
Guinea Pig: System Manual
The goal of the Guinea Pig project is to build a system that automates the
running of psychoacoustical listening tests. A variety of different test types
will be implemented including such as AB-test, ABC-test, ...

For further information, see System Manual: Overview

Manual Index
Overview
Installation Instructions and Setup
Test directory structures and file formats
Tests

Test Creation
Running a test
...

Subject’s User Interface
Results processing and conversion
Sound Player Module
Utilities & Tools
API Documentation

Last modified: Sun Aug 1 18:57:56 EEST 1999

Guinea Pig - Overview
guinea pig n

1: a small stout-bodied short-eared nearly tailless domesticated rodent (Cavia
cobaya) often kept as a pet and widely used in biological research 2: a
subject of scientific research, experimentation, or testing

- Webster

The goal of the GuineaPig project is to build a system that makes easier to create psychoacoustical
listening test by taking care of some tedious routine tasks like creation of playlists. System will also
automate the running of these tests.

Traditional procedure when making listening tests is such that the tester edits and records the whole
test on a DAT-tape that is then played to the test subject. The test subjects listen to the test and mark
their answers on paper. The tester then has to enter the answers manually to a computer to analyze
them. GuineaPig eliminates the need to edit the whole test into a tape beforehand and removes the
manual entering of the results. Also the test doesn’t need to be the same for all subjects. The order, in
which the individual test items consisting of sound samples are presented to the subject, can be very
easily arranged to be different for each session.

The first phase is the test creation where the tester selects the test type, used sound samples and other
test parameters. As the result configuration files are generated that contain the parameters needed in
the test.

The test is then run for each test subject and results are saved. After the tests have been performed the
results can be studied, processed and analyzed with some statistical programs.

Test types
A variety of test types have been implemented including:

A/B: Test in which the test subject chooses one out of two samples played to him/her.
A/B/X : Test in which the sample X is the same sample as A or B. Subject chooses which one
sample X is.
A/B/C: Test in which A is the reference sample and the subject chooses how much samples B
and C (one of which is the same sample as A) resemble the reference sample A. (Actually this
test is referred as a Ref/A/B-test).
A/B Scale: An A/B test in which subject gives an answer for both samples on a scale specified by
the test creator.
A/B Scale, Fixed Reference: A test in which subject gives an answer how sample compares to a
reference.
A/B Scale, Hidden Reference: A test in which subject gives an answer for both samples on a
scale specified by the test creator. One of the samples A or B is the hidden reference.
Single Stimulus: A Test in which a single stimulus signal is played and then graded.
TAFC (Two alternatives forced choice): Test in which two samples are played altering some
parameter, until subject can no longer hear difference between the samples.

A flexible Generic Test class is used as base for all tests. Most tests listed above can be implemented
with the generic test only.

Testing features
Many options and parameters allow customizing the tests. Most features are available for all tests.

Multiple questions: All tests can include any number of questions. GP contains ready-made
question components for giving grades, multiple-choices, and rank-order. Also additional
question components can be added.
Free or fixed sequence: The sample sequence can be fixed (freely configurable with multiple
samples and pauses between samples) or free where the subject selects in which order samples
are played.
Time limit for answering: A timeout can be set to limit the time the subject has for giving the
answers for a test item. Without a timeout the subject can have as much time as he needs to
decide the answers. With a timeout, the test goes to the next item when the time ends.
Parallel switching: Normally when the subject switches to another sample, the currently playing
sample stops and the another starts from beginning. In parallel mode the switching to another
sample is done by cross-fading to the other sample and does not just jump to the start to the
beginning to the sample. Useful in test where long samples are compared. Parallel switching is
only usable for free sequence tests.
Playlists are used to define the order of the test items that are presented. Different playlists may
be defined for different sessions.

Audio output features
The sound player handles the audio output of the GuineaPig system. It reads the sample files, mixes
them together and sends the audio data to output devices. The player is written in C. A higher level
Java module is provided for using the player.

The Sound Player uses the SGI Audio Library and the SGI Audio File Library, therefore all supported
devices and sound file formats supported by them are available in GP. The audio devices includes the
normal analog stereo outputs on most systems as well as the default or additional digital outputs up to
eight digital channels on one device (ADAT). The supported audio file formats include:
AIFF/AIFF-C, Next/Sun, Wave, MPEG1, raw data, and many more.

Some features of the sound player:

Multichannel : Number of output channels is limited only by output devices of the machine. The
sound player can use multiple audio devices in parallel, emulating wider output port than a single
device. For example, when three ADAT cards are used, 24-channel output is possible. Multiple
devices are syncronized automatically.
Virtual players allow partitioning the output of GP into smaller sections. For example, single
ADAT output could be used to implement four stereo players.
Many audio file formats: All audio file formats supported by SGI’s audio file library including:
AIFF/AIFC, WAV, AU, MPEG-1 layers I/II and others with multiple sample rates and sample
widths.
Sampling rates: depending on the audio device, at least the most common rates from 8kHz to
48kHz are supported (device may limit the possible choices. For example, digital outputs
generally support only 32/44.1/48 kHz).

http://www.javasoft.com/

24 bit audio: SGI audio libraries can support up to 24 bits per sample. GP’s sound player uses
floating point calculation for rendering audio output.
Analog and digital outputs: Most SGI workstations have analog outputs. Some also have digital
outputs by default (Octane, some Origin and Onyx2 servers) or with an digital audio option (on
O2 with the PCI Professional Audio Option). Digital output interfaces include
ADAT/SPDIF/AES3, optical/RCA/BNC connectors. Analog output generally are 16bit, digital
upto 24 bit (ADAT/AES3).
Sample mixing: multiple samples can be mixed to the output with each with its own volume
levels and faders.
Sample synchronization: samples can be synchronized with sample frame accuracy.
Faders: each sample has its own fader that does real fades using linear or dB linear fading. Also
supports cross-fading between samples.
Volumes: each sample sample has its on volume controls (with fader, see above). Also there is a
calibration level for each sample that can be used to calibrate a set of samples used in a test.
Player’s output also have a calibration or master volume level control than can be used for setting
the MCL level of a test session of general master output level.
Java module for controlling sound player: the sound player is a separate program. A easy
object-oriented java module is provided for controlling the player.

See also: SGI Audio Features.

Requirements
The system runs on and is designed only for Silicon Graphics’ workstations with IRIX 6.3 or greater.
The GP’s sound player engine uses the newer SGI’s Audio Library for IRIX 6.3 and up and POSIX
threads (pthreads). In future versions, IRIX 6.5 will be required.

Most of the system is written in Java. Java 1.1 is required and it is freely available for download from
SGI. In future, Java 1.2 (Java2) will be used.

Additional information
The GuineaPig web-page is located at:

www.acoustics.hut.fi/~hynde/GuineaPig2/index.html

The page contains the AES 106th GuineaPig paper and presentation slides presented at the AES
106th Convention, May 8-11 1999, Munich, Germany:

GuineaPig paper in AES 106th: [gzipped PS (674K) / PDF (1103K)]
AES Presentation slides on 25/May/1999: [gzipped PS (256K) / PDF (352K)]
Slides shown at the paper presentation at 106th AES Convention. Includes extra slides that were
excluded from the presentation to fit to the time allowed.

· Manual index ·

Last modified: Fri Jul 30 18:58:43 EEST 1999

http://www.acoustics.hut.fi/~hynde/GuineaPig2/gp_aes_slides.pdf
http://www.acoustics.hut.fi/~hynde/GuineaPig2/gp_aes_slides.ps.gz
http://www.acoustics.hut.fi/~hynde/GuineaPig2/gp_aes_paper.pdf
http://www.acoustics.hut.fi/~hynde/GuineaPig2/gp_aes_paper.ps.gz
http://www.aes.org/events/106/
http://www.aes.org/events/106/
http://www.acoustics.hut.fi/~hynde/GuineaPig2/index.html
http://www.sgi.com/developers/devtools/languages/java.html
http://reality.sgi.com/employees/cook/audio.apps/hw.html

Installation Instructions and Setup

1 · Requirements
The requirements of the system are:

A silicon graphics workstation or server
IRIX 6.3 (O2) or 6.4 (Octane, Origin-series). Should work on IRIX 6.5 too, but not tested.
Audio outputs, analog or digital.
Java 1.1

The packages can be installed either with swmgr (Software Manager) or inst.

2 · Download and Install Java
If Java is not installed on your system or you want to upgrade it, download and install the Java
Execution Environment and optionally the Java Development Environment for SGI from SGI’s
java page. Follow the instructions on the page to install java.

To see whether you have java installed or its version, type

 versions java_eoe java_dev

in a shell window. It will show a subsystem list installed to your system. If java_eoe is not displayed
in the list, you will need to download and install the Java Execution Environment. I suggest Java
Development Environment 3.1.1 (Sun JDK 1.1.6) & Java Execution Environment 3.1.1 (Sun
JRE 1.1.6) or later are installed.

3 · Install GuineaPig System
Install the GuineaPig package with inst or swmgr.

4 · Configuring GuineaPig (personal settings)
You must add the GuineaPig binaries directory to your shell’s path. For bourne-type shells you could
use (for example, in file .profile):

 PATH="$PATH:/usr/GuineaPig/bin"
 export PATH

or for csh and derivates (tcsh, etc.) (for example, in file .cshrc):

 setenv PATH "$PATH:/usr/GuineaPig/bin"

That way the shell can find the GuineaPig commands and the sound player.

· Document index ·

Last modified: Fri Jul 30 19:01:10 EEST 1999

http://www.sgi.com/developers/devtools/languages/java.html
http://www.sgi.com/developers/devtools/languages/java.html

Directory structure and files
Each test set should have it’s own directory where the information about the test is stored. This
information contains the parameters of the test, playlists, the samples and the results. The structure of
the test directory is shown below.

1 · Test configuration
The file test.config contains the information needed to perform the test. It tells the type of the test,
samples used, number of testees and so on. This file can be created with Test creation module. The
test config file is usually named ’ test.properties’ but the name can be anything you want.

More detailed information: Format of the test.config file

2 · Test items
Test items file contains information on how samples are used together in a test. In it the tester can
generate pairs or triples of samples that form the test items. The test items file’s name is usually
’ items.properties’.

More detailed information: Format of the test items

3 · Playlist
The playlist tells the order the individual test items are presented to the subject. A single test item can
be, for example, a certain sample pair in the case of the AB-test. As the result of performing one test
item an entry is generated in the results file.

More detailed information: Format of the playlist

4 · Sample list
The sample list relates the sample IDs the test items use to the actual audio samples. The information
about a sample contains at least the sample ID and the file name of the audio file. Depending on the
type of sample, additional information may be also stored.

More detailed information: Format of the samplelist file

5 · Audio samples
The actual audio sample files are usually kept in its own directory. The available sound sample
formats are listed in the Sound Player documentation.

6 · Results
The results from a test session are stored in a file using Java’s serialization system. One test session
produces one session log or results file. Some information is stored about the session in addition to
subjects’ answers.

The file name of the session result file is automatically generated from the session ID. It is the form of
’ results_sessionID’ where sessionID is the session ID of session. Session IDs are generally like
’S14864464’ (automatically generated session ID, the letter ’S’ followed by a number of minutes after
January 1st, 1970) or ’ses03’ (explicitly set session ID by tester). A name for a session result file could
be, for example: ’ results_S14864464.ser’ (.ser-suffix is added to show that it is a serialized file).

More detailed information: Format of the results, result processing

· Document index ·

Last modified: Fri Apr 17 16:38:18 EET DST 1998

Test config file
The test config file is the main configuration file that the Test creation module creates. It contains the
test specific configuration information needed by the GP system when actually running the test.

The test config is stored in file test.properties in the test’s main directory. The name is only a
suggestion, the file can have any name.

See what parameters are needed in test parameter file by different test types.

· Directory Structure · Document index ·

Last modified: Fri Apr 17 16:45:36 EET DST 1998

Playlist
The playlist is a file that tells the order the individual test items are presented to the subject. A single
test item can be, for example, a certain sample pair in the case of the AB-test.

The playlist is stored in a file in the test’s main directory. The playlist can be specific to a certain test
session or it can be global for all sessions. If the playlist’s file name has not been explicitly specified,
a session specific playlist is searched for from file named ’playlist_sessionID’ where sessionID is the
session ID of the current session. For example, if the session’s ID is ’ses3’, the file named
’playlist_ses3’ is looked for. If no session specific play list is not found, a file named ’playlist’ is
looked for (the global playlist). If it is not found, a playlist will not be used and items will be presented
to the subject in the order the system reads them from the items list (but the presentation order may
not be the same as the order of items in the items file).

The playlist is a text files that contains the list of item IDs to be played to a subject. Each line is
contains one item ID. Comments can be added, the ’#’-character marks the start of a comment which
continues to the end of line. Empty lines are also allowed.

The following example explains the format of the file. There are four items listed in the playlist and
they are to be played to the subject in the order item1, item3, item4, item2.

#
Order of items and which items are to be included in this test.
Not all items in items file have to be used.
#
item1
 #and another comment
item3# this is also a comment
#yet another comment
item4
item2

· Directory Structure · Document index ·

Sample list
The sample list relates the sample IDs the test items use to the actual audio samples. The information
about a sample contains at least the sample ID and the file name of the audio file. Depending on the
type of sample, additional information may be also stored.

The list is currently a text file that contains the information needed to construct the java-objects used
for playing samples. Here is an example of a sample list:

Samples file
#

pirr44.class=guinea.player.SoundSample
pirr44.name=pirr44
pirr44.filename=samples/short/pirr44.aiff

pirr32.class=guinea.player.SoundSample
pirr32.name=pirr32
pirr32.filename=samples/short/pirr32.aiff

pirr22.class=guinea.player.SoundSample
pirr22.name=pirr22
pirr22.filename=samples/short/pirr22.aiff

pirr16.class=guinea.player.SoundSample
pirr16.name=pirr16
pirr16.filename=samples/short/pirr16.aiff

pirr11.class=guinea.player.SoundSample
pirr11.name=pirr11
pirr11.filename=samples/short/pirr11.aiff

pirr8.class=guinea.player.SoundSample
pirr8.name=pirr8
pirr8.filename=samples/short/pirr8.aiff

mcll.class=guinea.player.SoundSample
mcll.name=mcll
mcll.filename=samples/pink.aiff

Lets take a closer look at one sample’s information:

pirr44.class=guinea.player.SoundSample
pirr44.name=pirr44
pirr44.filename=samples/short/pirr44.aiff

First in the start of every line is a sample ID. In this case it is pirr44. After the ID, there is a property
name and it value if the form of ’name=value’ or ’name: value’. For example, the line

pirr44.filename=samples/short/pirr44.aiff

sets the property ’ filename’ of the sample pirr44 to value ’samples/short/pirr44.aiff’.

The properties for sound samples are:

class=java class name (required)
The java class name of the sample. For now only ’guinea.player.SoundSample’ makes sense.

name=sample ID (required)
The sample ID of the sample, should be same as the ID in the beginning of line.

filename=file name of audio sample (required)
The file name of the real audio file.

correctionVolume=correction (optional)
A correction volume or calibration for sample’s volume level. The correction is relative to the
sample’s normal level. It can be a level multiplier or it can be a dB level. Example: a value of
’-6dB’ is equivalent to about ’0.5’ multiplier.

