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ABSTRACT speech production or in any musical instrument. There are also re-
cent experimental results showing that the temporal resolution of
Syllables are elementary building blocks of bird song. In sounds hearing is much better in birds than in humans [4]. Therefore, a
of many songbirds a large class of syllables can be approximatednigh temporal resolution in the range of few milliseconds is needed
as amplitude and frequency varying brief sinusoidal pulses. In this in the analysis of bird song. The spectrum energy in song birds is
article we test how well bird species can be recognized by compar-typically concentrated on a very narrow area in the range of 1 to
ing simple sinusoidal representations of isolated syllables. Resultss kHz, and the sound is often composed of a single or a small
are encouraging and show that with limited sets of bird species anumber of sinusoidal components. Therefore, it is natural to use
recognizer based on this signal model may already be sufficient. sinusoidaimodeling [5] as a basic tool in representing bird sounds.
Bird song is typically divided into four hierarchical levels:
notes, syllables, phrases, and song [6]. In many species there is
high individual and regional variability in phrases and song pat-
terns. Syllables can be seen as more elementary building blocks
of bird vocalization [7] and may therefore be more suitable for
Gutomatic identification of bird species than song patterns. The
uration of a syllable is in the range of a few to a few hundred
'milliseconds. Recognition of bird species directly from syllables
would be technically more feasible approach than recognition by
song in cases when there are, as usual, many birds singing simulta-
neously. In a continuous environmental recognition with multiple
singing birds it is very difficult to segment a song of a bird. But,
we may be able to isolate a number of individual syllables from a
recording relatively easily. In addition, a syllable recognizer would
be more invariant to regional variation in song patterns which is a
common phenomenon with many species.
Relatively little has been done previously in the field. In a

1. INTRODUCTION

Birds and their sounds are in many ways important for our culture.
They can be heard even in big cities and most people can recogniz
at least a few most common species by their sounds. Bird song ha
also been an important source of inspiration for many composers
musicians, and writers. In this article we study automatic recog-
nition of bird song. Technology for sound-based identification of
bird species and even individuals would be a significant addition
to the research methodology in taxonomy and monitoring of mi-
gration and population in biology. At a higher level it would also
facilitate systematic research on vocal communications between
birds and characterization of their sounds. There is also commer-
cial potential for such systems because the number of active bird
watchers is really large in many countries.

Sounds of birds are mainly produced by syrinx, which an or- : Py - " A .
gan unique to birds [1]. Itis located in the intersection between the few studies the feasibility of automatic recognition of bird species

. : ; [7, 8, 9] or even individual males of a given species [10, 11] using
main bro_nchl of the Igng_g a!“‘ the trachea, or in @he trach_ea. .Theresound has been demonstrated. In this article we apply sinusoidal
|sacon_s_|dera_ble_ variability in the anatomy of syrinx evenin dn"f_er- modeling to syllables of continuous bird song and use obtained
ent families within the same order of b|_rds. The function of Syrnx parameters for recognition of a number of song bird species. This
resembles that of human vocal cords in many ways. But, it t_ypl_— technique is proposed here as a baseline technique for bird sound
cally has much more complex structure and can produce a signif-

icantly | ety of diff i ds th lottis | | identification and therefore the goal is to evaluate how well this
Icantly larger variely of different sounds than glotlis in mammats. fairly simple and low-complexity approach without any intelligent

While in human speech sounds are mainly produced by muscularor context-aware processing works for a number of species. This
control of the vocal tract, mouth, lips, tongue, and teeth, the sy-

rinx is the main source of variability of sounds in birds. Only few helps us to anticipate which type of processing we may have to add

. i g - . ._in order to improve results in the future.
bird species, mainly parrots, can use their tongue in a way which
resembles speech production in humans [2].

