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ABSTRACT

Syllables are elementary building blocks of bird song. In sounds
of many songbirds a large class of syllables can be approximated
as amplitude and frequency varying brief sinusoidal pulses. In this
article we test how well bird species can be recognized by compar-
ing simple sinusoidal representations of isolated syllables. Results
are encouraging and show that with limited sets of bird species a
recognizer based on this signal model may already be sufficient.

1. INTRODUCTION

Birds and their sounds are in many ways important for our culture.
They can be heard even in big cities and most people can recognize
at least a few most common species by their sounds. Bird song has
also been an important source of inspiration for many composers,
musicians, and writers. In this article we study automatic recog-
nition of bird song. Technology for sound-based identification of
bird species and even individuals would be a significant addition
to the research methodology in taxonomy and monitoring of mi-
gration and population in biology. At a higher level it would also
facilitate systematic research on vocal communications between
birds and characterization of their sounds. There is also commer-
cial potential for such systems because the number of active bird
watchers is really large in many countries.

Sounds of birds are mainly produced by syrinx, which an or-
gan unique to birds [1]. It is located in the intersection between the
main bronchi of the lungs and the trachea, or in the trachea. There
is a considerable variability in the anatomy of syrinx even in differ-
ent families within the same order of birds. The function of syrinx
resembles that of human vocal cords in many ways. But, it typi-
cally has much more complex structure and can produce a signif-
icantly larger variety of different sounds than glottis in mammals.
While in human speech sounds are mainly produced by muscular
control of the vocal tract, mouth, lips, tongue, and teeth, the sy-
rinx is the main source of variability of sounds in birds. Only few
bird species, mainly parrots, can use their tongue in a way which
resembles speech production in humans [2].

Syrinx in birds can feature multiple simultaneous oscillation
modes. In many cases, the sound production system is in a highly
nonlinear or chaotic operation mode [3] which results in rapid
changes in the operation of the organ. Consequently, the temporal
variability in spectrum of bird song is typically orders of magni-
tude faster than in human sound production. The neural control of
sound production is also significantly faster in birds than in human

speech production or in any musical instrument. There are also re-
cent experimental results showing that the temporal resolution of
hearing is much better in birds than in humans [4]. Therefore, a
high temporal resolution in the range of few milliseconds is needed
in the analysis of bird song. The spectrum energy in song birds is
typically concentrated on a very narrow area in the range of 1 to
6 kHz, and the sound is often composed of a single or a small
number of sinusoidal components. Therefore, it is natural to use
sinusoidalmodeling [5] as a basic tool in representing bird sounds.

Bird song is typically divided into four hierarchical levels:
notes, syllables, phrases, and song [6]. In many species there is
high individual and regional variability in phrases and song pat-
terns. Syllables can be seen as more elementary building blocks
of bird vocalization [7] and may therefore be more suitable for
automatic identification of bird species than song patterns. The
duration of a syllable is in the range of a few to a few hundred
milliseconds. Recognition of bird species directly from syllables
would be technically more feasible approach than recognition by
song in cases when there are, as usual, many birds singing simulta-
neously. In a continuous environmental recognition with multiple
singing birds it is very difficult to segment a song of a bird. But,
we may be able to isolate a number of individual syllables from a
recording relatively easily. In addition, a syllable recognizer would
be more invariant to regional variation in song patterns which is a
common phenomenon with many species.

Relatively little has been done previously in the field. In a
few studies the feasibility of automatic recognition of bird species
[7, 8, 9] or even individual males of a given species [10, 11] using
sound has been demonstrated. In this article we apply sinusoidal
modeling to syllables of continuous bird song and use obtained
parameters for recognition of a number of song bird species. This
technique is proposed here as a baseline technique for bird sound
identification and therefore the goal is to evaluate how well this
fairly simple and low-complexity approach without any intelligent
or context-aware processing works for a number of species. This
helps us to anticipate which type of processing we may have to add
in order to improve results in the future.

2. METHOD

Different digital representations of bird sounds have been presented
earlier, e.g., in [9, 12, 13]. In [7, 8] template-matching of spectro-
grams was used to study learning of song patterns and syllables
in two species. Their recordings were all made in a laboratory
with cage birds. Matching of spectrograms is very sensitive to
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Fig. 1. Spectrogram of a typical song of Willow Warbler (Phyl-
loscopus trochilus, PHYLUS). This song is composed of twenty
syllables.
ă

environmental noise of a field recording and is also highly de-
manding in data storage and computation. They also used hid-
den Markov models, adopted from speech recognition, to model
transition propabilities between syllables in bird sing. In [9], the
method was developed to identify song patterns based on parame-
ters which represent average frequencies and durations of syllables
and pauses in a bird song.