· Directory Structure · Document index ·

Last modified: Wed Mar 25 14:02:53 EET 1998

Results
The results from a test session are stored in a file using Java’s serialization system. A session log of a
session contains information about the session:

Session ID.
Starting time of session.
Ending time of session.
Session’s MCL level.
If the test was aborted because some error, the exception that caused the test to abort is stored.
Answers for each test item.

The answers are copies of the test items used in the session with the subject’s answers added. Each
subject has its own copy of the test item and his/hers answers are added to that copy. Information for
each test item for each subject in addition to test item parameters are:

The subject ID of the subject that gave these answers.
The session ID.
Starting time of this item.
The duration of the item for this subject or timeout-indicator that time for that item ran out.
Number of samples played or number of sample switches the subject made before deciding the
answers.
Answers for this item. It may not contain all answers if time limit was enforced and time ran out
for this item.

Serialized result files can be converted to human/computer readable text files with the result
processing tools for analysis with statistical packages.

· Directory Structure · Document index ·

Last modified: Wed Mar 25 11:59:17 EET 1998

Tests
Test types - test types supported by the GP system
Test items - test items
Test creation - creating a test
Common parameters - common parameters for all tests
Running a test - How to run a test
Samples sequence - Sample sequences, fixed/free sequence, defining a seqence
Timeout and timeout warning
Switching - parallel/normal switching, parallel switching parameters
MCLL setting - setting MCL level, user definable, limits, fixed level
Sound player configuration - sound player parameters and virtual players.
Logging - saving messages printed by the test engine when a test is run.

· Document index ·

Last modified: Tue Jul 27 12:44:06 EEST 1999

Test types
A variety of test types has been implemented including:

A/B: Test in which the test subject chooses one out of two samples played to him/her.
A/B/X : Test in which the sample X is the same sample as A or B. Subject chooses which one
sample X is.
A/B/C: Test in which A is the reference sample and the subject chooses how much samples B
and C (one of which is the same sample as A) resemble the reference sample A. (Actually this
test is referred as a Ref/A/B-test).
A/B Scale: An A/B test in which subject gives an answer for both samples on a scale specified by
the test creator.
A/B Scale, Fixed Reference: A test in which subject gives an answer how sample compares to a
reference.
A/B Scale, Hidden Reference: A test in which subject gives an answer for both samples on a
scale specified by the test creator. One of the samples A or B is the hidden reference.
Single Stimulus: A Test in which a single stimulus signal is played and then graded.
TAFC (Two alternatives forced choice): Test in which two samples are played altering some
parameter until the subject can no longer hear the difference between the samples.
SSMS (Single Stimulus Mixed Source)
Generic test: A generic test type.

Additional options and features for most tests:

Multiple answers: All tests can include additional questions. Questions (answers) can be choices
and grades (configurable).
Free or fixed sequence: The sample sequence can be fixed (freely configurable with multiple
samples and pauses between samples) or free where the subject selects in which order samples
are played.
Time limit for answering: A timeout can be set to limit the time the subject has for giving the
answers for a test item. Without a timeout the subject can have as much time as he needs to
decide the answers. With a timeout, the test goes to the next item when the time ends.
Parallel switching: Normally when the subject switches to another sample, the currently playing
sample stops and the another starts from beginning. In parallel mode the switching to another
sample is done by cross-fading to the other sample and does not just jump to the start to the
beginning to the sample. Useful in test where long samples are compared. Parallel switching is
only usable for free sequence tests.
MCLL setting: The most comfortable listening level can be fixed by the tester or is set by the
subject within the volume range defined by the tester.

· Tests index · Document index ·

Last modified: Wed Jul 28 16:20:01 EEST 1999

A/B Test
In an A/B Test two samples are compared. The test subject chooses one out of two samples played to
him/her as the answer. The question can be for example: ’Which of the samples sounds better?’.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class AB A class alias (AB) or a fully qualified java class name
(guinea.logic.ABTest) of the class that handles the A/B test.

Req.

Test item parameters
Test items for A/B test have two parameters A and B which are sample IDs of the samples which are
compared.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

Here is an example of an A/B test item:

 # which sample is the A sample
 item1.A=pirr44
 # which sample is the B sample
 item1.B=pirr32

The item’s itemID is ’ item1’.

Results
As a result the subject’s answer is recorded. It is either ’A’ or ’B’ (which was better, etc.).

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:16:08 EET 1999

A/B/X Test
In an A/B/X test the sample X is the same sample as A or B. Subject chooses which one sample X is.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class ABX A class alias (ABX) or a fully qualified java class name
(guinea.logic.ABRefTest) of the class that handles the A/B/X test.

Req.

Test item parameters
The items used in A/B/X test have three parameters A, B, and Ref (reference) which are sample IDs of
the samples which are compared. The Ref sample is the X in the case of A/B/X test.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

Ref sample ID Sample ID of the reference (X) sample Ref. Req.

Here is an example of an A/B/Ref test’s item:

 item2.A=pirr22
 item2.B=pirr32
 item2.Ref=pirr32

Results
As a result the subject’s answer is recorded. It is either ’A’ or ’B’ (which is the same as the reference
X.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:32:47 EET 1999

A/B/C Test
In an A/B/C (or A/B/Ref) test the subject chooses how much samples A and B (one of which is the
same sample as Ref) resemble the reference sample Ref. Grades are given for A and B.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class ABC A class alias (ABC) or a fully qualified java class name
(guinea.logic.ABRefTest) of the class that handles the A/B/C test.

Req.

Test item parameters
The test items used in A/B/C tests contain three parameters A, B, and Ref (reference) which are
sample IDs of the samples which are compared.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

Ref sample ID Sample ID of the reference sample Ref. Req.

Here is an example of an A/B/Ref test’s item:

 item2.A=pirr22
 item2.B=pirr32
 item2.Ref=pirr32

The items itemID is ’ item2’.

Results
As a result the subject’s answers are recorded. Grades are given for samples A and B on how they
compare to the reference.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:29:34 EET 1999

A/B Scale Test
In an A/B Scale Test two samples are compared. The subject gives a grade for both samples from a
scale defined by the tester. The question can be for example: ’How good is A?’.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class ABscale A class alias (ABscale) or a fully qualified java class name
(guinea.logic.ABTest) of the class that handles the A/B scale test.

Req.

Test item parameters
Test items for A/B Scale test have two parameters A and B which are sample IDs of the samples
which are compared.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

Here is an example of an A/B test item:

 # which sample is the A sample
 item1.A=pirr44
 # which sample is the B sample
 item1.B=pirr32

The item’s itemID is ’ item1’.

Results
As a result the subject’s answers are recorded. A grade is given for both A and B.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:21:14 EET 1999

A/B Scale (Fixed reference) Test
In an A/B Scale (Fixed reference) test the subject gives a grade for a sample on how the sample
compares to the reference.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class ABscaleFixedReferenceA class alias (ABscaleFixedReference or ABscaleFR)
or a fully qualified java class name
(guinea.logic.ABscaleFTest) of the class that handles
the A/B Scale (fixed ref.) test.

Req.

Test item parameters
The test items used in this test have two parameters A and Ref (reference) which are sample IDs of the
samples which are compared.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

Ref sample ID Sample ID of the reference sample Ref. Req.

Here is an example of an ARef item:

 # which sample is the A sample
 item3.A=pirr32
 # which sample is the B sample
 item3.Ref=pirr44

The items itemID is ’ item3’.

Results
As a result the subject’s answer is recorded. A grade is given for sample A on how it compares to the
reference.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:37:07 EET 1999

A/B Scale (Hidden reference) Test
In an A/B Scale (Hidden reference) test the subject gives an answer for both samples on a scale
specified by the test creator. One of the samples A or B is the hidden reference.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class ABscaleHiddenReferenceA class alias (ABscaleHiddenReference or
ABscaleHR) or a fully qualified java class
name (guinea.logic.ABRefTest) of the class
that handles the A/B Scale (hidden ref.) test.

Req.

hiddenReference true This test is a hidden reference version of this
test.

Req.

Test item parameters
The test items used this test have three parameters A, B, and Ref (reference) which are sample IDs of
the samples which are compared.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

Ref sample ID Sample ID of the reference sample Ref. Req.

Here is an example of an A/B/Ref test’s item:

 item2.A=pirr22
 item2.B=pirr32
 item2.Ref=pirr32

The items itemID is ’ item2’.

Results
As a result the subject’s answers are recorded. Grades are given for samples A and B on how they
compare to the reference.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:38:39 EET 1999

Single Stimulus Test
In a Single Stimulus Test Test a single stimulus signal is played and then graded.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class SingleStimulus A class alias (SingleStimulus or SS) or a fully qualified java
class name (guinea.logic.SSTest) of the class that handles the
Single Stimulus test.

Req.

Test item parameters
The test items used in Single Stimulus test have a single parameter A which is the sample ID of the
sample which is graded.

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

Here is an example of an Single Stimulus item:

 # which sample is the A sample
 item1.A=pirr44

The items itemID is ’ item1’.

Results
As a result the subject’s answer is recorded. A grade is given for sample A.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:41:05 EET 1999

TAFC Test
In an TAFC (Two alternatives forced choice) Test two samples are compared. Two samples are
played altering some parameter until the subject can no longer hear the difference between the
samples.

The test uses the procedures and terms described in

Levitt H. (1971) Transformed Up-Down Methods in Psychoacoustics

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class TAFC A class alias (TAFC) or a fully qualified java class name
(guinea.logic.TAFCTest) of the class that handles the TAFC test.

Req.

The TAFC has some special parameters. Prepend parameter names with ’TAFC.’ string, for example:

 # pause length is two seconds
 TAFC.pauseLength=2.0

Here is the list:

Parameter Value Description R/O

ruleType integer The number of the rule that decides when to turn the
direction. Currently rule number 1 is implemented. Default
is 1.

Opt.

answerName questionID The question ID to use for storing the answer. The default is
’ level’.

Opt.

pauseLength seconds The time to answering when sample pair has played. The
answer decides whether to go to the same direction or
change direction (depends on the rule). Default is 2
seconds.

Opt.

initialLevel volume The initial volume level when this item starts. Both linear
scale and dB scale can be used. Default is +0.0dB (1.0
linear).

Opt.

stepSize volume
offset

The level step size. Both linear scale and dB scale can be
used. The default is 3.0dB.

Opt.

maxRuns integer Number of runs that is required. Default is 6. Opt.

logTrial true or
false

Whether to log each trial and answer for this item in
addition to the final level. Default is false.

Opt.

trialAnswerName questionID The question ID to use for the trial list of rach item if trials
are logged. Default is ’ trial ’.

Opt.

Test item parameters
The test items used in TAFC test have two parameters B and Ref which are sample IDs of the samples
which are compared.

Parameter Value Description R/O

B sample ID Sample ID of sample B. Req.

Ref sample ID Sample ID of the reference sample Ref. Req.

Here is an example of an B/Ref item:

 # which sample is the B sample
 item3.A=pirr32
 # which sample is the Ref sample
 item3.Ref=pirr44

The items itemID is ’ item3’.

Results
As a result a volume level is stored at the end of test procedure.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:46:39 EET 1999

SSMS Test
In an SSMS (Single Stimulus Mixed Source) Test three samples are played and the level of one
sample is altered. The sample S1 is stereo background noise. Sample S2 is mono noise and sample S3
is a mono speech sample. Sample S3’s level is controlled by the subject and its output is mixed
together with the right output channel. The test can also be configured so that the variable gain
controls both S2 and S3 or only S2.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class SSMS A class alias (SSMS) or a fully qualified java class name
(guinea.logic.SSMSTest) of the class that handles the SSMS test.

Req.

The SSMS has some special parameters. Prepend parameter names with ’SSMS.’ string, for example:

 # set level of sample S1
 SSMS.S1Volume=-10dB

Here is the list:

Parameter Value Description R/O

S1Volume Volume
level

Se the volume of the sample S1. The volume level can be
given in linear, decibel or percent scale. The default is to
use the sample’s inherent level (level is 0dB (decibel) or
1.0 (linear)).

Opt.

S2Volume Volume
level

Se the volume of the sample S2. It is used to set the
constrant gain for S2 or it is it’s initial gain if variable
gain is used for this signal.

Opt.

S3Volume Volume
level

Se the volume of the sample S3. It is used to set the
constrant gain for S3 or it is it’s initial gain if variable
gain is used for this signal.

Opt.

monochannel channel
index

To which output channel to direct the output of the mono
samples S1 and S2. Default is 1 (right), 0 would be left.

Opt.

ensureNoOverflows true or
false

Limit output volume so that no overflows should occur
when many samples are played together.

Opt.

scaleMax Volume
level

The maximum on the scale that the subject uses for
setting the level of samples S2 and S3. This is used to
avoid overflows. The default is that the maximum of the
scale is 0dB (1.0 linear). This parameter has no effect
when ensureNoOverflows is false.

Opt.

levelControlName questionID The question ID that is also used to control the level of
the S2 and S3 samples. Default is ’level’.

Opt.

levelControlsSignals list of
signals

Specify which signals the level (gain) controller controls.
By default it is ’S3’ (variable gain for S3, constrant gain
for S2). Multiple signals are specified with a
comma-separated list of signal names, for example, the
list ’S2,S3’ tells the gain controller to set the gain for
both S2 and S3.

Opt.

Overflow avoidance
This test can try to avoid any overflows when many samples are mixed together. In SSMS test case,
three samples S1, S2 and S3 are playing at the same time and they are all added together. If all
samples have full range, overflows are bound to occur. The SSMS test tries to avoid overflows so that
it limits the MCL level that can be set. If all samples S1-3 have max volumes set to 1.0 (0dB), to
maximum level they together can be 3.0 (+9.5dB). The output level scale is then limited to 1/3
(-9.5dB) so that the digital output level never goes to more than 1.0 (0dB).

Test item parameters
The test items used in SSMS test have three parameters S1, S2 and S3 which are sample IDs of
samples.

Parameter Value Description R/O

S1 sample ID Sample ID of the S1 sample. It is a stereo background noise sample. Req.

S2 sample ID Sample ID of the S2 sample. It is a mono noise sample. Req.

S3 sample ID Sample ID of the S3 sample. It is a mono speech sample. Req.

Here is an example of an SSMS item:

 # which sample is the S1 sample
 item1.S1=tausta1
 # which sample is the S2 sample
 item1.S2=noise1
 # which sample is the S3 sample
 item1.S3=crapachi

The items itemID is ’ item1’.

Results
As a result a volume level is stored.

· Test types · Tests index · Document index ·

Last modified: Wed Jan 20 11:43:52 EET 1999

Generic Test
The Generic test allows for various test in addition to the predefined test types in GP. The generic test
is also used as a base for other tests in GP.

Here is a list of parameters needed by the test. This table lists only the parameters that have some
special information about parameters or that override or adds new parameters to the common test
parameters list.

Parameter Value Description R/O

class GenericABC A class alias (GenericABC) or a fully qualified java
class name of the class that handles the test.

Req.

generic.sampleParams list of names A comma-separated list of names of parameters that
are samples.

Req.

Note: All other test classes in GP use the generic test as their base and they predefine the
sampleParams parameter automatically. The parameter is only required if using the generic test
directly or using special item features.

Test item parameters
The simplest way of defining information for special items is to use the sampleParams parameter
above. For example, if four samples are compared in the test, the configuration file would contain a
line like this:

 # Sample parameters that are sample IDs
 generic. sampleParams: A,B,C,D

The list of item parameters would be like this (like in other tests):

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

C sample ID Sample ID of sample C. Req.