Syrinx in birds can feature multiple simultaneous oscillation 2. METHOD

modes. In many cases, the sound production system is in a highly
nonlinear or chaotic operation mode [3] which results in rapid Different digital representations of bird sounds have been presented
changes in the operation of the organ. Consequently, the temporakarlier, e.g., in [9, 12, 13]. In [7, 8] template-matching of spectro-
variability in spectrum of bird song is typically orders of magni- grams was used to study learning of song patterns and syllables
tude faster than in human sound production. The neural control ofin two species. Their recordings were all made in a laboratory
sound production is also significantly faster in birds than in human with cage birds. Matching of spectrograms is very sensitive to
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Fig. 1. Spectrogram of a typical song of Willow Warbldphyl- Fig. 2. Frequency and amplitude trajectories of a set of four sylla-
loscopus trochilusPHYLUS). This song is composed of twenty bles from the song of a Willow WarblePfylloscopus trochilys
syllables.

a were the stopping criteri@ is typically 30 dB. It will de-

termine how the sinusoidal syllable starts and ends at times
environmental noise of a field recording and is also highly de- t, andt., respectively around the amplitude maximem
manding in data storage and computation. They also used hid-
den Markov models, adopted from speech recognition, to model
transition propabilities between syllables in bird sing. In [9], the
method was developed to identify song patterns based on parame-

6. Store obtained frequency and amplitude trajectories corre-
sponding to thexth syllable in functionsv,, (7) anda,, (1),
wherer = to — ts,- - to + te

ters which represent average frequencies and durations of syllables 7. SetS(f, [ts,ts + 1,--- ,t.]) = 0 to delete the area ofth
and pauses in a bird song. syllable.

The basic methodology in the current article is to decompose a
bird song recording to a set of brief frequency and amplitude mod- The algorithm extract®/ frequency and amplitude modulated

ulated sinusoidal pulses. Each pulse represents one individual sylsinusoidal pulses from a signal automatically starting with the one
lable and syllables are not overlapping in time or frequency. This with highest peak amplitude. Some post-processing is typically
is a highly simplified model for bird song, but, to our knowledge, necessary in order to remove clearly erroneous syllables, however,
it has not been tested previously with a large number of different the method appears to be relatively insensitive to environmental
species. noise and coloration both commonly found in typical field record-

Short-time Fourier transform (STFT) was used to compute a ings. A set of four frequency and amplitude trajectories extracted
spectrogram for a song segment. The spectrogram of a typicalfrom the song of Willow Warbler (see Fig. 1) is shown in Fig. 2.
song pattern oWillow Warbleris illustrated in Fig. 1. In this The position of the maximum of the amplitude trajectory is
example, the size of Kaiser (oo = 8) window was 256, FFT size  the same in each syllable. This makes comparison between differ-
with zero-padding was 1024, and a spectrum vector was computecent syllables easy. In particular, in this article the distance crite-
with 75 % overlap (64 sample steps) over a signal sampled at 44.1rion between two syllables is a weighted sum of mean differences
kHz. The decomposition of a song to a set\dfsyllables runs as  between frequency and amplitude trajectoriegr) andan(7),
follows: respectively.

Algorithm 1 3. EXPERIMENTS

1. Compute a spectrogram of a song segment using FFT. We
denote a spectrogram a matSX f, t), wheref represents In this article we limit the test to a group of Passerine biRksger-
frequency and is time. iformeg listed in Table 1. Many of these are common songbirds
2. Repeat steps 3-7for=0,1,--- , N — 1. :_n all Northern E_urope and are cons!dered goqd singers._ An expert
istener can basically recognize all listed species by their song, al-
3. Find f, andt,, such tha{S(fx.,t.)| is the maximum value  though some pairs of birds in the selection may be difficult. Iden-
in the spectrogram. This position represents the maximum tification by isolated syllables only would be a very difficult task
amplitude position ofith sinusoidal syllable. even for an expert. Median frequencies with upper an lower quar-
. . __tile values of sinusoidal syllables computed from the database are
4 283?(22 fre‘glzjecncz/ L;Tl[gg]em(o) = fn and amplitude:,,(0) = shown in Fig. 3. Most birds have a typical center frequency around
10 e ) 3-5 kHz and majority of their syllables are 40 to 400 ms whistles
5. Starting fromS(f», t»)|, trace the maximum peak Sf( f, t) or chirps. Both territorial songs and isolated calls and warnings
fort > to and fort < o until a, (t — to) < a,(0) —TdB, were used.



