
SPEECH INTERFACE IMPLEMENTATION FOR XML BROWSER

Aki Teppo Petri Vuorimaa

Helsinki University of Technology Helsinki University of Technology
Telecommunications Software and Multimedia

Laboratory
P.O.Box 5400, FIN-02015 HUT, Finland

Telecommunications Software and Multimedia
Laboratory

P.O.Box 5400, FIN-02015 HUT, Finland
ateppo@cc.hut.fi Petri.Vuorimaa@hut.fi

ABSTRACT

The growing popularity of digital cellular phones and personal
digital assistants (PDA) is setting new demands for Internet
content producers. One problem with these devices is the small
visual display. WWW pages are usually designed for traditional
desktop computers and they are difficult to view with small
displays. In this paper, a solution is presented that uses the
audio capabilities of such mobile devices in addition to optional
visual display. The idea is to transform XML data into
VoiceXML in addition to some traditional display layout
language. This approach could also make Internet browsing
possible for visually handicapped people.

1. INTRODUCTION

The paper describes how XML [1] data can be displayed
and navigated through a speech interface in a consistent
manner. This is done by first transforming the original XML
data into VoiceXML [2] document and then using a VoiceXML
capable browser to display it. This kind of speech interface can
exist alone or side by side with a traditional browser interface.
The coexistence of two interfaces is suitable for PDA
environments, for example. The small visual display of PDA
can be used to present images and the auditory display can be
used to present textual information and to offer navigation
capabilities. A demonstration is presented in the paper. The
example consists of a small movie database, which is presented
simultaneously through visual and auditory displays.

2. TECHNICAL BACKGROUND

In this chapter, two main technical topics are briefly explained.
The first subject consists of data presentation and
transformation related technologies, especially XML and its
subsidiary technologies. The second topic consists of speech
technology related technologies and products used in our
research work.

2.1. XML Technologies

In short, XML is a method for presenting structured data in a
text file and it looks a bit like HTML [3]. XML is a meta-
language, which is used to describe other languages. Some of
the design goals for XML are that it should be easy to write
programs which process XML documents and that it should be
straightforwardly usable over the Internet [1]. One important
property of XML from our perspective is that XML documents
must be well formed and no exceptions to this are allowed. This
property means that the structure of data is unambiguous and

this is useful when the data is interpreted and transformed into
another XML language.

XSLT is a XML language used to describe transformations
from one XML data tree into another XML data tree [4]. A
XSLT document is called a stylesheet. Stylesheet contains
template rules. A template rule contains a pattern, which is
matched to the source XML data tree. A basic case is that this
pattern consists of XML element identification (tag). The rule
contains also the content, which replaces the original matched
pattern in the result tree.

XSL FO is the formatting part of eXtensible Stylesheet
Language (XSL) [5]. It contains formatting elements for
pagination, layout and styling of documents. A possible
publishing process is the following [5]: The original XML data
is just structured data, it does not contain any formatting
elements. Then XSLT is used to create the presentation of the
original data and XSL FO elements are used to describe the
styling. The resulting tree contains XSL FO elements with the
original data elements.

X-Smiles [6] is a XML browser currently being developed
in our laboratory at Helsinki University of Technology. It is
implemented using the Java language. It currently supports
several XML specifications including XSLT and XSL FO. It
has its own API for supporting third party extension
components (Markup Language Functional Component,
MLFC). This API was used in our research to create a MLFC to
support VoiceXML content. The browser will be published
soon as open source software and it is going to be available at
<http://www.x-smiles.org>.

2.2. Speech Interface

VoiceXML is designed for creating audio dialogs that feature
synthesised speech, digitised audio, recognition of spoken and
DTMF key input, recording of spoken input, telephony, and
mixed-initiative conversations [2]. VoiceXML’s main goal is to
bring the full power of web development and content delivery
to voice response applications, and to free the authors of such
applications from low-level programming and resource
management [2]. The language separates application logic from
platform dependent details. This means that the same voice
application can be easily deployed to different locations
provided that the underlying platforms conform to VoiceXML
specification.

The Java Speech API defines a cross-platform software
interface to speech technology. Two core speech technologies
are supported through the Java Speech API: speech recognition
and speech synthesis. Speech recognition provides computers
with the ability to listen to spoken language and to determine
what has been said. In other words, it processes audio input
containing speech by converting it to text. Speech synthesis

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-272

mailto:ateppo@cc.hut.fi
http://www.x-smiles.org/

provides the reverse process of producing synthetic speech from
text. It is often referred to as text-to-speech technology. [7]

The speech synthesis system used in our research was
Festival [8], which offers a general framework for building
speech synthesis systems. It also includes some support for Java
Speech API.