D sample ID Sample ID of sample D. Req.

Here is an example of such an item:

 item2.A=pirr22
 item2.B=pirr32
 item2.C=pirr16
 item2.D=pirr11

The item’s itemID is ’ item2’.

More specialized items
If additional parameters that are not samples or they are optional, the simple sampleParams is not
enough. A default template needs to be created. The default item template is always used as base when
items are loaded from items file. It defines the list of names of parameters that are used in the item,
and which of them are required.

For example, defining a template for a test where three sets of speaker systems are tested using
different virtual players and samples: The needed parameters would perhaps look like this:

Parameter Value Description R/O

A sample ID Sample ID of sample A. Req.

B sample ID Sample ID of sample B. Req.

C sample ID Sample ID of sample C. Req.

A_player player ID The ID of the player that is used as player for sample A. Opt.

B_player player ID The ID of the player that is used as player for sample B. Opt.

C_player player ID The ID of the player that is used as player for sample C. Opt.

The *_player parameters are not sample ID, so they cannot be given in sampleParams. They are also
optional, they do not have to be defined.

The configuration definitions needed for such test would then be:

 # Default item template:
 # Define which parameters are used
 itemTemplates.default.parameters: A,B,C,A_player,B_player,C_player
 # Which parameters are required (others are optional)
 itemTemplates.default.requiredParameters: A,B,C
 #
 # Which parameters are samples:
 generic.sampleParams: A,B,C

A test item would then look like this in the items file:

 item6. A: samp34_1ch
 item6. A_player: set1ch
 item6. B: samp34_5ch
 item6. B_player: set5ch
 item6. C: samp34_2ch
 item6. C_player: set2ch

Special parameters
The generic test currently recognizes one special parameter: player to use for a sample. In the future
more features like these may be added when needed.

Player for sample
The generic test can assign a specific player that plays that sample during that item. It looks for a
player ID for a sample from item parameter whose name is in the form ’<sampleParam>_player’,
where <sampleParam> is a parameter in the sampleParams list. If a player ID is found, the
corresponding player is assigned as the player for that sample. If no player ID is found, default player
is used.

For this to work, the <sampleParam>_player parameters must be defined as item parameters. See
examples above in special items.

See also sound player configuration for information on how to define virtual players.

Results
As a result the subject’s answers are recorded. The testers may define the questions in any way they
want.

· Test types · Tests index · Manual index ·

Last modified: Wed Jul 28 16:11:00 EEST 1999

Test Items
The test items contain the parameters of individual items or cases in a test. An item contains usually
the names of the samples played in this item. For example, parameter ’A’ contains the sample ID
’ping3_64kbs’ and parameter ’B’ contains the sample ID ’ping4_64kbs’. Test items are also used to
store the answers given by a subject for this item. For each subject a copy of the item is created and
the answers and other information is added. See result file format for details.

The previous versions of GP (pre 2.03) there were different test item classes that were used for
different tests. They all have now been replaced with a single generic item class. Also defining,
extending and configuring test items have been made easier and more powerful. For most part the test
items file format is the same as before, except that the class parameter (which told the test item class
to use) should be omitted.

However, the old files should still work for some time but it is recommeded that the files are
converted to new format for better compatibility to future versions.

Test items file format
The test items file contains a list of test items. The parameter names are prepended with the item ID .
Here is an example of a test items file from an A/B test:

 # Item ’item1’
 # which sample is the A sample
 item1.A=pirr44
 # which sample is the B sample
 item1.B=pirr32

 # Item ’item2’
 # which sample is the A sample
 item2.A=pirr16
 # which sample is the B sample
 item2.B=pirr12

The file contains two test items whose item IDs are ’ item1’ and ’ item2’. Each have two parameters A
and B.

See each test type’s documentation for the needed item parameters for that test.

Moving to newer format from older files
Converting to new format is very easy, just remove or comment out all the item class name definitions
(’ itemXXX.class=classname’) from the old file.

· Tests index · Document index ·

Last modified: Wed Jan 20 11:06:36 EET 1999

Test creation
At this point there wasn’t enough time to make flashy graphical test creation tools. The test is created
by writing the required test configuration files with a text editor.

The prodecure for creating a test usually like this:

Select test type - What kind of test to run and.
Create test directory - Test directory is used to store the information about the test.
Select sound samples - Decide which sound samples to use in the test and possibly create and/or
edit the files and write the sample list configuration file.
Create test items - Define test item parameters, usually which samples are played to the subject.
Write the test items file.
Create playlist(s) - Make and write global playlist for all test sessions or session specific
playlists.
Select subject’s UI - Select which answer and control components to use. Write UI parameters
file.
Set test parameters - Write the test configuration file. Set needed parameters such as file names,
sequences, timeouts, modes and so on.

Select test type
The first thing is to decide which type of test to use. Select a test from the list of test types.

Also see:

Time limits and warnings - use/don’t use limited time for answering, length of time
Sample sequence - sequence type (free/fixed) and fixed sequence
Sample switching - normal or parallel switching

Test directory
A test directory is a directory where the files of a test are kept. It contains the test parameters files
and samples (usually in their own subdirectory). The results from test sessions are also written in the
current directory (which should be the test directory). Actually using one directory for all files of a test
is more of a guideline than a requirement.

When running a test you should first go to the test directory of the test and then run the test (with the
RunTest-program).

Sound samples
Decide which sound samples to use for testing. Usually sound samples are kept in a subdirectory in
the test directory, for example, make a directory named samples for keeping the samples.

You probably have to edit or create some samples. Here are some requirements (must) or
recommendations (should) for samples that are played together during one item:

Samples should be of same length. This is more important if parallel switching is used. Samples
are not required to be of same length but would be better if they are. The system will happily play
samples with different lengths at the same time.
The phase of the samples should be the same, that is, there is no extra delay in the beginning of
one sample that is not in the second sample. This is more important of parallel switching is used.

These apply to all samples in a test:

All samples in test’s sample set must have the same sample rate and must match the sample rate
of the player.
All samples must have the same number of channels.
Samples should be calibrated, for example, the level of all samples should be the same. The
sample list below provides a way to calibrate the level of samples without editing the actual
sample file.
Samples’ format must be one of valid audio file formats accepted by the player. It would be
better if they are uncompressed. AIFF/AIFF-C would be a good choice.

Tools for audio files include: dmconvert, mediaconvert, sfconvert, dminfo, sfinfo, soundeditor,
soundtrack. See the manual pages for description and/or the Digital Media Tools Guide (IRIS InSight
book).

The sample list relates the sample IDs the test items use to the actual audio samples. The information
about a sample contains at least the sample ID and the file name of the audio file. Depending on the
type of sample, additional information may be also stored.

More detailed information: Format of the samplelist file

Test items
Write the test items. See test types and test items for needed parameters.

Playlists
Playlists are files that tell which test items (possibly a subset of all test items) to play to the test subject
and in which order. A playlist can be ’global playlist’ which means that the same order of items is
used in all sessions and for all subjects unless a ’session specific playlist’ is used to set a specific
playlist for a specific session. The playlist(s) are stored in the test’s directory.

More detailed information: Format of the playlist

Subject’s user interface
No complete documents for subject UI components are not yet ready. Copy and modify the demo
example files. They are quite self-explatory.

Test parameters
Write the test parameters file. Add parameters mentioned earlier:

Time limits and warnings - use/don’t use limited time for answering, length of time
Sample sequence - sequence type (free/fixed) and fixed sequence
Sample switching - normal or parallel switching
MCLL setting - parameters for setting the most comfortable listening level, fixed or subject sets
it.
See also common properties - other common, additional, required parameters for a test.

· Tests index · Document index ·

Last modified: Tue Jul 21 10:01:09 EEST 1998

Common test properties
class=java class name (required)

The java class name of the class that handles the test. See test specific properties for the correct
class.

uifile=name of the subject UI property file (required)
The name of the file that contains the subject UI properties (question and control component
specifications).

itemsfile=name of the items file (required)
The name of the file that contains the test items.

playlistfile=name of the playlist file (optional)
The name of the playlist file. If it omitted, the playlist will be searched from the default places.

samplefile=name of the sample list file (required)
The name of the file that contains the sample list.

sequenceType=fixed | free (required)
Type of sequence, free or fixed. If sequence type is fixed, the sequence is also required.

sequence=sample sequence (required if sequenceType is fixed)
The sample sequence for fixed sequence tests. If Sequence type of test is fixed, the sequence is
required.

itemTimeout=seconds (optional)
The timeout in seconds. It is how many seconds the subject has time to give answers. If time runs
out, the item has ’timeouted’ and the test goes on to the next item.

itemWarningTimeout=seconds (optional)
The indicator warns that time is about to run out when time left is less than ’seconds’ seconds.

Sound player properties:

player.class=java class name (required)
The java class name of the SoundPlayer class. Should be guinea.player.SoundPlayer.

player.rate=sampling rate (required)
The sample rate of output in Hz.

player.channels=number of channels (required)
Number of output channels.

player.device=audio device (recommended)
The device name of audio output device ("Analog Out", "ADAT Out", etc). If not set, the default
output will be used but it would be a good idea to specifically set what device to use.

player.volume=master volume correction (optional)
The output master level correction. Similar to volume correction of samples except that it is for
master output channels (affects all samples).

· Test creation index · Tests index · Document index ·

Last modified: Wed Apr 8 10:29:20 EET DST 1998

Common test parameters
Here is a table of most common test parameters used in most or all tests.

Parameter Value Description R/O

class class name A fully qualified Java class name of a class that
handles the test. A class alias name (a shorter name
for the class) can be used also.

Req.

testDirectory directoryname The name of the test directory. All other config file
names are relative to the test directory (unless they
have absolute paths as filenames). If test directory
is not specified, the system uses the directory
where the test config file is loaded from or current
directory if test config file’s directory couldn’t be
determined.

Opt.

uifile filename Name of the file that contains information needed
to construct the subject UI window. The filename
is relative to the test directory unless absolute.

Req.

itemsfile filename Name of the file that contains test items for this
test. The filename is relative to the test directory
unless absolute.

Req.

samplefile filename Name of the sample list file. The filename is
relative to the test directory unless absolute.

Req.

playlistfile filename Name of the playlist file. This is used mainly for a
fixed playlist for all sessions. If you do not set this
parameter, the playlists will be searched
automatically from the default places. The
filename is relative to the test directory unless
absolute.

Opt.

resultFile filename Name of the session result file where to store
answers from a session. It is better you don’t set
this parameter, the names for result files are
generated automatically. The filename is relative to
the test directory unless absolute.

Opt.

sequenceType sequence type The type of sample sequence played to the subject.
It is either free (default) or fixed

Opt.

sequence sample
sequence

The sample sequence played to the subject in a
fixed sequence test.
* This is required if sequence type is fixed.

Req.*

itemTimeout time in secs. Set timeout time and enable or disable time limits.
Default: no time limits.

Opt.

itemWarningTimeout time in secs. Set warning time. Default: zero. Opt.

sampleSwitching switch type Set switching type. It is either normal or parallel
(default).

Opt.

showPlayingSample true or false Whether to show to the subject which sample is
playing currently. (default: true).

Opt.

autoPlaySample param. name Which sample to automatically start playing when
item starts. Used only in free sequence tests.

Opt.

Soundplayer parameters
parameters for sound player. Prepend with the string ’player.’ in the test config file, for example, set
sample rate to 44100Hz:

 player.rate=44100

See sound player configuration for more detailed information.

Parameter Value Description R/O

class guinea.player.SoundPlayerThe soundplayer’s java class name. For normal use,
the class name of the player should be omitted. It is
used only if a special player is needed.

Opt.

rate sample rate Sample rate of the output. Req.

channels num. of channels Number of output channels. Req.

device audio device name The name of the audio device, for example: ’Analog
Out’ or ’ADAT Out’. Device ’default’ will use the
default device set with apanel.

Opt.

buflen buffer length The length of the mixing buffer. It can be used to
adjust the length of the delay in output.

Opt.

· Tests index · Document index ·

Last modified: Wed Jul 28 16:07:55 EEST 1999

Running a test
A test is run using the gpRunTest command. It is started with options that tell it where to read the test
configuration information and some other bits. See examples from command’s manual page for how
to use the command.

Usually a test goes like this:

1. Go to the test directory.
2. Run the test with the gpRunTest command.

1. The test reads the parameters needed by the test (test items, samples, UI parameters), creates
the subject UI window, etc.

2. Test items are played to the subject and answers from the subject are saved.
3. When all items have been played the results are written to a file. The file contains java

objects containing copies of test items and corresponding answers from the subject. The
results can be converted to a text file with result processing tools.

If an error occurs during the test, the system tries to save as much as it can (the items finished in the
session).

For more complete instructions, see the manual page of gpRunTest.

· Tests index · Document index ·

Last modified: Mon Oct 5 11:00:39 EEST 1998

Sequences
A sequence tells which samples to play for the subject in which order and possibly with pauses
between samples.

Free sequence
A free sequence means that a fixed sample sequence is not used or enforced. The subject selects
which samples to play and in which order.

A free sequence is selected by setting the sequenceType-parameter in the test parameter file to ’ free’:

 # use free sequence
 sequenceType=free

The sequence-parameter is not needed (and will be ignored if used) in a free sequence test.

Fixed sequence
A fixed sequence means that the sequence of samples presented to the subject is fixed and enforced so
that the subject can’t affect the playing of samples. It is possible to use pauses between samples.

A fixed sequence is selected by setting the sequenceType-parameter in the test parameter file to
’ fixed’ and setting the sequence-parameter to the sequence definition:

 # use fixed sequence
 sequenceType=fixed
 sequence=<sequence>

The <sequence> is the sample sequence definition, see below for the format.

Defining sample sequence
A sequence is defined with a string that defines the order of samples and pauses between samples. A
sequence consists of sequence items each of which define the pause length in the beginning of the
sample and the sample name. The length of pause is given in seconds or in sample frames and may be
omitted. The name of sample is required. The pause length and sample name are separated by a
comma.

 <sequenceitem> = [<pause>,]<sample>
 <pause> = <seconds>s | <frames>

The <seconds> (float) is the number of seconds. The letter ’s’ is used to indicate that the number is in
seconds instead of sample frames. The <frames> (int) is the number of sample frames. Some
examples:

 0.1s,A
 22050,B
 A

the first plays sample A after a pause of 0.1 seconds. Second plays sample B after a pause of 22050
sample frames. If sample rate is 44100, 22050 is equivalent to 0.5s. The third plays sample A without
a pause between A and the previous sample.

The whole sequence is a list of sequence items separated with a semicolon.

 <sequence> = [<sequence>;]<sequenceitem>

Here is an example:

 A;0.1s,B;0.5s,A,0.1s,B

The example plays samples A and B with a pause of 0.1 secods between the samples and a pause of
0.5 seconds between the sample pairs. Here’s an example of using this sequence in the test config file:

 # use fixed sequence
 sequenceType=fixed
 sequence=A;0.1s,B;0.5s,A,0.1s,B

Automatic sample play when item starts
In free sequence tests you can start playing a sample automatically when the item starts. To do this,
define the autoPlaySample parameter with a sample parameter name. For example:

 # Start automatically playing sample A when item starts.
 autoPlaySample=A

This will start playing the sample given with the item parameter A. This has the same effect as playing
the ’A’ button on the subject UI’s sample-play controller (if there is one).