Lat. Abbr.  Common name Recs.  Syllablds : : f
e Pied Flycatcher 3 =% the table. In Table 2_A, syllables from the five _blrds in the genus
FRICOE Common Chaffinch 6 365 of Phylloscopugiet highest percentage for the right species (row).
PARATE = Coal Tit 4 402 However, the difference is small in some cases. It should be noted
PARMAJ Great Tit 7 472 that i inG ish Warbl PHYDES d Wil
PHOPHO  Common Redstart 4 566 atin some cases, e.g., in Greenish Warbler (PF ) and Wil-
PHYBOR  Arctic Warbler 4 648 low Warbler (PHYLUS) the actual song pattern is very different
PHYCOL Comm. Chiffchaff 9 774 i i i in-
PHYDES  Groomish Warber p 480 a_nd easy to |den_t|fy by th_e_ ear. _However, results in the table in
PHYLUS  Willow Warbler 10 1173 dicate that there is a significant risk that a syllable of PHYDES is
chAS'II'E g\lloolf Warbler ;3 7785é1 identified as syllable of PHYLUS. However, the misclassification
ackcap iele ik
SYLBOR  Garden Warbler s 900 risk is much smaller for the syllables of PHYLUS, which is caused
TURMER  Blackbird 5 673 by the fact that thevocabularyof PHYDES is much smaller that
TURVIS Mistle Thrush 6 317 that of PHYLUS.

In the right table of Table 2 a number of bird species from dif-

) i ) ) ferent families of songbirds was compared. In three cases the high-

Table 1. Birds in the current study. The first column gives an ot propability is obtained for misclassification of species. There

abbreviation derived from the Latin name (a widely used conven- j o ¢jear trend that species within the same genus get most easily

tion), common English name, number of recordings from different -4rused. For example, Thrush@sitdug TURMER and TURVIS,

birds, and the total number of syllables from each species. First, Tits (Parug like PARMAJ and PARATE get easily misclassi-

three letters of the abbreviation indicate family of species. fied. However, this may partly reflect the fact that the average

frequency content of Thrushes and Tits are different. Low per-

AVERAGE SPECTRUM CONTENT centage for the correct identification of Pied Flycatcher (FICHYP)

FICHYP' o = == = - - 1 +------ R ——— may be caused by the fact that the number of recordings was low
FRICOE| +------ I N S | compared to many other species, see Table 1.

PARATE . [ N S e Finally, we made a full recognition experiment with all the
PARMAJ- T e Iy N . species in the database. The results are shown in Table 3. Three
PHOPHO|  mosxr-——-- T F----- e———aco X species are clearly misclassified. For others, the percentage of cor-
PHYBOR| O e I rect identification of a syllable is highest. However, in many cases
PHYCOLL e I NI « the percentage is only around 30%. For example, the correct iden-
PHYDES| Feomm I F--—-----—-- - tification of PHYBOR versus PHYDES could require more than

PHYLUS} T I S | | 100 syllables which, for these species, corresponds to less than
20 seconds of continuous singing. It also turned out that in many

PHYSIB| oo | I R s ! L . - "

SYLATRE - ——— N e S o x x o cases there are significant differencies in the recognition accuracy
svisorl T e i for individual song segments or recordings within a species.
TURMER} ¢ — — G ERG. X B

TURVISF  omee - o ‘ ‘ ‘ ‘ B 4. DISCUSSION

1 2 3 7 8 9

FREQUENCY [kHz] In this article we studied automatic sound-based identification of