The speech recognition system used was Sphinx [9]. Sphinx
is mainly a library, not an independent product. So a custom
server application was developed during our research.

3. IMPLEMENTATION

The goal of the research project was to develop a system
demonstrating the possibilities of VoiceXML combined with a
more traditional browser interface. In this chapter, the resulting
system is described. First, the overall architecture is presented
and then the sub-components are presented individually. Finally
the actual demonstration with example data is presented with
some screenshots.

3.1. Overall Architecture

The demonstration software consists of three main parts. The
first part is the X-Smiles browser package. The second one is
the VoiceXML interpreter package and the third part is the
engine package. The overall architecture is shown in Figure 1.
The figure depicts also the relations between different packages.

Festival
Text-To-Speech

Sphinx
Speech Recognition

VoiceXML
Interpreter

Java Speech API

JS API
for

Festival

JS API
for

Sphinx

Interpreter
Package

Engine
Package

X-Smiles
XML Browser

VoiceXML
MLFC

Browser
Package

Figure 1. The overall architecture.

The browser package includes the X-Smiles browser and
the VoiceXML Markup Language Functional Component
(MLFC), which was implemented in the research project. The
essential task of this package is to fetch the requested XML
document and to pass it to appropriate MLFC. In our
demonstration, the XML file contains XSL FO data, which is
mediated to FO MLFC. The XML file also contains a reference
to a VoiceXML data file, which is in turn passed to the
VoiceXML MLFC.

The interpreter package contains a basic implementation for
VoiceXML interpreter (actually VoiceXML interpreter could be

called VoiceXML browser, but here it is called interpreter to
avoid a possible mix-up with the X-Smiles browser). The main
task of this package is to translate the VoiceXML content into
suitable actions for underlying speech engines. These actions
are defined in terms of Java Speech API so this interpreter is
independent of the underlying speech engines.

The engine package contains engines for speech recognition
and speech output. Also, the Java Speech API implementations
for these engines are included here.

3.2. Simple VoiceXML Interpreter

An adequate VoiceXML interpreter for our purposes was
implemented during the project. It covers only a small subset of
the VoiceXML specification [2]. The interpreter was
implemented using the Java language. All interaction between
the interpreter and the underlying speech engines was
implemented using the Java Speech API (JSAPI) [6]. The main
advantage of using the JSAPI is that the interpreter is
independent from the underlying engines. This means that the
underlying engines can be changed with minimal effort given
that the new engines support JSAPI.

The goal of the speech interface was to be able to output the
document contents and to offer basic navigation capabilities, so
the most relevant VoiceXML elements for our purposes were
the “prompt” and the “menu” element. The “prompt” element is
used for speech output and the “menu” element is used for
navigation. The “form” element was completely ignored,
because the interface did not need to gather any data input from
the user in addition to the navigation choices.

3.3. Java Speech API implementation for Festival and
Sphinx

The Text-To-Speech (TTS) engine used was Festival [8].
Festival includes quite good support for Java Speech API.
However, because of licensing reasons the Festival group could
not release one library needed for the JSAPI support [10]. This
utility library from Sun Microsystems contained some basic
implementation for JSAPI. So, the functionality of this utility
library had to be implemented. As a result an adequate JSAPI
library was created and it was also used with the JSAPI support
for Sphinx.

As Sphinx is an Automatic Speech Recognition (ASR)
library, the actual ASR engine application had to be
implemented. The Sphinx library is written in C language and it
can be compiled in Unix environments. Our development
environment was Linux (RedHat 6.2). The Sphinx package
contains example client/server software, which was used as a
basis for our JSAPI server. One compromise had to be made
during development: The resulting server does not support
dynamic grammar loading, so it has to be started again every
time the grammar changes. This leads to a longer delay between
grammar changes.

The Java part of JSAPI support was implemented to fulfill
our needs. The complete JSAPI support would have been quite
a large task, so only the required parts were implemented. The
Java part of JSAPI connects to ASR server through TCP/IP,
which is used to transfer control signals.