If this parameter is not defined, a sample is not automatically started.

Notes
Some notes about using sequences:

There should not be any extra spaces in the sequence.
The test system currently ignores the pause of the first sequence item in a sequence.
The sample names used don’t refer to the sample IDs in sample lists. They refer to the parameter
names of test items. For example, a test item for a A/B test contains the parameter names A and
B whose values are the sample IDs of the samples that correspond to the names A and B.
If fixed sequence is used, there should not be a sample playing controller is the subject’s UI. If it
is there, it will be ignored. If free sequence is used, there must be a sample playing controller in
the subject’s UI.

· Tests index · Document index ·

Last modified: Wed Jan 13 14:42:26 EET 1999

Timeout
A timeout can be set to limit the time the subject has for giving the answers for a test item. Without a
timeout the subject can have as much time as he needs to decide the answers. With a timeout, the test
goes to the next item when the time ends.

In addition a timeout warning can be set to alert the subject that the time is about to end: the warning
indicator changes from green to yellow.

When a timeout occurs and the subject hasn’t signalled that he is ’done’, the indicator changes to red
for a second and then goes to the next item. The results will show that a timeout occured for this item
for this subject.

The timeout can be used with both free and fixed sequences. The behaviour of time limits differ
slightly in fixes and free sequences, see notes.

Setting timeouts
By default the timeout time limit and timeout warning are not used (the timeout times are zero). The
timeouts are enabled by setting the itemTimeout and itemWarningTimeout parameters in the test
config file. Here is an example:

 # item timeout in seconds
 itemTimeout=10.0
 # warning time before timeout
 itemWarningTimeout=4.0

In this example the subject has 10 seconds to give answers for this item. When 4 seconds are left (6
seconds after the start of giving answers), the indicator changes from green to yellow to show that
time is about to end. The itemWarningTimeout parameter may be left out (equivalent to setting it to
zero) and then the indicator goes directly from green to red when time ends.

Notes
Some notes about using timeouts:

With a fixed sequence the time starts when the whole fixed sequence has been played to the
subject and answering is enabled.
With a free sequence the time starts when the item starts. The time limit should be long enough
that the subject has enough time to compare samples and switching between them multiple times.
The time limit includes the time used to play samples and giving the answers.

· Tests index · Document index ·

Last modified: Thu Apr 16 10:40:56 EET DST 1998

Switching
Normally when the subject switches to another sample, the currently playing sample stops and the
another starts from beginning. In parallel switching the switching to another sample is done by
cross-fading to the other sample and does not just jump to the start to the beginning of the sample.
Useful in test where long samples are compared. Parallel switching can be used only with free
sequence tests.

Normal switching
In normal switching when the subjects switches to another sample, the currently playing sample is
stopped and the another starts from beginning.

Normal switching is selected by setting the sampleSwitching parameter in the test config file to
’normal’:

 # set switching to ’normal’
 sampleSwitching=normal

Parallel switching
In parallel switching the switching to another sample is done by cross-fading to the other sample.
Both samples are played at the same time and the sample position is the same in both samples.

Parallel switching is selected by setting the sampleSwitching parameter in the test config file to
’parallel’:

 # set switching to ’parallel’
 sampleSwitching=parallel

Sample switch cross-fade type
The type of the cross-fade used in parallel swithing can be selected. Available types are linear fade
and exponential (decibel linear) fade.

Cross-fade type is selected by setting the sampleSwitching.fadeType parameter in the test config file.
Use value ’ linear’ or ’exp’ to select linear or exponential fade. The default is ’ linear’. Example:

 # set sample switching cross-fade type
 sampleSwitching.fadeType=linear

Sample switch cross-fade length
The length of the cross-fade in parallel swithing is selected with the sampleSwitching.fadeLength
parameter in the test config file. The length of fade is in seconds. The default is 0.04 seconds (40ms).
Example:

 # set sample switching cross-fade length in seconds
 sampleSwitching.fadeLength=0.04

The fade length was set to 40ms (0.04s).

Notes
Some notes about switching:

Parallel switching is useful in tests where long samples are compared.
Parallel switching is only usable for free sequence tests. If fixed sequence is used, parallel
switching is not used (even if set to parallel) and normal switching is used.

· Tests index · Document index ·

Last modified: Mon Jul 20 13:43:27 EEST 1998

Most comfortable listening level
The most comfortable listening level (MCLL or MCL level) is the volume level of the player output
that is most corfortable for the subject. The output level can be fixed or the subject can set the level
within the limits set by the tester.

Fixed or subject settable listening level
The MCLL.subjectSetsLevel-parameter in the parameter file tells can the subject set the level or is it
fixed. If set to true, the subject sets the output listening level. If false, the output level is fixed. Here is
an example:

 # Subject sets MCL level
 MCLL.subjectSetsLevel=true

Default or fixed listening level
The default of fixed listening level is set with the MCLL.default -parameter. If subject can’t set the
output level, the level is used as the output level. If subject can set the level, this parameter tells the
default or initial volume level that is set as the output level when level setting procedure starts.

An example to set fixed/default output level:

 # Default output level is -25dB
 MCLL.default=-25dB

MCL level limits
The available MCL level range for the subject can be limited with the MCLL.min and MCLL.max
parameters. The limits also apply to the default/fixed output level. Here’s an example:

 # set the available output level range to [-60, 0] dB
 MCLL.min=-60dB
 MCLL.max=0dB

Notes
Some notes about MCLL setting.

The maximum level that can be set generally shouldn’t be greater than 1.0 (100% or 0dB),
overflows may occur (depends on the nature of the samples used).
Some tests may change the MCLL limits or defaults set in the test parameter file.
In earlier version of GP there had to be a controller component named ’mcll’ in the subject UI to
be able to set the listening level. The component doesn’t have to (should not) any more be added
to the controls list. Level setting works now for all tests. The ’mcll’-controller’s parameters can
still be used to customize the look of the listening level setting dialog.

· Tests index · Document index ·

Last modified: Mon Jul 20 16:37:14 EEST 1998

Sound Player Configuration
The examples show examples of how to set player parameters in the test config file.

Configuring players is now slighty different from previous versions. New configuration allows
defining multiple sound players and virtual players. If parameter players is defined, the new format is
used. If not, the old format used in previous versions is used. In the future, the new format will be
default, and support for the old format may disappear completely in future GP versions.

The players parameter gives the names of players as a comma-separated list. In basic form for basic
tests, it sound contain the default player ’player’:

 # List of players
 players=player

An example about multiple players can been seen in the virtual players section.

Audio devices
On some systems there are multiple independent audio ports. On a O2 with the digital audio option
card there are four output devices: Analog Out, Analog Out 2, ADAT Out and AES Out. Different
devices may have different choices of sample rates, number of channels, number of bits or output
connections. Use ’apanel’ or ’apanel -print’ to list the choices of devices on your system. Also read
the manuals.

Choices of devices for O2, Octane and Onyx2 systems include:

Analog Out and Analog Out 2
Analog stereo outputs, 16-bit on O2, 18-bit on Octane an Onyx2. Nearly arbitrary sample rates
from 4kHz to 48kHz.

ADAT Out
8-channel, 24-bit ADAT Optical output. Sample rates: 32kHz, 44.1kHz, 48kHz.

AES Out
Stereo AES3 24-bit digital output. Sample rates: 32kHz, 44.1kHz, 48kHz.

in addition the device name default can be used that selects the default output device selected with
apanel. However, you should not use the defaults device.

Set the device of the player by setting the device parameter in the test config file. Example:

 # set output device
 players.player.device=ADAT Out

You should use a device that is not the same as the default device. The audio output of tools and
programs (includes bells from the console and shells and window manager, web browsers, etc.) goes
to the default device if output device is not specially set (usually isn’t).

Multiple audio device support
The GP sound player can drive multiple audio devices at the same time. GP combines several devices
as a single audio port. Multiple devices are synchronized.

Multiple audio device output can be selected by writing the names of the audio devices to use
separated with the slash-character (’/’) in the device player parameter. For example, to use ADAT
cards:

 # set output device
 players.player.device=ADAT Out/ADAT Out 2

To the GP system, the output looks like a single 16-channel output port with channels 1-8 going to
’ADAT Out’ device and channels 9-16 to ’ADAT Out 2’ device. Any output devices can be used.
Currently, maximum number of audio devices is four.

The same sample rate is used for all devices, so all devices must support the sample rate used.

The number of channels should be left undefined when using multiple devices. The sound player then
automatically uses the maximum number of channels for each device.

Sample rate
The sample rates available depends on the audio devices that are used. For example, the analog
devices in the O2 support all sample rates from 4kHz to 48kHz with 1Hz resolution. Digital ports only
support 32/44.1/48 kHz.

Set sampling rate of the player by setting the rate parameter in the test config file. Example:

 # sampling rate of output
 players.player.rate=44100

The sample rate of the player and all the samples must be the same. If the sound player can not use
some desired sample rate, samples should be converted to a rate supported by the device.

When using multiple devices, the same sample rate is used for all devices.

Channels
The maximum number of channels depends on the audio device that is used. Analog outputs usually
support mono or stereo output. Digital outputs support up to 8 channels (depending on which digital
port to use). If number of channels is not defined, the maximum number of channels supported by the
device is automatically used. Specially, when using multiple devices, the number of channels should
be left undefined (or defined as zero).

Set number of channels of the player by setting the channels parameter in the test config file.
Example:

 # number of channels (0/1/2/4/8, etc.)
 players.player.channels=2

If a sample has more channels than there are output channels, extra channels in the sample are
ignored.

Sound buffer length
The sound player mixes the output audio data in blocks (or buffer) of fixed size. The output is also
double-buffered, the next block of data is calculated as the first is being written to the audio hardware.
The buffering also means that an action (for example, the subject presses a button to play a sample)
that is meant to take effect immediately will necessarily have a delay that roughly corresponds to two
times the length of the buffer. The default buffer length is 4096 sample frames that will cause a delay
of about 200ms (sample rate = 44.1kHz). It is possible to shorten the delay by shortening the buffer
length. Shortening the buffer length reduces the delay but it also increases the risk of getting dropouts
in sound if the buffer calculation didn’t finish in time (other system activity and increased overhead
caused by shorter blocks may cause problems, also audio files are loaded from disk on the fly).

The buffer length is set with the buflen parameter in the test config file. The length is in sample
frames. The length of 44100 corresponds to one second with the sample rate of 44.1kHz. Example:

 # set mixing buffer length
 players.player.buflen=4096

Sets the buffer length to 4096 sample frames (roughly 93ms with sample rate 44.1kHz).

Note: If a command was scheduled beforehand to start at a certain point of time, no delay is observed
(sub-millisecond accuracy).

Virtual players
Virtual players allow partitioning the output port the the GP into smaller sections. For example, an
eight-channel ADAT output could be sectioned into four stereo-players. Virtual players behave the
same way as real players except some restrictions. Currently, 16 virtual players can be defined.

Configuration is similar to the configuration shown earlier. Usually, the channels to use for the VP and
the ’parent’ player of the VP. For example:

 # List of players
 players=player,vp1,vp2,vp3

 # Main player
 players. player.device=ADAT Out
 players. player.rate=44100

 # Mono player, a single channel: channel 0
 players. vp1.channel=0
 players. vp1.parent=player

 # Stereo player, channel range: channels 1-2
 players. vp2.channel=1-2
 players. vp2.parent=player

 # 5-ch player, channel range: channels 3-7
 players. vp3.channel=3-7
 players. vp3.parent=player

The players parameter contains the list of players used for the test. First is the default player ’player’.

Virtual players (vp1-3) are virtual players. Each must define the parent parameter that sets which real
player’s channels to use. The channel parameter defines which channels of the parent to use for this
VP. A single channel player (vp1) can be defined with the index of the channel. For players with more
channels, a range of channels is specified. Note that the indexing of channel numbers starts from zero.

Multiple audio devices can also be used with virtual players. For example, to add another virtual
player with 8 channels (only the changes and additions to the example above are shown):

 # List of players
 players=player,vp1,vp2,vp3, vp4

 # Use multiple audio devices
 players. player.device=ADAT Out/ADAT Out 2

 # ... parameters for VPs 1-3 ...

 # 8-ch player, channel range: channels 8-15
 players. vp4.channel=8-15
 players. vp4.parent=player

· Tests index · Manual index ·

Last modified: Mon Jul 26 17:52:57 EEST 1999

Logging
GuineaPig saves the diagnostics and error messages it generates when running a test. By default, the
messages are saved to file ’session.log’ in the test directory. If the file already exists, new information
will be appended to the file (does not overwrite an existing log file). Also the verbosity level of
messages that is included can be selected.

The logging (verbosity) level is set with the logLevel parameter in the test configuration file. For
example:

 # Verobosity level
 logLevel: debug

The log levels available are: silent, brief , normal, verbose, veryverbose, and debug (in order of
from least verbose (silent) to most verbose (debug)). The default is normal. Level silent only prints
error messages.

It is also possible to define a different logging level for console output with the logConsoleLevel
parameter. For example:

 # Log level for file
 logLevel: debug
 # Log level for console
 logConsoleLevel: brief

In this example all messages are saved to a file but only brief logging is printed on console. The
console logging level must not be more verbose than file logging level.

The file where to save the log can be selected with the logFile parameter:

 # File where to log
 logFile: session.log

The file name is relative to test directory unless absolute path is used. In the future, logging may be
possible to automatically to use a session ID based log file name.

· Tests index · Manual index ·

Last modified: Tue Jul 27 12:46:52 EEST 1999

Subject’s User Interface
Creating a subject user interface
Subject UI parameters
Question components

GradeBar - a grade from a scale.
FiveGrade - a grade bar for the ITU-R five-grade impairment scale given in
Recommendation ITU-R BS.562.
TenGrade - a grade bar for giving a grade for ’clarity’ of a sample.
VolumeGrade - a grade bar that gives volume level values instead of numbers.

CheckboxChoice - Choose an answer.
RankOrder - give rankings for a bunch of objects.

Control components
PlayPanel - a controller to play samples. Also acts as a monitor that shows which sample is
currently playing.

· Document index ·

Last modified: Thu Jan 21 16:33:05 EET 1999

UI parameters
Here is a list of basic parameters for the subject UI windows:

Parameter Value Description R/O

class guinea.ui.ABSubjectUIJava class name of the subject UI object. Req.

title text The title of the window. Opt.

questions list A comma-separated list of question component
names.

Opt.

controls list A comma-separated list of control component
names.

Opt.

isResizable true of false Is the window resizable? Default is true. Opt.

width number of pixels The width of the window in pixels. If this is
non-zero, the window’s width is fixed. Default
is 0 (window’s width is determined
automatically).

Opt.

height number of pixels The height of the window in pixels. If this is
non-zero, the window’s height is fixed. Default
is 0 (window’s height is determined
automatically).

Opt.

showTestProgress true of false Whether to display a test progress monitor
component to the subject that shows how many
test items have been done.

Opt.

Title of the UI window
The title parameter is used to set the title of the UI window. Example:

 # Set window title
 title=ABC Test

Questions
The questions parameter lists which question components are used. The list is a comma-separated list
of question IDs, for example:

 # List of question objects to be used
 questions=gA,gB

Two question components with IDs ’gA’ and ’gB’ are used (grade for samples A and B). The
parametars for those questions must be included in the UI file. If no questions are used, do not define
the questions-parameter at all.