. o . bird species. We started with a hypothesis that identification of
Fig. 3. Average frequency of syllables of 15 species listed in Ta- gpecies could be done by comparing sinusoidal representations
ble 1. A box indicates lower quartile, median, and upper quartile jsojated syllables of bird song. Possibility to identify species on
values. the basis of isolated syllables instead of significantly longer song

patterns would be beneficial for many reasons. First, regional vari-

Test material consists of a number of recordings from differ- ability of song patterns within the same species could be easily
ent birds at different sites mainly recorded in Finland. Most of
recordings are raw field recordings with additional sounds of other

e F——P—P—F dent [F F P P T T
birds and environment. Approximately 20 % of recordings were per- |H H H H H el ¢ T RR R R
taken from commercially available CD-collections. The number centage | ¥ ¥ Y Y % . HCAMMY
) . ; w |B§RYLS % |Y G T A E I
of recordings (or birds) and the total number of syllables are in o B LS s B P E E J R S
FICHYP [15 14 7 11 4 2
Table 1. A)[PHAYBOR[55 10 26 6 1| B)| rricoe |9 43 7 & 4 4
In a recognition experiment we first collected a number of si- PHYCOL |15 51 14 16 2 PARATE |17 7 35 15 1 0

; ; oo PHYDES|21 11 27 10 11
nusoidal representations of syllables from each recording in the | ppyius|’s 25 21 65 6 PARMAJ | 46 15 48 64 6 2
database, see Table 1. Then differences betwestasyllable PHYSB[1 3 12 4 80 | o | S 3 2 5 25 82
from a recording and all syllables from all the other recordings Nobird |1 0 0 0 © NoBird [0 0 0 0 0 0

were computed. Test syllable was then assigned a label represent-
ing a species which has a syllable with a smallest difference to the
test syllable. This was repeated separately for all syllables in eachTable 2. Identification results A) for five species from the fam-
recording. Finally, we computed a histogram of labels assigned toily of Phylloscopus birds, and B) a set of other species. Columns
syllables of each species and computed recognition probabilitiesgive the percentage of syllables in a bird indicated in the top row
corresponding to all the species. being identified as a syllable of a species indicated in the leftmost

Results for two sets of species are shown in Table 2, where column. The last row 'NoBird’ represent the percentage of sylla-
each column representing a species gives percentages that a singlées where the difference to any other syllable is very large and
syllable is identified as a syllable of a species at different rows of therefore no recognition label was assigned.



Ident. F F P PP PPPPP S S TT
per- I R A AHHMHHMHMHY Y UU
centage|C I R R O Y Y Y Y Y L L R R
HCAMZPUBICDIL S ABMYV
% Y O T A HOOTEWU I T OE I
P E E J ORL S S B R R R §
FICHYP|5 8 1 1 2 0 2 1 1 0 3 1 2 (@
FRICOE|1 58 0 2 2 0 O O 1 O 1 5 2 2
PARATE| 8 4 20 4 1 0 7 2 2 0 1 1 1
PARMAJ |29 2 27 55 15 0 6 1 12 4 14 3 4 D
PHOPHO|6 3 0 9 9 1 2 3 8 0 2 9 4 12
PHYBOR|O 2 0 O 5 56 5 18 3 1 0 1 O
PHYCOL|9 1 21 2 7 155116 8 0 1 5 1 1
PHYDES| 4 2 12 0 5 23 9 29 6 7 1 3 O
PHYLUS|9 6 16 15 29 4 14 16 47 1 8 16 3 P
PHyYsB|1 1 1 2 1 0 0 7 08 2 1 0 0
SYLATR |14 2 1 5 2 0 2 0 2 2 41 13 7
SYLBOR|11 11 1 0 16 1 2 7 8 2 15 25 18 16
TURMER|2 0 0O 5 4 0 0 0 O O 7 10 32 31
TURVIS|1 0 0 0 2 0O O O 2 O 4 7 26 3

Table 3. Columns give the percentage of syllables in a bird in-
dicated in the top row being identified as a syllable of a species

indicated in the leftmost column.

neglected in identification. In addition, the case of a typical field
recording with multiple birds could be handled without the need to
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