6.
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Figure 9: Correlogram for a simplified model of spherical res-
onator that retains only four resonances.

In our future investigations, we will use these simplified cav-
ity models (i.e., parallel connections of a few second-order res-
onators) to see if (i) the same volume-based pitch matching is pre-
served; (ii) the shape classification task can be made easier and,
possibly, turned into a real shape recognition.
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of auditory source characteristics: Simple geometric form,”
Perception and Psychophysics, vol. 59, n. 8, pp. 1180–1190,
1997.

[5] A. J. Kunkler-Peck and M. T. Turvey, “Hearing shape,” Jour-
nal of Experimental Psychology, vol. 26, n. 1, pp. 279–294,
2000.

[6] D. Rocchesso and P. Dutilleux, Generalization of a 3-D res-
onator model for the simulation of spherical enclosures,, Ap-
plied Signal Processing, vol. 2001, no. 1, pp. 15–26, 2001.

[7] M. R. Moldover, J. B. Mehl and M. Greenspan, Gas-filled
spherical resonators: Theory and experiment, Journal of the
Ac. Soc. of America, vol. 79, no. 2, pp. 253–272, 1986.

[8] P. M. Morse and K. U. Ingard, Theoretical Acoustics,
McGraw-Hill, New York, 1968.

[9] D. Rocchesso, The Ball within the Box: a sound-processing
metaphor, Computer Music Journal, vol. 19, no. 4, pp. 47–
57, 1995.

[10] H. Levitt, Transformed up-down methods in psychoacous-
tics, Journal of the Ac. Soc. of America, vol. 49, no. 2, pp.
467–477, 1970.

[11] W. B. Joyce, Exact effect of surface roughness on the rever-
beration time of a uniformly absorbing spherical enclosure,
Journal of the Ac. Soc. of America, vol. 64, no. 5, pp. 1429–
1436, 1978.

[12] M. Slaney and R. F. Lyon, On the importance of
time – A temporal representation of sound, in Vi-
sual Representations of Speech Signals, M. Cooke, S.
Beete, and M. Crawford, eds., J. Wiley and Sons.,
Sussex, England, pp. 409–429, 1993. Available from
http://www.slaney.org/malcolm/pubs.html.

[13] T. Tolonen and H. Järveläinen, Perceptual study of decay
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