Controls
The controls parameter lists which control components are used. The list is a comma-separated list of
control IDs, for example:

 # List of control objects to be used
 controls=play

One control component with ID ’play’is used (for subject to select which sample to play and to show
which sample is playing). The parametars for those controls must be included in the UI file. If no
controls are used, do not define the controls-parameter at all.

Size of window
Normally the window’s size is determined automatically by Java’s window toolkit and its layout
managers. The size of the window depends on how many question and control components there are,
the length of the text labels and their font sizes.

The window’s size can be fixed with the width and height parameters. By default they both are zero
which means the size is determined automatically by the Java’s layout manager. Example:

 # Set window’s width to 640 pixels
 width=640

This will set the window’s width to 640 pixels. The height will be determined automatically. The
window’s width will also cause all question and control components to that width.

By default the user can resize the subject UI window with the mouse. This can be prevented by setting
the isResizable parameter to false. For example:

 # Do not allow the subject to resize the window.
 isResizable=false

the isResizable parameters works both when window’s size is fixed or automatic.

· UI index · Document index ·

Last modified: Fri Nov 13 14:26:41 EET 1998

GradeBar
The GradeBar is used to give a grade as an answer to a question. The scale that is used can be
specified with any limits and number of decimals. Adjectives may be associated with certain ranges of
values.

Here is an example of a grade bar with range from 0.0 to 10.0 with one decimal and adjectives:

Here is a list of parameters available for a grade bar:

Parameter Value Description R/O

class GradeBar Class alias for a grade bar component. Req.

question text The question shown to subject. Req.

minimum number The minimum of the scale. Default is 0.0. Opt.

maximum number The maximum of the scale. Default is 5.0. Opt.

decimals number of
decimals

Number of decimals in the grade. Default is 1. Opt.

questionfont font name The font used for question text. Opt.

showValue true or
false

Whether to show the current value to the subject. Default is
true.

Opt.

showLabels true or
false

Whether to show the adjectives to the subject. Default is true. Opt.

choiceformat choice
format
string

Give adjectives to certain ranges of values. Default is no
adjectives, only the value is shown.

Opt.

defaultAnswer number Set the initial value (and the position) of the grade bar when the
question is initialized or reset. A special value ’ random ’ can
be used to initialize the value with a new random number every
time the component is reset. If this option is left out, the default
answer is the midpoint of the minimum and maximum of the
scale.

Opt.

Question
The question parameter is used to set the question that is shown to the subject. Example:

 # Set question text
 qA. question=Clarity of sample A

The scale of the grade
The range of grades that the subject can give is specified with the minimum , maximum and decimals
parameters. Both minimum and maximum can be either positive or negative but minimum should be
less than the maximum. If integer answer values are wanted, set decimals to zero.

The following example sets the scale to from 0 to 5 with one decimals. The question name will be
’qA’:

 # Set range of grade to [0.0, 10.0] (one decimal).
 qA. minimum=0.0
 qA. maximum=10.0
 qA. decimals=1

Question font
The font used to display the text of question can be set with the questionfont parameter. It takes a
valid Java font specification as a value. For example:

 # The font of the question
 qA. questionfont=Serif-italic-24

You can use the FontTester tool help you select the fonts you want. See also the API of the Java’s
Font class.

Show value to subject?
By default the value of the grade bar is shown to the subject as he/she moves the scrollbar. Set the
showValue parameter to false to not show the value to the subject. Example:

 # Do not show grade to subject
 qA. showValue=false

If showValue is set to false, only the adjectives (see below) will be shown if they are set.

Associate adjectives to range of values
Adjectives can be associated with ranges of values. It is done by setting the choiceformat parameter.
More information about the choice format can be found in the Java’s ChoiceFormat API. The
following example should help you to make your own choiceformats:

 # Set adjectives
 qA. choiceformat=0.0#Very unclear|2.0#Rather unclear|4.0#Midway|6.0#Rather clear|8.0#Very Clear

This string tells that the adjective ’Very unclear’ will be shown if the value X is between 0.0 and 2.0
(0.0 <= X < 2.0), ’Rather Unclear’ will be shown if 2.0 <= X < 4.0, and so on. If X < 0.0 the first
adjective will be shown and if X > 8.0 the last adjective is shown.

For adjectives to be shown, the showLabels parameter must be set to true (it is true by default).

Default/initial answer
By default the grade bar’s knob is set to the middle of the minimum and maximum of the range when
the component is reset. Also a fixed or random value can be used. To use a fixed value as the initial
answer or the position of the knob, set the defaultAnswer parameter to desired value. For example, to
use value 1.5 as initial value:

 # Use initial value 1.5
 qA. defaultAnswer=1.5

The position of the knob is set to the position that matches that value on the range.

To automatically generate a random initial value when the component is reset, set defaultAnswer to
string ’ random’:

 # Use random values for initial value
 qA. defaultAnswer=random

It generates a new random value between the minimum and maximum of the grade bar’s range.

It is also possible to limit the range of the initial random value to a smaller range than minimum and
maximum of the component. Use the defaultAnswer.randomMin and defaultAnswer.randomMax
parameters to set different limits. For example (lets assume the component’s answer value range is
[0.0, 10.0]):

 # Use random initial values with values between [3.0, 7.0]
 qA. defaultAnswer=random
 qA. defaultAnswer.randomMin=3.0
 qA. defaultAnswer.randomMax=7.0

· UI index · Document index ·

Last modified: Thu Jan 21 17:21:12 EET 1999

FiveGrade
The FiveGrade UI component implements a continuous grading scale with "anchors" derived from
the ITU-R five-grade impairment scale given in Recommendation ITU-R BS.562 as shown below.

 Impairment Grade
 Imperceptible 5.0
 Perceptible, but not annoying 4.0
 Slightly annoying 3.0
 Annoying 2.0
 Very annoying 1.0

One decimal place is used. Here is an example of a five-grade bar with range from 1.0 to 5.0 with one
decimal and adjectives:

The FiveGrade component is derived from the GradeBar component. It simply defines the the scale
from [1.0,5.0] with one decimal and the adjectives. Equivalent component can be done with a
GradeBar only. Here is a list of parameters that are used for the five-grade bar:

Parameter Value Description R/O

class guinea.ui.FiveGradeJava class name of five-grade bar. Req.

question text The question shown to subject. Req.

questionfont font name The font used for question text. Opt.

showValue true or false Whether to show the current value to the subject. Default
is true.

Opt.

Example of defining a FiveGrade component
Here is an example of how to implement the FiveGrade bar shown above:

 # Example of a FiveGrade question component
 q2. class=guinea.ui.FiveGrade
 q2. question=Grade for impairment
 q2. questionfont=Serif-italic-24

Implementing a FiveGrade with a GradeBar
The FiveGrade can be also implemented with the GradeBar only. Here is a sample how to create an
equivalent component that was shown above:

 # Example of emulating a FiveGrade with a GradeBar
 q2. class=guinea.ui.GradeBar
 q2. question=Grade for impairment
 q2. questionfont=Serif-italic-24
 q2. minimum=1.0
 q2. maximum=5.0
 q2. decimals=1
 q2. choiceformat=1.0#Very annoying|2.0#Annoying|3.0#Slightly annoying|4.0#Perceptible, but not annoying|5.0#Imperceptible

· UI index · Document index ·

Last modified: Thu Jul 23 14:36:27 EEST 1998

TenGrade
The TenGrade is an example of using GradeBar as a ten-grade answering component. The scale goes
from 0 to 10 with one decimal and shows the grade symbolicly also ("Very unclear", "Rather unclear",
"Midway", "Rather clear", "Very Clear"). Here is an example of a ten-grade component.

The FiveGrade component is derived from the GradeBar component. It simply defines the the scale
from [0.0,10.0] with one decimal and the adjectives. Equivalent component can be done with a
GradeBar only. Here is a list of parameters that are used for the five-grade bar:

Parameter Value Description R/O

class guinea.ui.TenGradeJava class name of ten-grade bar. Req.

question text The question shown to subject. Req.

questionfont font name The font used for question text. Opt.

showValue true or false Whether to show the current value to the subject. Default
is true.

Opt.

Example of defining a TenGrade component
Here is an example of how to implement the TenGrade bar shown above:

 # Example of a TenGrade question component
 q2. class=guinea.ui.TenGrade
 q2. question=Clarity of sample A
 q2. questionfont=Serif-italic-24

Implementing a FiveGrade with a GradeBar
The FiveGrade can be also implemented with the GradeBar only. Here is a sample how to create an
equivalent component that was shown above:

 # Example of emulating a TenGrade with a GradeBar
 q2. class=guinea.ui.GradeBar
 q2. question=Clarity of sample A
 q2. questionfont=Serif-italic-24
 q2. minimum=0.0
 q2. maximum=10.0
 q2. decimals=1
 q2. choiceformat=0.0#Very unclear|2.0#Rather unclear|4.0#Midway|6.0#Rather clear|8.0#Very Clear

· UI index · Document index ·

Last modified: Thu Jul 23 14:52:30 EEST 1998

VolumeGrade
The VolumeGrade is an extension to the normal GradeBar which given numbers as answers. This
version gives Volume objects as answers by converting GradeBar’s numeric answers to Volume type
in selected scale. Here is an example of a volume grade component.

The VolumeGrade component is derived from the GradeBar component. All parameters are the same
as in the GradeBar except these differences and additions:

Parameter Value Description R/O

class VolumeGrade Volume grade’s class alias name. Req.

scaleType scale’s type The volume scale to use. Possible values are: linear, decibel and
percent. By default decibel scale is used.

Opt.

The numeric minimum and maximum values and other values are in the selected scale.

Volume scale to use
By default the volume grade uses decibel scale. You can also use linear and percent scales. Select the
scale to use by setting the scaleType parameter to either decibel, linear or percent. For example:

 # Use linear scale
 level. scaleType=linear

Other parameters
Other parameters work just like in a regular GradeBar. They just operate on the numeric values
instead of volume objects. To set minimum and maximum values, use plain numeric values and set the
scale type as you want. For example to get volume answers from -20dB to 10dB in decibel scale,
define min/max parameters like this:

 # Get decibel values from range [-20, 10] dB with one decimal
 level. minimum=-20
 level. maximum=10
 level. decimals=1

Also adjectives can be used as well as ’default answer’ including random initial value.

· UI index · Document index ·

Last modified: Thu Jan 21 16:52:13 EET 1999

CheckboxChoice
The CheckboxChoice is used to select one of multiple choices as an answer to a question. Answers
are user-defined and the corresponding labels shown to the subject can be set.

Here is an example of a checkbox choice with three choices:

Here is a list of parameters available for a checkbox choice:

Parameter Value Description R/O

class guinea.ui.CheckboxChoiceJava class name of checkbox choice Req.

question text The question shown to subject. Req.

questionfont font name The font used for question text. Opt.

answers list of answers The answers sent by the answer component when
the corresponding label is selected. The list is a
comma separated list of answers (strings only
currently).

Req.

labels list of labels The choices (labels) shown to the subject. The
subject selects one of the choices and the
corresponding answer is sent. The list is a comma
separated list of strings that are shown as labels.

Opt.

Question
The question parameter is used to set the question that is shown to the subject. Example:

 # Set question text
 q5. question=Which sample sounds best?

Question font
The font used to display the text of question can be set with the questionfont parameter. It takes a
valid Java font specification as a value. For example:

 # The font of the question
 q5. questionfont=Serif-italic-24

You can use the FontTester tool help you select the fonts you want. See also the API of the Java’s
Font class.

Answers and labels
The answers list defines the answers are sent by the answer component, the labels list defines the
labels that are shown to the subject. Both are comma-separated lists of strings. Example:

 # Set answers (labels are same as answers)
 q5. answers=A,B,C

This sets the answers and labels as shown in the window example above. If no labels are specified, the
answers will be used as labels also. In this case it acts the same as this:

 # Set answers and corresponding labels
 q5. answers=A,B,C
 q5. labels=A,B,C

Labels are used for displaying the selections to the subject. Example:

 # Set answers and corresponding labels
 q5. answers=A,B,C
 q5. labels=First,Second,Third

the labels shown are ’First’, ’Second’ and ’Third’ instead of ’A’, ’B’ and ’C’. Then the subjects selects
’Second’, ’B’ will sent to the test system as the answer.

· UI index · Document index ·

Last modified: Mon Jul 27 14:32:39 EEST 1998

Rank Order
The RankOrder is used to select one of multiple choices as an answer to a question. Answers are
user-defined and the corresponding labels shown to the subject can be set.

Here is an example of a rank order component with four labels to rank:

Here is a list of parameters available for a rankorder component:

Parameter Value Description R/O

class RankOrder Java class name alias a rankorder component. Req.

question text The question shown to subject. Req.

questionfont font name The font used for question text. Opt.

labels list of
labels

The list of labels that are ranked. Req.

labelsfont font name The font used for labels and their popup-menus Opt.

allowTies boolean Whether to allow/disallow ties in ranking. Default is
to allow ties (true).

Opt.

allowIncompleteRanking boolean Whether to allow/disallow incomplete ranking (not
all labels have been ranked) as a valid answer.
Default is incomplete ranking is allowed (true).

Opt.

Question
The question parameter is used to set the question that is shown to the subject. Example:

 # Set question text
 q5. question=Rank according clarity

Labels that are ranked
The labels parameter contains a list of labels that are ranked. The list is comma-separated lists of
strings. Example:

 # Set labels to rank.
 q5. labels=A,B,C,D

A pop-up menu is created for each label. The pop-up menu is used to select the ranking to that label.
There are as many choices as there are labels. For example, if four labels ’A,B,C,D’ are used, the
pop-up menu has choices 1., 2., 3., and 4. and also an empty choice (rank not given yet or left empty).

Ties
By default the rank order allows ties (same rank given for multiple labels). You can turn this off by
setting the allowTies parameter to false. Example:

 # disallow ties
 q5. allowTies=false

If ties have been disabled, when a illegal ranking is choosed to a label (there is already a label with
that ranking), the pop-up reverts to its previous ranking.

Incomplete ranking
By default the rank order components sends an answer whenever a ranking choice is made for any
label (unless possibly a tie is selected when ties has been disabled). The answers are generally
incomplete until a rank has been given for all labels. To send an answer only when all labels have
been ranked, set the allowIncompleteRanking to false. For example:

 # send answer only when all labels have been given a rank
 q5. allowIncompleteRanking=false

If the ranking is changed after a complete answer has been sent, the answer may become incomplete.
In that case the component sends a null answer which removes the previous answer and leaves that
component in an unanswered state (may disable DONE-button in the subject window because all
questions haven’t been answered).

Question font
The font used to display the text of question can be set with the questionfont parameter. It takes a
valid Java font specification as a value. For example:

 # The font of the question
 q5. questionfont=Serif-italic-24

You can use the FontTester tool help you select the fonts you want. See also the API of the Java’s
Font class.

Labels font
The font used in the labels and pop-up menus used to rank labels is set with the labelsfont parameter.
It takes a valid Java font specification as a value. For example:

 # Set font for labels and pop-up menus
 q5. labelsfont=Serif-bold-18

· UI index · Document index ·

Last modified: Wed Jan 20 16:06:31 EET 1999

PlayPanel
The PlayPanel component is a control component that is used by the subjects to play samples. It also
acts as a monitor that can show which sample is currently playing. Possible choices are user-definable
and the corresponding labels shown to the subject can be set. Also a ’stop’ button is added to stop
sample playing (some tests may ignore this button).

