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ABSTRACT

We have earlier found that the sinusoidal modeling and re-
lated parametrization is a promising technique for the auto-
matic analysis and recognition of typical sounds produced
by songbirds. In this article we study techniques that can be
used to characterize sounds that cannot be efficiently param-
eterized using the sinusoidal model. Most familiar examples
of such sounds are creaky sounds of Crows and many of the
sounds produced, e.g., by Mallards. Often those sounds fea-
ture irregular pitch pattern. We introduce a method for fea-
ture reduction and optimal feature selection for recognition
of bird species.

1. INTRODUCTION

The long-term objective in the current work is to develop fea-
ture extraction and classification methods for a system that
could automatically recognize bird species by their sounds in
field conditions. It has been demonstrated earlier that sounds
of many songbirds are clearly tonal and can be efficiently
modeled by one or a small number of time-varying sinusoidal
components [1]. Nevertheless, songbirds regularly produce
also sounds which have a complex spectrum and temporal
envelope. In other than songbirds such cases are even more
common. For example, the Common Raven rarely produces
anything that fits to the sinusoidal signal model. In the cur-
rent article we develop a more appropriate set of descriptive
parameters for those sounds.

Bird sounds are divided by the function into songs and
calls, which are further divided into hierarchical levels,
which are phrase, syllable, and element or note [2]. Elements
are smallest separable units of bird vocalization. In the sim-
plest case syllable is constructed from one element but more
complex syllables may include several elements. Phrase is a
series of syllables that occur in a particular pattern. A phrase
is often, but not always, a sequence of similar syllables.

Relatively little have been done previously to find effi-
cient parametrization of bird sounds for recognition. For ex-
ample, in [3, 4] bird sounds were represented by spectro-
grams of syllables or elements. Most of the earlier work on
automatic recognition of birds have been related to the recog-
nition of songs of birds [5, 6] or some restricted set of prede-
fined sounds from one species [4]. In this work we test recog-
nition bird species based on individual syllables. Nelson [6]
noted that different species used different cues to recognize
their own species. In this work we introduce a method to
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measure features importance for classification and try to find
species-specific feature sets.

The recognition experiments in the current article are
based on the bird song database collected in the Avesound
project [7] at HUT. Audio files in the database contain songs,
calls or series of calls mainly recorded in Finland. Individ-
ual syllablesare extracted from songs using a segmentation
algorithm based on the short-time signal energy and an adap-
tive estimate of the background noise. Feature vectors are
then formed from various signal measures introduced below.
Finally, syllables are then classified based on those represen-
tations.

In this article we first try to characterize what types of
non-tonal sounds are common in avian vocalization. Sec-
ondly, we study the performance of several different compu-
tational measures that could be used as features in an auto-
matic recognizer. We use low-level signal parameters such
as the spectral centroid and signal bandwidth. These param-
eters have been used previously, for example, in general au-
dio context classification [8], music genre classification [9],
but, to our knowledge, have not been tested for bird sounds
previously. For comparison we also test recognition with
Mel-frequency cepstral coefficient (MFCC) representation of
syllables. MFCC-model have been popular parametrization
method in different types of audio recognition tasks, e.g. in
automatic speech recognition [10].

2. THE CLASS OF INHARMONIC SOUNDS IN
BIRDS

In [1], harmonic bird sounds were divided into four classes
by the observed harmonic structure. Classes I and II were
for pure sinusoidal and pure harmonic signals, respectively.
Class III syllable has a harmonic structure such that the fun-
damental frequency component (F0) is heavily attenuated
and, in the Class IV both F0 and F1 are weaker than F2. It
was found in [1] that syllables that are not harmonic usually
fell outside of the four classes or went to the harmonic class
IV. In these cases likelihood of a syllable to belong to the pure
sinusoidal class (class I) was also very small. In this article
this observation has been turned into a criterion for selecting
sounds that do not fit into the sinusoidal signal model. In par-
ticular, if the likelihood to belong to pure sinusoidal class is
less than 60%, syllable is labelled to the class ofinharmonic
sounds. Note that the set of inharmonic sounds defined this
way will contain many different types of sounds and some of
those can also be considered harmonic.

Hooded Crow (Corvus corone cornix) is a good example
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Figure 1: Sequence of two syllables of Hooded Crow
(Corvus corone cornix, CORNIX).