3.4. Integration to the X-Smiles Browser

As mentioned in chapter 3.1 the X-Smiles browser has a kind of
plug-in interface for third party XML interpreters, MLFCs. This

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-273

API was used to create the VoiceXML MLFC. The
implementation was quite simple, because the MLFC acts
merely as a wrapper to the VoiceXML interpreter discussed in
chapter 3.2.

X-Smiles already included a XSL FO interpreter, which was
used as a visual display for the XML data. This MLFC also
supports secondary MLFCs. It means that there can be two
XML interpreters at the same time. This feature was used in our
demonstration in the following way: The VoiceXML part was
linked to the FO document as an “external-graphic” element.
Now, when FO MLFC tries to load this data and notices it is in
some other XML language, a secondary MLFC is loaded.
Naturally, in our case this secondary MLFC is a VoiceXML
MLFC.

3.5. Transforming the Sample XML Data

The sample XML data was extracted from [11]. The data
contains information related to movies. Figure 2 shows the
information of one movie. The goal was to render the relevant
parts of the data through TTS engine and to provide navigation
through speech recognition engine.

<movie name="Star Wars" id="star">
<information>
 When the opening scroll of Star Wars
 mentions "a galaxy far, far away,"
 it might unwittingly refer to the
 '70s, a time when "the force" went
 hand in hand with "the Fonz," and
 hokeyness ran unchecked.
</information>
<picture file="sw.jpg"/>

</movie>

Figure 2. Extract from the sample data.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>

<xsl:template match="/">
<vxml version="1.0">
<xsl:apply-templates select="movies"/>
</vxml>
</xsl:template>

<xsl:template match="movies">
<!-- Creates the main menu -->
<!-- Writes the movie specific information into
separate file using Xalan extensions -->
</xsl:template>

</xsl:stylesheet>

Figure 3. XSLT to transform sample data to VoiceXML.

The presentation chosen was a two-level menu. In the main
menu all the movies are offered and when the user chooses one
of them, the related information is displayed. A natural way was
to collect all the “name” attributes of the “movie” elements and
create a VoiceXML menu of them. The “information” elements
of individual movies were then collected into separate files. The
developed XSL Transformation stylesheet is shown in Figure 3
and the resulting VoiceXML menu is shown in Figure 4.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE vxml SYSTEM "voicexml1-0.dtd">
<vxml version="1.0">
<menu>
 <prompt>
 Welcome to current movies
 </prompt>
 <prompt>
 Please, select one of: <enumerate/>
 </prompt>
 <choice next="pulp.fo">Pulp Fiction</choice>
 <choice next="fifth.fo">Fifth Element</choice>
 <choice next="star.fo">Star Wars</choice>
 <choice next="psycho.fo">Psycho</choice>
 <choice next="mulan.fo">Mulan</choice>
 <choice next="sound.fo">Sound of Music</choice>
</menu>
</vxml>

Figure 4. The resulting VoiceXML main menu.

Similar transformation process was also created to produce
the XSL Formatting Objects version of the data.

4. RESULTS

In this chapter, the results of development are represented. First
the system functionality is represented by means of the example
data and then the system performance is discussed. The example
data and transformations related to it were already described in
section 3.5.

The original data was transformed into two XML
languages: XSL FO and VoiceXML. XSL FO was used to
define the layout of visual display and VoiceXML was used to
define the speech interface dialog. The resulting visual main
menu is shown in Figure 5. From the main menu user can
choose a movie and see the details of it. The detail page of one
movie is shown in Figure 6.

Figure 5. The XSL FO main menu of the demonstration.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-274

Figure 6. Individual movie page after choosing "Pulp
Fiction" from the main menu.

When each of these pages opens, the contents are also
rendered through the speech interface. User can navigate with
mouse or through the speech recognition interface. A sample
voice interface dialog is represented in Figure 7.

Browser: Welcome to current movies! Please
select one of: Pulp Fiction, Fifth Element, Star
Wars, Psycho, Mulan, Sound Of Music.
User: Pulp Fiction
Browser: Pulp Fiction – Information – Quentin
Tarantino’s award-winning homage to dime-store
novels is presented in a collector’s . . .
Please select one of: Back
User: Back
Browser: Welcome to current movies! . . .

Figure 7. A sample VoiceXML dialog.