Here is an example of a play panel choice with three choices:

Here is a list of parameters available for a play panel controller:

Parameter Value Description R/O

class guinea.ui.PlayPanelJava class name of the PlayPanel component Req.

font font name The font used for buttons. Opt.

choices list of choices The choicess sent by the play component when the
corresponding label is pressed. The list is a comma
separated list of choices (strings only currently).

Req.

labels list of labels The labels shown to the subject. The subject selects one of
the choices and the corresponding choice is sent. The list is
a comma separated list of strings that are shown as labels.

Opt.

Buttons font
The font used to display the text of choices can be set with the font parameter. It takes a valid Java
font specification as a value. For example:

 # The font for the buttons
 play. font=SansSerif-bold-48

You can use the FontTester tool help you select the fonts you want. See also the API of the Java’s
Font class.

Choices and labels
The choices list defines the choices of commands that are sent to the test system. In all tests the
choices are sample names such like "A", "B" or "Ref" that refer to the corresponding test item
parameters. The labels list defines the labels that are shown to the subject on the buttons on the UI.
Labels can be used to display a different label that corresponds to a specific command. Both are
comma-separated lists of strings. Example:

 # Set choices (and labels)
 play. choices=Ref,A,B

This sets the choices and labels as shown in the window example above. If no labels are specified, the
choices will be used as labels also. In this case it acts the same as this:

 # Set choices and corresponding labels
 play. choices=Ref,A,B
 play. labels=Ref,A,B

Labels are used for displaying the selections to the subject. Example:

 # Set choices and labels
 play. choices=Ref,A,B
 play. labels=Reference,System A,System B

the labels shown are ’Reference’, ’System A’ and ’System B’ instead of ’Ref’, ’A’ and ’B’. Then the
subjects selects ’System A’, ’A’ will sent to the test system as the command.

· UI index · Document index ·

Last modified: Thu Jan 21 16:11:41 EET 1999

Results Processing
The role of the result processing GuineaPig system is to gather the data from individual test sessions
(parameters of the test, answers given by the subjects) and output the data in a way that analytical
tools can read them. The actual analysis of results is not a part of the GuineaPig system.

Internally the results are stored using Java’s serialization system. The results contains the test item
parameters, the answers the subjects have given and additional information about the particular
session.

About result processing in GuineaPig system.
ResPrint - tool to convert the results from the internal system format to a text file.
Customization of the output of results printing with config files.
Formatting different kind of answer types (details will be added later):

Numbers
Dates
Rank orders
Volume levels

· Document index ·

Last modified: Sun Aug 1 19:07:28 EEST 1999

Results Processing in GuineaPig System
Results created by the GuineaPig system are in a format different from what the usual statistical
sofware packages expect. A small converter program is provided to convert result data into a text file.

The ResPrint tool will convert result files from the GuineaPig system’s internal format to a tabulated
text file. It will read the session results files given as arguments, scans their contents and prints out a
text file to standard output. For each entry (test item), it will print (by default):

Item ID - the test item ID.
Subject ID - the subject ID of the person who gave the answers.
Session ID - the session ID of the session.
Duration of ihem - how much time was spent for this item from starting of this item to the time
the subject was done. The time is shows as seconds. For tests that enforce a time limit for
answering this field may read TIMEOUT which tells that the subject exceeded the time limit.
Number of switches - the number of times the subject has switched samples during an item (free
sequence test) or number of samples played to the subject (fixed sequence tests).
Item parameters - the test item’s parameters, usually the names of the samples played (sample
IDs of the samples, actually).
Answers - answers to the questions. If an answer for a particular question is missing, it’s field
will be left blank.

In the beginning of the printout, a comment will be printed that shows which column is which. For
result files that contain session information (serialized result files from tests), comments are printed
that contain the session ID, starting and ending time of the session and the MCL level of the session.

Running the converter
First go to the test directory where the result files are kept. Then run the converter program and give
the file names of the session result files as agruments, for example:

 gpResPrint results_*

if your result file names begin with ’ results_’. The converter then scans in the files given as arguments
and prints out the results in a tabulated table.

For more details about ResPrint tool, see ResPrint manual page.

Program output
Program output format depends slighty on the test type (different parameters and questions). For
example output of the ResPrint program processing a A/B/C-test (actually a Ref/A/B) could look like
this:

#item subject session time switch A B Ref qB qA
item4 ville zappa 8.7 7 pirr11 pirr16 pirr16 7.0 2.0
item3 ville zappa 14.2 12 pirr8 pirr11 pirr8 2.0 8.0
item2 ville zappa 8.5 9 pirr22 pirr32 pirr32 2.6 7.6
item1 ville zappa 10.0 7 pirr44 pirr32 pirr44 7.8 9.4

Here is another example of a A/B scale test and session information. Also shows an example of
automatically generated session and subject IDs if IDs were not set.

#session id: S14837061
#session start time: Wed Mar 18 14:21:55 GMT+02:00 1998
#session end time: Wed Mar 18 14:25:12 GMT+02:00 1998
#session MCLL: -3.999999999999999dB
#item subject session time switch A B q2 q1
item4 S14837061a S14837061 130.2 25 pirr11 pirr16 5.3 5.2
item3 S14837061a S14837061 27.6 13 pirr8 pirr11 6.0 3.0
item2 S14837061a S14837061 4.9 3 pirr22 pirr32 7.0 3.0
item1 S14837061a S14837061 24.8 11 pirr44 pirr32 6.0 4.0

Output can be directed to a file or piped to another program with normal unix syntax.

Comment lines start with the ’#’ character. Each field will be separated with a single ASCII
TAB-character. White space other than TAB-characters are not considered field separators.

The output of the tool can be customized with result options file(s) and tools options.

Note!
You might have noticed that the order of the answers (question IDs) in the result file may not be the
same as they appear on the test configuration files. Also, the order of the answers (for example: [qA,
qB]) in the result file produced from a session1 may be different from the result file produced by
another session2 ([qB, qA]). For example:

 gpResPrint session1.ser >res
 gpResPrint session2.ser >>res

The order of answers may be different in session1’s result from session2’s results. This is due to
internals of the system where results are stored in an item as a hash table which is not ordered.

The problem occurs only when you haven’t defined manually the order of fields to be printed by the
tool (either with command line option or result options file). To avoid this problem, define the fields
to be printed and their order in the results config file with the fields property or with the -fields option
in ResPrint.

· Results Processing Index · Manual index ·

Last modified: Sun Aug 1 19:09:42 EEST 1999

Results processing configuration
The output of the ResPrint tool can be customized with command line options and config files. When
ResPrint starts, it loads the default results processing options from file
’ /usr/GuineaPig/lib/results.properties’. Then it loads the file ’ results.properties’ from the current
directory if it finds one. Then an additional config file is loaded if one in provided with the ResPrint’s
-f option.

The config files allow you to configure which fields are printed and which order. The format used to
print the values of a field can be customized with some built-in variations or with additional plug-in
modules. Also simple filtering of item results is possible.

Empty lines and comment lines (lines beginning with a hash ("#") character) are ignored.

Fields to print and their order
The fields parameter lists the field IDs of the information about an item and their order. The selection
of fields is provided as a comma-separated list of field IDs, for example:

 # Print these fields
 fields: ITEMID,SUBJECTID,SESSIONID,TIME,SWITCH,A,B,q1

This would print the item ID, subject ID, session ID, item duration, number of sample switches,
parameters A and B and the answer to question q1.

The fields are either built-in fields, parameter fields or answer fields. Built-in fields include such
fields as item ID, item duration, etc. Parameter fields are the parameters of an item, such as ’A’ or ’B’
or ’Ref’. Answer fields are the answers given for the questions specified in the UI config file.

Built-in fields
Here is the list of built-in fields:

ITEMID
The item’s item ID (a string).

SUBJECTID
The subject ID of the subject that gave the answers (a string).

SESSIONID
The session ID of the session during which this item was presented (a string).

ITEMSTART
The date and time when item was presented to the subject (a java’s Date object).

PLAINTIME
The duration of the item (in seconds), how much time the subject used to grade the samples.

STATUS
The status of testing this item. Possible values are:

DONE
Test item was tested succesfully.

TIMEOUT
Item grading time limit expired when testing this item.

ABORTED
The subject aborted the test session during testing this item.

ERROR
A testing system error occured during this item.

NOTDONE
This item has not been tested. (Generally, this should not be possible when printing results.)

TIME
A combination of PLAINTIME and STATUS fields. If the item was succesfully tested, this field
shows the duration of the item (how much time the subject used to grade the samples). By
default, the time is shown in seconds with one decimal. If something special happened during
testing this item, the information from STATUS field is shown instead of time (usually
TIMEOUT indicating that item grading limit expired).

SWITCH
Number of sample switches during testing this item (an integer).

SESSIONSTART
The time when this session started (a java’s Date object).

SESSIONEND
The time when this session ended (a java’s Date object).

MCLL
The MCL level of this item’s session (a GP’s Volume object).

Test item filtering
With the filtering parameters or the ResPrint’s filtering options you can select only a subset of all item
results to be printed. If several filters are specified, the intersection of the sets defined by different
filters is used (filters are ’and’ed together).

Select items: the items property is a comma-separated list of item IDs to print.

 # print only items item01, item03 and item05
 items: item01,item03,item05

Only answers with given item IDs are printed.

Select subjects: the subjects property is a comma-separated list of subject IDs to print.

 # print only answers given by subjects with subject IDs john, jane and doe.
 subjects: john,jane,doe

Only answers with subject IDs given are printed.

Select sessions: the sessions property is a comma-separated list of session IDs to print.

 # print only answers from sessions SES04, SES05, SES06.
 sessions: SES04,SES05,SES06

Only answers with session IDs given are printed.

If a filter is not defined for items, all items are included in printing. The same goes for subjects and
sessions filters.

You can use several types of filters, for example:

 # print only answers for item01, item03 and item05 given during
 # sessions SES04, SES05 and SES06.
 items: item01,item03,item05
 sessions: SES04,SES05,SES06

Field customization
The format of all the fields can be customized. Properties for fields are searched from parameters that
look like this:

 fields.TIME.label: Time/s

This example sets the label for the built-in TIME field. To choose a label ’System A’ for item
parameter A you would do it in the same fashion:

 fields.A.label: System A

All fields have some standard properties. In the following, the FIELDID is the field ID name you want
to customize.

The field label is the string that is shown in the header in the place of this field. Use property label to
set it:

 fields.FIELDID. label: field label

The ’ field label’ is shown in the header. If label is not specified, the field’s ID is used as the label also.

The format used to display the field’s contents can be specified. You’ll need to provide a java class
name of a formatter object with the format property:

 fields.FIELDID. format.class: java_class_name

where java_class_name is the class name of the object you want to use for formatting. The formatter
object must be a subclass of java’s Format class. By default GP includes support for the most common
format classes: numeric values and dates.

Formatters usually (numbers, dates) has a pattern that can be customized to change the output of the
formatter. It is usually set with the pattern property of the field’s format properties:

 fields.FIELDID. format.pattern: formatting_pattern

See the documentation of the formatter for info about its pattern specs. More information about
built-in fields formatting will be added later.

Defaults for builtin fields can be found from /usr/GuineaPig/lib/results.properties .

Sub-fields
Sub-fields allows you to split the information form one field to multiple fields. For example, you can
split the starting time of the item (ITEMSTART) to deparate time and date fields. The format of the
field ID of a sub-field is quite simple. For example, to define a date sub-field of the ITEMSTART
parameter, the ID could be:

 fields: ITEMID,SUBJECTID, ITEMSTART/date,A,B,...

The slash (’/’) marks that this is a sub-field ID. The value that is formatted is got from the
ITEMSTART parameter, the field ID that is in the left side of the slash character. The right side is not
important, you may use anything you want. To customize the format of the new sub-field, just
customize it the same as with any other field, for example:

 # Subfield ITEMSTART/date (The date part of the ITEMSTART field)
 #
 fields. ITEMSTART/date.format.class: guinea.tools.resprint.GPSimpleDateFormat
 fields. ITEMSTART/date.format.pattern: dd/MM/yyyy

This would format the date ’Mon Jan 18 14:42:59 EET 1999’ as ’18/01/1999’. With more sub-fields
you could split the day, month, year to each their own fields.

· Results Processing Index · Document index ·

Sound Player Module
The Sound Player handles the audio output of the system. Available
documentation is listed below:

Audio file formats the player accepts.
Parameters of player.
SoundPlayer API

· Document index ·

Last modified: Mon Apr 20 15:48:28 EET DST 1998

Sound File Formats
The sound player uses the SGI’s Silicon Graphics Audio File Library (AF) to read the audio files.
Therefore all file formats supported by the AF can be used with the GuineaPig system. The list of
supported formats include: AIFF-C, AIFF, SND/AU, WAVE, MPEG1, etc. See the manual page of
’afIntro’ for the list of supported formats and more information about the formats. The sound player
currently doesn’t support headerless raw data files.

The preferred file formats are uncompressed AIFF and AIFF-C. Conversion from and to other formats
can be done, for example, with mediaconvert, dmconvert and sfconvert.

· Sound Player Index · Document index ·

Sound Player Parameters
The examples show examples of how to set player parameters in the test config file.

Sample rate
The sample rates available depends on the audio device that is used. For example, the analog devices
in the O2 support all sample rates from 4kHz to 48kHz with 1Hz resolution. Digital ports only support
32/44.1/48 kHz.

Set sampling rate of the player by setting the rate parameter in the test config file. Example:

 # sampling rate of output
 player.rate=44100

The sample rate of the player and all the samples must be the same. If the sound player can use some
sample rate, samples should be converted to a supported rate.

Channels
The maximum number of channels depends on the audio device that is used. Analog outputs usually
support mono or stereo output. Digital outputs support up to 8 channels (depending on which digital
port to use).

Set number of channels of the player by setting the channels parameter in the test config file.
Example:

 # number of channels (1/2/4/8)
 player.channels=2

If a sample has more channels than there are output channels, extra samples are ignored.

Audio device
On some systems there are multiple independent audio ports. On a O2 with the digital audio option
card there are four output devices: Analog Out, Analog Out 2, ADAT Out and AES Out. Different
devices may have different choices of sample rates, number of channels, number of bits or output
connections. Use ’apanel’ or ’apanel -print’ to list the choices of devices on your system. Also read
the manuals.

Choices of devices for O2, Octane and Onyx2 systems include:

Analog Out and Analog Out 2
Analog stereo outputs, 16-bit on O2, 18-bit on Octane an Onyx2. Nearly arbitrary sample rates
from 4kHz to 48kHz.

ADAT Out
8-channel, 24-bit ADAT Optical output. Sample rates: 32kHz, 44.1kHz, 48kHz.

AES Out
Stereo AES3 24-bit digital output. Sample rates: 32kHz, 44.1kHz, 48kHz.

in addition the device name default can be used that selects the default output device selected with
apanel. However, you should not use the defaults device.

Set the device of the player by setting the device parameter in the test config file. Example:

 # set output device
 player.device=ADAT Out

You should use a device that is not the same as the default device. The audio output of tools and
programs (includes bells from the console and shells and window manager, web browsers, etc.) goes
to the default device if output device is not specially set (usually isn’t).