The basic methodology in the current article is to decompose a
bird song recording to a set of brief frequency and amplitude mod-
ulated sinusoidal pulses. Each pulse represents one individual syl-
lable and syllables are not overlapping in time or frequency. This
is a highly simplified model for bird song, but, to our knowledge,
it has not been tested previously with a large number of different
species.

Short-time Fourier transform (STFT) was used to compute a
spectrogram for a song segment. The spectrogram of a typical
song pattern ofWillow Warbler is illustrated in Fig. 1. In this
example, the size of aKaiser (α = 8) window was 256, FFT size
with zero-padding was 1024, and a spectrum vector was computed
with 75 % overlap (64 sample steps) over a signal sampled at 44.1
kHz. The decomposition of a song to a set ofN syllables runs as
follows:

Algorithm 1

1. Compute a spectrogram of a song segment using FFT. We
denote a spectrogram a matrixS(f, t), wheref represents
frequency andt is time.

2. Repeat steps 3-7 forn = 0, 1, · · · , N − 1.

3. Findfn andtn such that|S(fn, tn)| is the maximum value
in the spectrogram. This position represents the maximum
amplitude position ofnth sinusoidal syllable.

4. Store frequency parameterωn(0) = fn and amplitudean(0) =
20 log10 |S(fn, tn)| [dB].

5. Starting from|S(fn, tn)|, trace the maximum peak ofS(f, t)
for t > t0 and fort < t0 until an(t− t0) < an(0)− TdB,
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Fig. 2. Frequency and amplitude trajectories of a set of four sylla-
bles from the song of a Willow Warbler (Phylloscopus trochilus)

were the stopping criteriaT is typically 30 dB. It will de-
termine how the sinusoidal syllable starts and ends at times
ts andte, respectively around the amplitude maximumt0.

6. Store obtained frequency and amplitude trajectories corre-
sponding to thenth syllable in functionsωn(τ) andan(τ),
whereτ = t0 − ts, · · · t0 + te

7. SetS(f, [ts, ts + 1, · · · , te]) = 0 to delete the area ofnth
syllable.

The algorithm extractsN frequency and amplitude modulated
sinusoidal pulses from a signal automatically starting with the one
with highest peak amplitude. Some post-processing is typically
necessary in order to remove clearly erroneous syllables, however,
the method appears to be relatively insensitive to environmental
noise and coloration both commonly found in typical field record-
ings. A set of four frequency and amplitude trajectories extracted
from the song of Willow Warbler (see Fig. 1) is shown in Fig. 2.

The position of the maximum of the amplitude trajectory is
the same in each syllable. This makes comparison between differ-
ent syllables easy. In particular, in this article the distance crite-
rion between two syllables is a weighted sum of mean differences
between frequency and amplitude trajectoriesωn(τ) andan(τ),
respectively.

3. EXPERIMENTS

In this article we limit the test to a group of Passerine birds (Passer-
iformes) listed in Table 1. Many of these are common songbirds
in all Northern Europe and are considered good singers. An expert
listener can basically recognize all listed species by their song, al-
though some pairs of birds in the selection may be difficult. Iden-
tification by isolated syllables only would be a very difficult task
even for an expert. Median frequencies with upper an lower quar-
tile values of sinusoidal syllables computed from the database are
shown in Fig. 3. Most birds have a typical center frequency around
3-5 kHz and majority of their syllables are 40 to 400 ms whistles
or chirps. Both territorial songs and isolated calls and warnings
were used.



Lat. Abbr. Common name Recs. Syllables
FICHYP Pied Flycatcher 3 256
FRICOE Common Chaffinch 6 365
PARATE Coal Tit 4 402
PARMAJ Great Tit 7 472
PHOPHO Common Redstart 4 566
PHYBOR Arctic Warbler 4 648
PHYCOL Comm. Chiffchaff 9 774
PHYDES Greenish Warbler 4 480
PHYLUS Willow Warbler 10 1173
PHYSIB Wood Warbler 6 751
SYLATR Blackcap 5 783
SYLBOR Garden Warbler 5 900
TURMER Blackbird 5 673
TURVIS Mistle Thrush 6 317

Table 1. Birds in the current study. The first column gives an
abbreviation derived from the Latin name (a widely used conven-
tion), common English name, number of recordings from different
birds, and the total number of syllables from each species. First
three letters of the abbreviation indicate family of species.
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Fig. 3. Average frequency of syllables of 15 species listed in Ta-
ble 1. A box indicates lower quartile, median, and upper quartile
values.