The system was tested with two different configurations.
The first configuration was Intel Pentium II 300MHz with
RedHat Linux 6.2 and 64Mb memory. The second
configuration was Intel Celeron 450MHz with RedHat Linux
6.1 and 128Mb memory. Frankly speaking, the first
configuration was completely unusable. This is due to the high
memory usage of the used TTS and ASR engines. When
opening the main menu it took minutes before the TTS started
to render the text and the ASR was ready to get response from
the user. However, the second configuration was much more
usable. TTS started in a few seconds and speech recognizer was
ready in about ten seconds after opening a page.

5. CONCLUSIONS

In this paper, the sample data was a custom XML language file,
which was transformed into two presentation languages. XSL
Formatting Objects was used for visual and VoiceXML for
auditory display. XSL Transformation was used as a tool for
converting the original data into these presentation formats.
This tool suited well for the task and more complicated
transforms could be possible. One could maybe use XSLT to
transform more common visual layout languages, like XHTML
[12], into VoiceXML. These kinds of transforms from huge

amount of existing content into VoiceXML would make the
content creation easier for speech interfaces. Naturally,
VoiceXML is not enough alone. A lot depends on the speech
engine manufacturers, namely whether they are going to support
VoiceXML extensively or not.

6. REFERENCES

[1] T. Bray et al., Extensible Markup Language (XML) 1.0
(Second Edition), <URL:
http://www.w3.org/TR/2000/REC-xml-20001006>, 2000.

[2] VoiceXML Forum, Voice eXtensible Markup Language
VoiceXML, <URL: http://www.voicexml.org>, 2000.

[3] B. Bos, “XML in 10 points”, <URL:
http://www.w3.org/XML/1999/XML-in-10-points>, 1999.

[4] J. Clark, XSL Transformations (XSLT) Version 1.0, <URL:
http://www.w3.org/TR/xslt>, 1999.

[5] W3C, Extensible Stylesheet Language (XSL) Version 1.0,
<URL:http://www.w3.org/TR/2000/CR-xsl-20001121>,
pp. 1-6, 2000.

[6] P. Vuorimaa, T. Ropponen and N. von Knorring, “X-
Smiles XML Browser”, the 2nd International Workshop
on Networked Appliances, IWNA’2000, New Brunswick,
NJ, USA, Nov. 30 - Dec. 1, 2000.

[7] Sun Microsystems, Java Speech API Programmer’s Guide
version 1.0, pp. 1, 1998.

[8] A.W. Black, P. Taylor, and R. Caley, The Festival Speech
Synthesis System - System documentation, <URL:
http://www.cstr.ed.ac.uk/projects/festival/manual/festival_t
oc.html>, 1999.

[9] K-F. Lee, H-W. Hon, and R. Reddy, “An Overview of the
SPHINX Speech Recognition System”, IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 38, no. 1,
Jan. 1990.

[10] Festival distribution version 1.4.0, file:
festival/src/modules/java/cstr/festival/jsapi/ReadMe, 1999.

[11] O. Marttila and P. Vuorimaa, “XML Based Mobile
Services”, the 8th Int. Conf. in Central Europe on
Computer Graphics, Visualization, and Interactive Digital
Media, WSCG’2000, Czech Republic, Feb. 7-10, 2000.

[12] W3C, XHTML™ 1.0: The Extensible HyperText Markup
Language, <URL: http://www.w3.org/TR/2000/REC-
xhtml1-20000126>, 2000.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-275

http://www.w3.org/TR/2000/REC-xml-20001006>
http://www.voicexml.org>/
http://www.w3.org/XML/1999/XML-in-10-points>
http://www.w3.org/TR/xslt>
http://www.w3.org/TR/2000/CR-xsl-20001121>
http://www.cstr.ed.ac.uk/projects/festival/manual/festival_toc.html>
http://www.cstr.ed.ac.uk/projects/festival/manual/festival_toc.html>
http://www.w3.org/TR/2000/REC-xhtml1
http://www.w3.org/TR/2000/REC-xhtml1

	1. INTRODUCTION
	2. TECHNICAL BACKGROUND
	2.1. XML Technologies
	2.2. Speech Interface

	3. IMPLEMENTATION
	3.1. Overall Architecture
	3.2. Simple VoiceXML Interpreter
	3.3. Java Speech API implementation for Festival and Sphinx
	3.4. Integration to the X-Smiles Browser
	3.5. Transforming the Sample XML Data

	4. RESULTS
	5. CONCLUSIONS
	6. REFERENCES