Lat. Abbr. Common name Recs. Inharmonic Syllables
CORRAX Common Raven 7 96% 91
CORNIX Hooded Crow 8 98% 160
PICPIC Magpie 7 99% 312
GARGLA Eurasian Jay 9 99% 99
ACRSCH Sedge Warbler 6 65% 331
ACRRIS Marsh Warbler 8 34% 277

Table 1: Birds in the current work. Column are a widely used
abbreviation derived from the Latin name, common English
name, the number of recordings from different species, per-
centage of amount of inharmonic syllables and total number
of inharmonic syllables.

of a bird species that produces inharmonic sounds. Based on
to the criterion above 96% of syllables of Hooded Crow are
labeled to this class and usually likelihood to belong to the
pure sinusoidal class was only a few percents. The spectro-
gram of a typical song of Hooded Crow is shown in Figure
1.

Table 1 shows the set of species studied in this article.
The vocalization of these species commonly contain different
types of inharmonic sounds. The first four species are close
relatives of Crow (Corvidaefamily) and the last two species
belong to theAcrocephalusfamily of songbirds.

3. METHODS

The system for automatic recognition of syllables consists of
three components. First, a recording containing bird sounds
is segmented into syllables using the segmentation algorithm
introduced in [1]. Then a set of parametric representations is
computed from each syllable. The obtained feature vectors
are divided into training and testing data sets from where the
former set is used as models of the syllables in the classifier
and the latter is used to test recognition ability of the classi-
fier. In the current article, we compare two different ways of
representing the sounds to the classifier.

3.1 Low-level descriptive parameters

In the first method each syllable is represented by 11 low-
level acoustical parameters. Seven features are calculated on
the frame basis. These provide a short-time description of the

Spectral features
Feature Abbreviation Frame feat.
Spectral centroid mSC, vSC *
Signal bandwidth mBW, vBW *
Spectral roll-off frequency mSRF, vSRF *
Spectral flux mSF, vSF *
Spectral flatness mSFM, vSFM *
Frequency range range1, range2
Temporal features
Zero crossing rate mZCR, vZCR *
Short time energy mEN, vEN *
Syllable duration T
Modulation spectrum MSm, MSf

Table 2: Descriptive parameters used in current study
columns are the name and the abbreviations of the feature.
Asterisk (*) in last column indicates that the feature is calcu-
lated on the frame basis.

syllable. Mean and variance values of these features are used
as actual features of the classification system, thus we have
14 actual features calculated on frame basis and five more
features that are calculated from the entire duration of a syl-
lable. Features are divided into spectral (frequency domain)
and temporal (time domain) features, according to their cal-
culation domain.

For frame basis features, syllables are first divided into
overlapping frames. In this work we use the frame size of
256 samples (6ms) with 50% overlap, thus step size when
going from frame to another was 128 samples. Features are
calculated for each windowed frame. Hanning window was
used for the spectral features and rectangular window for the
temporal features. Spectral features were calculated from
Fourier-transformed signal frames. The final measures are
the mean and variance values of the feature trajectories com-
puted over each syllable, which are used as actual features in
the classification.

Descriptive parameters in current study, grouped by their
calculation domain, are listed in the Table 2. Detailed de-
scription of these features is provided in [11]. Frequency
range and duration of the syllable defines spectral and tem-
poral boundaries of the syllable. Modulation spectrum is not
purely temporal domain feature, because it is a spectrum of
signal envelope. Signal envelope is given by magnitude of
discrete-time analytic signal, which is formed via the Hilbert
transformation [12]. Measures MSm and MSf are related re-
spectively to modulation index and dominating frequency of
the amplitude modulation.

3.2 Mel-frequency cepstral coefficients

In the second set of parameters the syllables are presented
with 12 first Mel-frequency cepstral coefficients excluding
the zero coefficient. The syllables are divided into overlap-
ping frames of 256 samples with 50% overlap of adjacent
frames. Each frame is transformed into mel-frequency scale
by using filter bank of 32 triangular filters. Theith MFCC
coefficient is calculated as

MFCCi =
K

∑
k=1

Xk cos

[
i

(
k− 1

2

)
π

K

]
(1)

whereXk is logarithm ofkth mel-spectrum andK is total
number of mel-spectrum bands, which in this work was 32.
MFC coefficients of the syllable frames are averaged over the
syllable and are used as actual features in the classifier.