Output volume
The output volume level offset or correction is used to set the output level. It can be used to adjust the
volume of digital outputs (there is no level control for digital outputs as there are for analog outputs in
apanel).

In earlier versions of the GuineaPig system the player’s volume parameter was used to set the default
listening level for the test (the MCL level). In current and future versions of the system use the
MCLL-parameters in the test configuration file. Do not use the player’s volume level for that purpose
anymore.

Set the volume of the player by setting the volume parameter in the test config file. The volume level
is in linear scale (usually between 0 and 1) or in decibel scale. Example:

 # set volume offset (linear scale, volume 50%)
 player.volume=0.5

This is equivalent to about:

 # set volume offset (linear scale, volume -6dB)
 player.volume=-6dB

Do not use levels more than 1 (linear scale) or positive decibel values, the output level may overflow
with loud samples and cause distortions to audio.

Sound buffer length
The sound player mixes the output audio data in blocks (or buffer) of fixed size. The output is also
double-buffered, the next block of data is calculated as the first is being written to the audio hardware.
The buffering also means that an action (for example, the subject presses a button to play a sample)
that is meant to take effect immediately will necessarily have a delay that roughly corresponds to two
times the length of the buffer. The default buffer length is 4096 sample frames that will cause a delay
of about 200ms (sample rate = 44.1kHz). It is possible to shorten the delay by shortening the buffer
length. Shortening the buffer length reduces the delay but it also increases the risk of getting dropouts
in sound if the buffer calculation didn’t finish in time (other system activity and increased overhead
caused by shorter blocks may cause problems, also audio files are loaded from disk on the fly).

The buffer length is set with the buflen parameter in the test config file. The length is in sample
frames. The length of 44100 corresponds to one second with the sample rate of 44.1kHz. Example:

 # set mixing buffer length
 player.buflen=4096

Sets the buffer length to 4096 sample frames (roughly 93ms with sample rate 44.1kHz).

Note: If a command was scheduled beforehand to start at a certain point of time, no delay is observed
(sub-millisecond accuracy).

· Sound Player index · Document index ·

Last modified: Sat Jul 18 18:27:46 EEST 1998

Utilities & Tools
Some tools and utilities for running the tests and for creating them:

RunTest - run a listening test.
ResPrint - convert and print results as a ASCII files
FontTester - show Java fonts available in the system
UITester - test and debug subject UI properties
PlayerTester - test sound player and sound samples.
UIServerTest - test remote UI server and client connections.
RemoteUIClient - request a remote subject UI client from subject UI server and start it.
RemoteUIApplet - an applet to request a remote subject UI client from subject UI server and
start it.

· Document index ·

Last modified: Sat Jan 16 14:35:23 EET 1999

Running a test

NAME
gpRunTest - run a listening test.

SYNOPSIS
gpRunTest [-f test_config_file] [-session sessionID] -subject subjectID
 [-timeout timeout] [-wtimeout warning_timeout]
 [-sequenceType free|fixed] [-sequence sequence]
 [-sampleSwitching normal|parallel]

DESCRIPTION
A test is run using the graphical gpRunTest command. It is usually started without any
arguments, but command line options can also be used. For a bit quicker start, you could give the
test configuration file, session ID and subject ID on the command line.

Usually a test goes like this:
1. Go to the test directory (not required but a good practice).
2. Start the gpRunTest tool to run the test. The GUI will appear. Set required information

about session:
1. Select the test configuration file either from the Files panel from the GUI or with the

-f command line option.
2. Select session ID for test session either in the Session panel or with the -session

command line option.
3. Optionally, select playlist file manually in the Session panel if the tool failed to find

the correct playlist file automatically.
4. Add subjects to test session in the Subjects panel. Subjects on local and remote

terminals can be added. Local terminal subjects can also be added with the -subject
command line option.

3. Start the test with the Start test button on Files panel.
4. Test items are played to the subject and answers from the subject are saved.
5. When all items have been played the results are written to a file. The file contains java

objects containing copies of test items and corresponding answers from the subject. The
results can be converted to a text file with result processing tools.

6. Terminate RunTest tool with the window-close button.

If an error occurs during the test, the system tries to save as much as it can (the items finished in
the session).

RUNTEST GUI
The structure of the RunTest tool’s GUI panel looks like this:

Figure 1: RunTest panel.

On the top there are tabs that lead to various settings panels. Below the tabs is the selected panel.
Below it, there is a message area that displays RunTest messages. The last line is a status line.

FILES PANEL
The Files panel is used to select the test configuration file. Press Select file to pop-up a file
selection dialog to select config. file:

Figure 2: Test configuration file selection dialog.

The panel is also used to start the test when all settings have been done. Press Start test to run
the test.

Figure 3: Starting test.

SESSION PANEL
The Session panel is used to set the session ID for the session. Also playlist file can be selected.

Figure 4: Session panel. Setting session ID and playlist.

If the playlist field is empty, a playlist is search for automatically when session ID is selected
(remember to press return in session ID field). Pressing Select file displays a file selection dialog
for playlists (similar to dialog in Fig. 2).

SUBJECTS PANEL
The Subjects panel is used to add local and remote subjects to the test. Subjects can also be
deleted from the session.

Figure 5: Subjects panel. Adding and deleting local and remote terminal subjects.

In the lower part of the panel, local console subjects can be added with the Add local terminal
button. A local or remote subject can be deleted from session with the Delete button.

For using remote terminals, the remote subject UI server must first be started with the Start
button. The server waits for connections from remote terminals. When a connection is made, the
server sends the remote terminal the subject UI panel and adds the remote subject to the subjects
list. Use the Stop button to close the server. After closing the server, no more remote terminals
cannot be added.

The subjects added to the current session are shown. In the Subject ID field the subject’s ID is
shown. The subject ID is editable by the tester. In the Terminal address, the subject’s terminal
location is shown. For local console subjects console is shown. For remote subjects the IP
address and the hostname of the remote machine is shown.

COMMAND LINE OPTIONS
Here are the command line options that can be used. All command line options are optional,
required values can be set using the GUI also.

-f test_config_file
Set the test configuration file where to read test information. This should be the first option
on the command line.

-session sessionID
Set the session ID of this session. If no session ID is set, a new ’unique’ ID will be
generated. If session-specific playlist are used, the session ID must be set explicitly (the
system searches session playlists based on session IDs). Session ID should be set before the
subjects are added.

-subject subjectID (required)
Add a subject to this session with ID ’subjectID’. If subject ID is NONAME, a new subject
ID is generated based on the session ID of this session. Session ID should be set before the
subjects are added.

In addition there are some additional options that allow you to override some test parameters set
in the configuration file. These options shouldn’t be used directly, the parameters should be in the
test parameter file. These option are mostly just for testing and debugging.

-timeout timeout (optional)
Set the time (in seconds) the subject has to give the answers. If set to zero, time limit will
not be enforced.
See also: Timeouts

-wtimeout warning_timeout (optional)
Set the time in seconds before the timeout to warn that time is about to end. If set to zero, no
warning is shown (goes directly to timeout when time ends).
See also: Timeouts

-sequenceType free | fixed (optional)
Set sequence type of test. In free the subject can freely switch between samples, in fixed a
fixed sequence of samples is played.
See also: Sequences

-sequence sequence (optional)
Set sample sequence for test.
See also: Sequences

-sampleSwitching normal | parallel (optional)
Set sample swithing type in free sequence tests. In parallel a switch from one sample to
another is done with a cross-fade, in normal the first sample stops and the new sample starts
from beginning.
See also: Switching

EXAMPLES
These examples show primarily using RunTest with command line options.

First the simplest and most commonly used ways to run the test. First:

 cd TESTDIR
 RunTest -f test.properties -subject arnold

and second:

 cd TESTDIR
 RunTest -f test.properties -subject NONAME

The TESTDIR is the pathname of the test directory. The file ’ test.properties’ is the name of the
file test configuration file. A new session ID for this session is generated because session ID
hasn’t been set explicitly. If the first example, a single subject is used and his subject ID is
’arnold’. In the second example, setting the subject’s ID to ’NONAME’ will generate a new
subject ID for this subject based on the session ID.

In the next example the session ID of the session is set explicitly:

 cd TESTDIR
 RunTest -f test.properties -session ses02 -subject NONAME

This will set the session ID to ’ses02’ for this test. Also a new subject ID for the subject is
generated based on the new session ID.

SEE ALSO
Tests, Timeouts, sequences, switching, results processing

NOTES

· Tools index · Manual index ·

Last modified: Wed Jul 28 13:12:43 EEST 1999

Printing test results files

NAME
ResPrint - print test results.

SYNOPSIS
ResPrint [-f options_file] [-o output_file]
 [-fields list_of_fieldIDs] [-items list_of_itemIDs]
 [-sessions list_of_sessionIDs] [-subjects list_of_subjectIDs]
 file ...

DESCRIPTION
The ResPrint tool converts the serialized the result files created by the gpRunTest tool to easier
human/computer readable text files.

ResPrint takes as arguments the file names of the serialized results files, reads them in and prints
out the information in tabulated text format. When ResPrint starts, it first loads GP system’s
default result output options file. Then it looks for the ’ results.properties’ output options file in
the current directory and if found, loads it (see also section files).

Command line options can be used to select some of the test items to print. Also an options file
can be given that can be used to configure the output.

-f options_file (optional)
Set the test configuration file where to read result printing options. This should be the first
option to the ResPrint program. Options included in this file override the corresponding
options given in the default and/or the current directory’s options file.

-fields list_of_fieldIDs (optional)
Select which fields to output and the order of the fields. This option overrides the ResPrint’s
default list of fields or the result options file’s list of fields.

-o output_file (optional)
The file where to write the results. If omitted, results are printed on standard output.

file ... (required)
Select which results files to process.

Some options can be used to filter the output of results. You can filter by item ID, session ID or
subject ID:

-items list_of_itemIDs (optional)
Only print results for specified items. The list_of_itemIDs is a comma-separated list of test
item IDs to include in output. If this option is not used, results for all items will be included.

-sessions list_of_sessionIDs (optional)
Only print results for specified sessions. The list_of_sessionIDs is a comma-separated list of
test session IDs to include in output. If this option is not used, results for all sessions will be
included.

-subjects list_of_subjectIDs (optional)
Only print results for specified subjects. The list_of_subjectIDs is a comma-separated list of

subject IDs to include in output. If this option is not used, results for all subjects will be
included.

If several filters are specified, the intersection of the item sets produced by the separate filters are
included for output.

FILES
The ResPrint tool reads the serialized results files that are output as the result of running a test.
They are by default written to files with the form of ’ results_SESSIONID.ser’ where the
SESSIONID is the session ID of the session.

Output files: The tool converts the serialized results files to TAB-delimeted text format and
outputs it to stardard output. You can save the results to a file by redirecting the output of the tool
to a file. In the output, results are output one line per test item with item’s parameters and
answers as fields. Fields are separated by a ASCII TAB character. Comment lines may be output,
they always begin with the hash (’#’) character.

Result printing options files: The default printing options are first automatically loaded from
GP systems default results options file ’ /usr/GuineaPig/lib/results.parameters’. Then, if a file
named ’ results.properties’ is found in the current directory, it is loaded. Options found in that file
override the corresponding options in the default options. Then if an additional option file is
provided with the -f option, it is loaded.

The format of the options file(s) is described here.

EXAMPLES
First go to the test directory where the result files are kept. Then run the converter program and
give the file names of the session result files as agruments, for example:

 ResPrint results_*

if your result file names begin with ’results_’. The converter then scans in the files given as
arguments and prints out the results in a tabulated table. If you have the result printing options
file ’ results.properties’ in the same directory, it is loaded automatically.

To use an additional or alternate options file you want to use, give its name with the -f option, for
example:

 ResPrint -f results-alt.properties results_*

where the ’ results-alt.properties’ is the name of the additional options file.

To print only the item ID, the parameters ’A’ and ’B’ and the answer for question ’q1’ (such as in
example for A/B test in demos):

 ResPrint -fields ITEMID,A,B,q1 results_*

To print only results given for items with IDs ’ item01’, ’ item04’ and ’ item22’:

 ResPrint -items item01,item04,item22 results_*

To print the the same items above, but only those during sessions ’SES04’, ’SES05’ and ’SES06’:

 ResPrint -items item01,item04,item22 -sessions SES04,SES05,SES06 results_*

Note that you can put those filters in an additional options file and read them with the -f option.

SEE ALSO
Tests, results processing

NOTES

· Utils index · Document index ·

Last modified: Mon Jan 18 15:04:46 EET 1999

FontTester
The FontTester is a tool that shows which Java fonts are available and what they look like. It is useful
for selecting which fonts to use in the subject UI blocks.

The font tester is started with the gpFontTester command. It will bring up the font tester window:

Fig. 1: The font tester window.

In the top are the choices of font family, font style and the font size available. Change font parameters
with the pop-up menus.

In the middle there is a text field that contains example text using the selected font. You can edit the
example text with mouse and keyboard. If the text field becomes too small to fit the text, resize the
window.

In the bottom the Java font name of the selected font is showed. You can use the font name with Java
apps. You can cut the font name and paste it elsewhere with the mouse.

To quit, close the window using the close-button in the top left.

· Utils Index · Document index ·

Last modified: Wed May 6 16:56:37 EEST 1998

Sound Player Tester
The PlayerTester is a tool for testing the sound player and sound samples. You can select the player
parameters (such as sample rate, channels, devices, etc.) and you can load samples and play them.

The player tester is started with the gpPlayerTester command with no arguments. For example:

 gpPlayerTester

It will bring up the main window:

Fig. 1: An example of a player tester window.

The window has two menus Player and Samples. They are used for player and sample operations.
Below then there is a list that shows the samples that are currently loaded.

A Player Log Window will pop up also. It will display debug messages from the external player and
the java module. You can close it with the close button in the top left. If you want to see it again,
select show log window from the player menu.

Fig. 2: An example of a player tester log window.

Player menu
The player menu can be used to select the parameters of the player. The sample rate, channels, audio
device and launch mode must be set before starting the player (launch), they cannot be changed after
the player has been started.

Sample rate:
Some preselected sample rates available are listed. Select desired sample rate from the list to use
that rate. Default is 44.1kHz.

Channels:
Select number of output channels, 1, 2, 4 or 8 are listed. The number of channels that is available
depends on the audio device used. Default is 2.

Audio device:
The audio device name to use. The default is ’default’ which uses the default audio device
selected with apanel. Some devices may not be available on your system.

Master volume:
Set player’s output level correction. Some preselected choices are listed. The level can be set any
time. Default is 0dB.

Virtual players:
Allocate new virtual player with specified number of channels within a real player. The player
must be running already for this to work. Example: first start player with 8 output channels via
ADAT Out interface. Then allocate four 2-channel virtual players. Now load several stereo
samples and assign them to various virtual players (see later).

Launch mode:
Select the mode that the soundplayer communicates with the external player program. The
default is ’socket’.

Launch:
Start the player. The player parameters must be before launch to take effect.

Connect:
Connect to a player that is already running and waiting for a connection. You usually should use
launch above.

Stop:
Stop and quit player player.

Quit :
Stop and quit player program and exit PlayerTester.

Show Log Window:
Show log window if you have closed it.

Samples menu
The samples menu is used to load samples and combine several samples. The menu only works after
when the player has been started.

Load Soundsample:
Load a sound sample file. It will pop up a file selection dialog to get the file name. It will then
load the sample, add the name of the sample to the sample list and starts a sample window for the
sample.