3.3 Discriminative power of individual features

Classification ability of individual signal parameter feature
was tested using the linear discriminant analysis (LDA) [13].
The goal is to make the classifier more efficient and improve
its generalization properties by reducing dimensionality of
the feature space. In the current work we test the discrimina-
tion ability of individual features for all the species in Table 1
together but also for individual species. In LDA method clas-
sification power of individual features or feature sets is eval-
uated by their within-class and between-class scattering ma-
trices. Within-class scattering matrix is defined forM species
by

Sw =
M

∑
i=1

PiSi (2)

whereSi is correlation matrix of features for speciesi and
Pi is a priori probability of the species.A priori probability
is defined here asPi = ni/N, whereni is number of samples
(syllables) for the speciesi out of total number on samples
N. The between-class scatter matrix is defined as

Sb =
M

∑
i=1

Pi(µi −µ0)(µi −µ0)T (3)

whereµi is the mean vector of the feature vectors of species
i andµ0 is mean of all feature vectors among all species.

The criterion

J =
det(Sb)
det(Sw)

(4)

gives large values when different classes are well separated.
When testing individual species we set species of interest to
one class and all others species to the another. Therefore
we have a two-class problem where we can use the criterion
defined in (4). The discriminative powers of individual fea-
tures, defined in (4), in general and species specific cases are
presented in Table 3.

Individual features were selected for classification using
the scalar feature selection method [14]. In this method fea-
tures are treated individually and a subset of features for
recognition is selected based on the class separability mea-
sure of the individual features (Table 3).

3.4 Classification

In this article the classification is based on the k-Nearest-
Neighbor (kNN) method. The Nearest Neighbour of a test
vector is a vector in the training data set with the minimum
distance to the test vector. In kNN method test vector is as-
signed to the class, which is most often represented in k-
nearest neighbour. Recognition performance of the system
was tested with different numbers of neighbors. Both Eu-
clidean and Mahalanobis distance measures were used to
calculate the distances between the feature vectors. With
Euclidean distance measure features were first scaled to the
same dynamic range. in order to obtain equal significance
for different features. With Mahalanobis distance measure
this is done automatically.

The leave-k-out methodwas used in splitting the seg-
mented syllables from the database to the training and testing
data sets. With this method we can use basically all avail-
able data for training and still maintaining the individual in-
dependence between training and testing data sets. Syllables
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mSC 4.1323 1.1816 1.1600 1.1455 1.0073 1.8811 1.0626
mBW 1.2666 1.1581 1.0038 1.0112 1.0136 1.0377 1.0445
mSRF 2.4188 1.2372 1.0924 1.0546 1.0007 1.6380 1.0097
mSF 1.2159 1.0136 1.0522 1.0103 1.0305 1.1095 1.0184
mSFM 1.2135 1.0966 1.0003 1.0076 1.0240 1.0453 1.0468
mZCR 3.7701 1.1924 1.1473 1.1345 1.0056 1.8414 1.0546
mEN 1.0537 1.0256 1.0038 1.0126 1.0005 1.0074 1.0119
vSC 1.0162 1.0022 1.0009 1.0056 1.0009 1.0044 1.0064
vBW 1.0068 1.0002 1.0008 1.0011 1.0013 1.0004 1.0046
vSRF 1.0313 1.0009 1.0276 1.0003 1.0027 1.0045 1.0001
vSF 1.0375 1.0002 1.0070 1.0084 1.0081 1.0145 1.0072
vSFM 1.0184 1.0008 1.0003 1.0069 1.0025 1.0004 1.0122
vZCR 1.0146 1.0029 1.0001 1.0053 1.0010 1.0036 1.0053
vEN 1.0156 1.0002 1.0000 1.0056 1.0024 1.0002 1.0111
T 2.0669 1.0011 1.4824 1.0480 1.1377 1.0457 1.0727
MSm 2.0646 1.8506 1.0227 1.0143 1.0243 1.0382 1.0136
MSf 3.0218 1.0802 1.0729 1.0789 1.0700 2.3537 1.0005
range1 2.5933 1.0583 1.1061 1.1561 1.0432 1.6634 1.0607
range2 1.5032 1.2477 1.0193 1.0008 1.0002 1.2187 1.0016

Table 3: Discriminative power of individual features. First
column gives discriminative power of individual features for
all species together. Latter columns gives species-specific
discriminative power of features. Features are identified by
their abbreviation. Lower case m and v is related to the mean
and variance of the feature calculated on the frame basis.

a)

recog. rate
C

O
R

R
A

X

C
O

R
N

IX

P
IC

P
IC

G
A

R
G

LA

A
C

R
S

C
H

A
C

R
R

IS

CORRAX 69 14 4 3 0 0
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CORRAX 74 5 5 0 0 0
CORNIX 10 56 12 21 2 1
PICPIC 14 28 67 5 4 5
GARGLA 0 9 7 73 0 1
ACRSCH 0 1 2 0 73 10
ACRRIS 2 2 6 1 23 82

Table 4: recognition results for species in current study using
a) Euclidean distance measure and b) Mahalanobis distance
measure and the Nearest Neighbour classifier. Columns tells
the percentage of the syllables of the species on the top row
being recognized as a syllables of the species on the leftmost
column.

left out from the training data set were selected so that those
were never compared with syllables from the same record-
ing. Syllables from same individual are likely correlated and
including those in training and testing data sets would have
resulted optimistic true error probability.

4. RESULTS

The recognition rate was measured for the species described
in Table 1 using different numbers of neighbors and two dis-
tance measure. The overall species recognition rate with all
signal parameter features was 49% using the nearest neigh-
bor classifier and Euclidean distance measure. Mahalanobis
distance measure improved recognition results significantly
among all species and overall recognition rate improved to
71%. Confusion matrices for six species using Euclidean and
Mahalanobis distance measures are presented respectively in
Tables 4 a) and b). Altering the number of the neighbours in
the classifier had only small effect to the overall recognition
rate.

Decreasing the dimension of the feature space by remov-
ing the features features with a low classification power had
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CORNIX 1 62 7 8 7 1
PICPIC 4 19 74 9 5 2
GARGLA 7 8 5 70 11 2
ACRSCH 1 9 4 9 61 8
ACRRIS 0 1 6 2 16 86
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CORRAX 92 4 5 2 0 0
CORNIX 2 66 22 8 3 1
PICPIC 4 16 63 9 5 0
GARGLA 1 8 7 80 11 0
ACRSCH 0 4 1 1 57 12
ACRRIS 0 2 2 0 24 86

Table 5: recognition results for species in current study using
MFCC-coefficients and a) Euclidean distance measure and
b) Mahalanobis distance measure. Recognition rates are as
in the Table 4

only a small effect to the recognition result. Dimension of
the feature space could be decreased down to six features
without significant effect to the recognition rate. However,
using less than six features recognition rate was heavily de-
creased. The result was the similar when the general and
species-specific classification powers were used for feature
selection. However the the change in recognition accuracy
of individual species was higher when different feature sets
were used for different species.

Recognition results with MFCC representation of syl-
lables are presented in Tables 5 a) and b) using Euclidean
and Mahalanobis distance measures, respectively. Average
recognition rate was higher compared to low level signal pa-
rameter representation of syllables with both distance mea-
sures. The average recognition rate with Euclidean distance
measure was 73% and with Mahalanobis distance measure
74%.

5. CONCLUSIONS

In this paper we have studied methods for parametrization of
inharmonicbird sounds, that is, sounds that are not clearly
tonal or harmonic. We have used several different compu-
tational measures to characterize properties of syllables for
a recognizer. We also introduced a method for comparing
discriminative power of individual features. This method is
used for dimension reduction of feature vectors. Classifica-
tion power of individual features shows that features related
to the frequency band of the sound, such as SC, SRF and
frequency range, provides good classification power within
inharmonic sounds. Also modulation measures give good
classification power in some species.

It was found that the average values of feature trajectories
computed over a syllable are much more useful in classifica-
tion than the variances of those trajectories. This may reflect
the fact that many of the sounds in the current study are rela-
tively stationary over the duration of the syllable. Low clas-
sification power in mEN and mSF supports this assumption.

Recognition results suggests that, on the average, MFC
coefficients provide more accurate representation of inhar-
monic sounds of birds than descriptive signal parameters.
Small difference in recognition accuracy between two dis-
tance measures in MFCC representation is probably due to
fact that MFC coefficients are already decorrelated by the
discrete cosine transform. With descriptive signal parame-
ters and Euclidean distance measure features are not decor-
related.

Recognition results suggests that the classification power
of features can be used efficiently for the reduction of the

dimensionality of a feature vector. Clearly features have dif-
ferent importance for classification, but also the results sug-
gests that the features with low classification power does not
disturb the recognition task. However classifiers complex-
ity increases and generalization properties are weaker when
features with low classification power are with the represen-
tation of syllables.
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