Load serialized sample:
The same as above but reads the properties from a serialized file and loads the sample.

Load property sample:
The same as above but reads the properties from a text properties file and loads the sample.

Make parallel:
Create a new parallel sample. First select the samples you want to combine from the sample list
and then select ’make parallel’. A new sample window will come up.

Sample window
When sample is loaded, a new window for the sample is created:

Fig. 3: An example of a player tester sample window.

The volume of the sample can be changed with the scrollbar on the top left. The ’start’ and ’stop’
button can be used to start/stop the sample (surprise). On the bottom left is a sample meter that shows
the current position in the sample. You can jump to any position on the sample by clicking at a
position or dragging and releasing an indicator to desired position. On bottom right is shown which
virtual player is used. The default is ’master player’ which is the real player. If virtual players have
been allocated with the player-menu, you can assign the sample to a virtual player. To unload the
sample, close the window with the close-button on the top left.

Parallel sample
A parallel sample is a sample that is a combination of several samples. At any time only one of the
samples is playing and the others are silent. When an other sample in a parallel sample is selected, the
switch is done using a cross-fade. The window for parallel sample is almost the same as in regular
sample window. Only the virtual player selection is replaced a selection of samples that consist this
sample. Selecting one of the samples switches to the other sample using a cross-fade. Here is a figure
of the parallel window:

Fig. 4: An example of a player tester parallel sample window.

· Utils Index · Document index ·

Last modified: Mon May 25 16:33:44 EEST 1998

Subject UI Tester
The UITester is a tool that shows what the subject UI window looks like before using it in a test. It is
useful for experimenting with the ui parameters and adding ui components and testing them. Use it
with the FontTester utility for selecting the fonts.

The font tester is started with the gpUITester command with the file name of the UI properies as an
argument. For example:

 gpUITester uiABC.properties

It will bring up the subject UI window (in this case an A/B/C test UI window:

Fig. 1: An example of an UI tester window.

The window will show the control and answering panels of the subject UI. All the features of subject
UIs cannot yet be tester with the UITester tool (more features will be added later).

To quit, close the window using the close-button in the top left.

· Utils Index · Document index ·

Last modified: Mon May 25 14:41:47 EEST 1998

Subject UI Server Tester

NAME
gpUIServerTest - test remote UI server and client connections.

SYNOPSIS
gpUIServerTest [-p port] uifile

DESCRIPTION
The UIServerTest tool can be used to test that remote subject UI modules and connections work.
The tester will start a remote subject UI server that will wait for connections to the server. When
a connection is made, the server will send a copy of the specified subject UI module to the
remote client. Also a local server version of the subject UI is made and it is passed for a UI tester
program for testing the remote UI (using the gpUITester tool).

The gpUIServerTest has the following parameters and options:

uifile
The file name of the subject UI module that is sent to the remote client.

-p port
Specify the server’s port number. If not set, default will be used.

To quit the server, press ctrl-C.

EXAMPLES
To start the server tester with the file ’uiABC.properties ’ as the UI specification file:

 gpUIServerTest uiABC.properties

To start the same with a specific server port number 5000:

 gpUIServerTest -p 5000 uiABC.properties

SEE ALSO
gpUITester, gpRemoteUIClient, Remote UI Applet

· Utils Index · Document index ·

Last modified: Thu Oct 8 15:30:38 EEST 1998

Remote Subject UI Client

NAME
gpRemoteUIClient - request a remote subject UI client from subject UI server and start it.

SYNOPSIS
gpUIServerTest [-p port] [server]

java guinea.tools.remoteui.RemoteUIClient [-p port] [server]

DESCRIPTION
The gpRemoteUIClient connects to a remote subject UI server and requests a subject UI module
that will be shown to the test subject. When the connection has been completed, the client subject
UI will start and the window will come up.

The gpRemoteUIClient has the following parameters:

server
Specify the subject UI server’s hostname. If no hostname is given, ’localhost’ is used.

-p port
Specify the server’s port number. If not set, default will be used.

EXAMPLES
To start the UI client and request the subject UI from default server (localhost) and default port
number:

 gpRemoteUIClient

To use host ’gpserver.foo.com’ as the subject UI server:

 gpUIServerTest gpserver.foo.com

To use host ’gpserver.foo.com’ as the subject UI server and port number 5000:

 gpUIServerTest -p 5000 gpserver.foo.com

To start the client from remote terminal that doesn’t have GP system installed (either SGI or
non-SGI), you’ll have to start the client with command:

 java guinea.tools.remoteui.RemoteUIClient -p 5000 gpserver.foo.com

It will do the same as in previous example. You’ll also need to have the GP java class files and
their location added to the Java class path. You can copy the java class files from GP home
directory, copy the file named guinea.jar .

SEE ALSO
gpUIServerTest, Remote UI Applet

· Utils Index · Document index ·

Last modified: Wed Nov 4 16:13:35 EET 1998

Remote Subject UI Applet

NAME
guinea.tools.remoteui.RemoteUIApplet.class - an applet to request a remote subject UI client
from subject UI server and start it.

SYNOPSIS
appletviewer URL
netscape URL

DESCRIPTION
The RemoteUIApplet is an applet that can be used to connect to a remote subject UI server the
same as with the gpRemoteUIClient tool. Since the client is an applet, you can theoretically use
any networked java-capable device to display the test user interface to the subject. At least Sun’s
JDK appletviewer and netscape 4.06 (both on SGI) seem to work. Also a quick test with
Windoze version of netscape 4.06 seemed to work. Netscape’s versions prior to 4.06 generally
didn’t seem to work.

The applet will show as a small panel on the web browser. The applet allows the subject to set the
remote UI server’s hostname and port number. A popup menu can also be used to select the UI
server’s hostname and port. Finally the subject presses the ’Connect’ button to initiate the
connection to the remote server. From there on things go the same as with the
gpRemoteUIClient tool.

Here is an image of the applet:

An example of RemoteUIApplet: on left there is a textfield to select the server hostname, next is a button to pop
up a selection of available UI servers, next is a textfield to set the port number and finally a ’Connect’ button
to contact the remote UI server.

APPLET CONFIGURATION
Applet’s parameters and options are set by the tester by giving parameters to the applet using the
applet-tag’s param-tags on the HTML-page that invokes the applet. The default server host and
the list of selectable servers from the popup menu can be configured. Also the fonts used by the
applet can be set.

Font parameters
Font parameters allow setting different fonts for different objects in the applet panel. Available
parameters are:

menufont fontspec
Set the font for menu items in the host popup menu.

textfont fontspec
Set the font for textfields (hostname and port).

buttonfont fontspec
Set the font for buttons (connect-button).

font fontspec
Set the default font. It will be used if other specific fonts have been set.

Server host parameters
Server host parameters allow setting the default server hostname and portnumber as well as list of
hosts available from the host menu. Available parameters are:

defaultHost hostinfo
Set the hostname and port of the subject UI server shown initially.

defaultPort portnumber
Set the default port number to use if port number has not been explicitly set (usually with
menu configuration and hostinfos).

hostN hostinfo
Add a server into the popup menu. The N is an integer starting from 1 (one). The applet will
scan applet parameters starting from host1 and goes on to host2, host3 and so on. It will stop
when it finds no host(n+1) after host(n). Parameter names host3, host03 and host003 are all
equivalent.

The hostinfo parameter tells the address of the server and which port to use. The simplest form is
the host name alone, for example:

 foo.bar.com

It specifies the host ’ foo.bar.com’ and uses the default port. A non-default port number can be
specified:

 foo.bar.com:9000

Port 9000 of host ’ foo.bar.com’ is specified. For the menu, also a label can be set:

 foo.bar.com:9000;GuineaPig UI server

This will define the same address as previous but on the menu, ’GuineaPig UI server’ will be
shown as the label. If no label is set, the hostname will be used as the label. If default port is
used, the port number can be left out:

 foo.bar.com;GuineaPig UI server

In the hostinfo sepcifications, the hostname can be set to ’DOCUMENTHOST’ (all capitals). This
will be automatically replaced with hostname of the host the applet was loaded from. For
example:

 DOCUMENTHOST;GuineaPig UI server

If the applet was loaded from host foo.bar.com, this hostinfo will be automatically changed to

 foo.bar.com;GuineaPig UI server

The port number can be added the same way as with other examples. If the applet was loaded
from local disk (using a file: URL), ’ localhost’ will be used as the hostname.

Other options
It is possible to disable the host menu and the textfields for entering host name and port number.
Also the applet can be set to automatically connect to the UI server when applet is started.
Options are:

showHostMenu true or false
Whether to show the host menu to the subject for selecting the server host. By default this
option on (value is true) and the host menu is shown. Set to false to disable the menu (the
menu will not be shown).

allowSetHost true or false
Whether to allow the subject to set the hostname and port by using the textfields. By default
this option is on (value is true). Set to false to not allow the subject to set the host name and
port number, the textfields are used only to show the name of the selected host. The host
menu can be used to select the server host (unless the host menu also has been disabled).

autoConnect true or false
Whether to automatically connect to the server when the applet is started. By default this
option is off (value is false). When using the autoconnect, the server host should have been
set with the defaultHost parameter. Also the allowSetHost and showHostMenu should
generally be set to false.

APPLET TAG
The HTML’s <APPLET> tag is used to embed the applet onto the page and to pass parameters to
the applet. Here is an example of what the applet tag would look like:

 <applet code ="guinea.tools.remoteui.RemoteUIApplet.class" archive ="guinea.jar"
 width=400 height=50
 alt="Your browser understands the APPLET tag but isn’t running the applet, for some reason.">

 < param name="font" value="Serif-14">
 <param name=" menufont " value="Serif-italic-14">

 <param name=" defaultHost " value="localhost;Localhost">
 <param name=" defaultPort " value="6000">

 <param name=" host1 " value="bird.hut.fi;Hynden kone">
 <param name="host2" value="helmholtz.hut.fi">
 <param name="host3" value="helmholtz.hut.fi:6001;Helmholtz, port 6001">

 Your browser is completely ignoring the APPLET tag!
 </applet>

More detailed description of some tags:

code
The java class name of the applet. It must be as shown or the applet will not work.

archive
The name of the Java ARchive (jar) that contains GuineaPig java classes. In this example
the guinea.jar file must be found from the same directory where this html-file is in.

param
Parameters are passed to the applet with param tags. They each contain a parameter name,
value pair. See above for available parameters names and values.

NOTES
Usually web browsers only allow network connections to the same host where the applet was
loaded from. Some browsers can be set to allow connections to other hosts also. For example,
JDK’s appletviewer allows applet to make connections to other hosts if network access properties
are changed to allow unrestricted access. Running applets from local disk (using file: URLs)
usually allow unrestricted network access.

The Java tutorial gives more detailed information about what applets can and can’t do.

SEE ALSO
gpRemoteUIClient, gpUIServerTest
Java tutorial: what applets can and can’t do

· Utils Index · Document index ·

Last modified: Fri Oct 30 12:30:08 EET 1998

http://java.sun.com/docs/books/tutorial/applet/overview/security.html
http://java.sun.com/docs/books/tutorial/applet/overview/security.html
http://java.sun.com/docs/books/tutorial/index.html

API Documentation
API documents are generated from the documentation comments in the Java source code using the
Java’s javadoc utility and some postprocessing. The documents provide information on all java classes
used in the system.

Guinea Pig Java class API documents
Packages Index
Class Hierarchy
Index of All Fields and Methods

· Document index ·

Last modified: Sun Apr 19 20:51:42 EET DST 1998

	
	Test types
	Testing features
	Audio output features
	Requirements
	Additional information

	Installation Instructions and Setup
	1 · Requirements
	2 · Download and Install Java
	3 · Install GuineaPig System
	4 · Configuring GuineaPig †personal settings‡

	Directory structure and files
	1 · Test configuration
	2 · Test items
	3 · Playlist
	4 · Sample list
	5 · Audio samples
	6 · Results

	Test config file
	Playlist
	Sample list
	Results
	Tests
	Test types
	A/B Test
	Test item parameters
	Results

	A/B/X Test
	Test item parameters
	Results

	A/B/C Test
	Test item parameters
	Results

	A/B Scale Test
	Test item parameters
	Results

	A/B Scale †Fixed reference‡ Test
	Test item parameters
	Results

	A/B Scale †Hidden reference‡ Test
	Test item parameters
	Results

	Single Stimulus Test
	Test item parameters
	Results

	TAFC Test
	Test item parameters
	Results

	SSMS Test
	Overflow avoidance
	Test item parameters
	Results

	Generic Test
	Test item parameters
	More specialized items
	Special parameters
	Player for sample

	Results

	Test Items
	Test items file format
	Moving to newer format from older files

	Test creation
	Select test type
	Test directory
	Sound samples
	Test items
	Playlists
	Subject's user interface
	Test parameters

	Common test properties
	Common test parameters
	Soundplayer parameters

	Running a test
	Sequences
	Free sequence
	Fixed sequence
	Defining sample sequence
	Automatic sample play when item starts
	Notes

	Timeout
	Setting timeouts
	Notes

	Switching
	Normal switching
	Parallel switching
	Sample switch cross-fade type
	Sample switch cross-fade length

	Notes

	Most comfortable listening level
	Fixed or subject settable listening level
	Default or fixed listening level
	MCL level limits
	Notes

	Sound Player Configuration
	Audio devices
	Multiple audio device support

	Sample rate
	Channels
	Sound buffer length
	Virtual players

	Logging
	Subject's User Interface
	UI parameters
	
	Title of the UI window
	Questions
	Controls
	Size of window

	GradeBar
	Question
	The scale of the grade
	Question font
	Show value to subject?
	Associate adjectives to range of values
	Default/initial answer

	FiveGrade
	
	Example of defining a FiveGrade component
	Implementing a FiveGrade with a GradeBar

	TenGrade
	
	Example of defining a TenGrade component
	Implementing a FiveGrade with a GradeBar

	VolumeGrade
	Volume scale to use
	Other parameters

	CheckboxChoice
	
	Question
	Question font
	Answers and labels

	Rank Order
	Question
	Labels that are ranked
	Ties
	Incomplete ranking
	Question font
	Labels font

	PlayPanel
	
	Buttons font
	Choices and labels

	Results Processing
	Results Processing in GuineaPig System
	Running the converter
	Program output
	Note!

	Results processing configuration
	Fields to print and their order
	Built-in fields

	Test item filtering
	Field customization
	Sub-fields

	Sound File Formats
	Sound Player Parameters
	Sample rate
	Channels
	Audio device
	Output volume
	Sound buffer length

	Utilities & Tools
	Running a test
	NAME
	SYNOPSIS
	DESCRIPTION
	RUNTEST GUI
	FILES PANEL
	SESSION PANEL
	SUBJECTS PANEL

	COMMAND LINE OPTIONS
	EXAMPLES
	SEE ALSO
	NOTES

	Printing test results files
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO
	NOTES

	FontTester
	Sound Player Tester
	Player menu
	Samples menu
	Sample window
	Parallel sample

	Subject UI Tester
	Subject UI Server Tester
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	Remote Subject UI Client
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	Remote Subject UI Applet
	NAME
	SYNOPSIS
	DESCRIPTION
	APPLET CONFIGURATION
	Font parameters
	Server host parameters
	Other options

	APPLET TAG
	NOTES
	SEE ALSO

	API Documentation
	Guinea Pig Java class API documents