Test material consists of a number of recordings from differ-
ent birds at different sites mainly recorded in Finland. Most of
recordings are raw field recordings with additional sounds of other
birds and environment. Approximately 20 % of recordings were
taken from commercially available CD-collections. The number
of recordings (or birds) and the total number of syllables are in
Table 1.

In a recognition experiment we first collected a number of si-
nusoidal representations of syllables from each recording in the
database, see Table 1. Then differences between atest syllable
from a recording and all syllables from all the other recordings
were computed. Test syllable was then assigned a label represent-
ing a species which has a syllable with a smallest difference to the
test syllable. This was repeated separately for all syllables in each
recording. Finally, we computed a histogram of labels assigned to
syllables of each species and computed recognition probabilities
corresponding to all the species.

Results for two sets of species are shown in Table 2, where
each column representing a species gives percentages that a single
syllable is identified as a syllable of a species at different rows of

the table. In Table 2A, syllables from the five birds in the genus
of Phylloscopusget highest percentage for the right species (row).
However, the difference is small in some cases. It should be noted
that in some cases, e.g., in Greenish Warbler (PHYDES) and Wil-
low Warbler (PHYLUS) the actual song pattern is very different
and easy to identify by the ear. However, results in the table in-
dicate that there is a significant risk that a syllable of PHYDES is
identified as syllable of PHYLUS. However, the misclassification
risk is much smaller for the syllables of PHYLUS, which is caused
by the fact that thevocabularyof PHYDES is much smaller that
that of PHYLUS.

In the right table of Table 2 a number of bird species from dif-
ferent families of songbirds was compared. In three cases the high-
est probability is obtained for misclassification of species. There
is a clear trend that species within the same genus get most easily
confused. For example, Thrushes (Turdus) TURMER and TURVIS,
or Tits (Parus) like PARMAJ and PARATE get easily misclassi-
fied. However, this may partly reflect the fact that the average
frequency content of Thrushes and Tits are different. Low per-
centage for the correct identification of Pied Flycatcher (FICHYP)
may be caused by the fact that the number of recordings was low
compared to many other species, see Table 1.

Finally, we made a full recognition experiment with all the
species in the database. The results are shown in Table 3. Three
species are clearly misclassified. For others, the percentage of cor-
rect identification of a syllable is highest. However, in many cases
the percentage is only around 30%. For example, the correct iden-
tification of PHYBOR versus PHYDES could require more than
100 syllables which, for these species, corresponds to less than
20 seconds of continuous singing. It also turned out that in many
cases there are significant differencies in the recognition accuracy
for individual song segments or recordings within a species.

4. DISCUSSION

In this article we studied automatic sound-based identification of
bird species. We started with a hypothesis that identification of
species could be done by comparing sinusoidal representations
isolated syllables of bird song. Possibility to identify species on
the basis of isolated syllables instead of significantly longer song
patterns would be beneficial for many reasons. First, regional vari-
ability of song patterns within the same species could be easily

A)

Ident. P P P P P
per- H H H H H

centage Y Y Y Y Y
B C D L S

% O O E U I
R L S S B

PHYBOR 55 10 26 6 1
PHYCOL 15 51 14 16 2
PHYDES 21 11 27 10 11
PHYLUS 6 25 21 65 6
PHYSIB 1 3 12 4 80
Nobird 1 0 0 0 0

B)

Ident. F F P P T T
per- I R A A U U

centage C I R R R R
H C A M M V

% Y O T A E I
P E E J R S

FICHYP 15 14 7 11 4 2
FRICOE 9 43 7 5 4 4
PARATE 17 7 35 15 1 0
PARMAJ 46 15 48 64 6 2
TURMER 8 13 2 5 45 62
TURVIS 5 8 0 0 39 30
NoBird 0 0 0 0 0 0

Table 2. Identification results A) for five species from the fam-
ily of Phylloscopus birds, and B) a set of other species. Columns
give the percentage of syllables in a bird indicated in the top row
being identified as a syllable of a species indicated in the leftmost
column. The last row ’NoBird’ represent the percentage of sylla-
bles where the difference to any other syllable is very large and
therefore no recognition label was assigned.



Ident. F F P P P P P P P P S S T T
per- I R A A H H H H H H Y Y U U

centage C I R R O Y Y Y Y Y L L R R
H C A M P B C D L S A B M V

% Y O T A H O O E U I T O E I
P E E J O R L S S B R R R S

FICHYP 5 8 1 1 2 0 2 1 1 0 3 1 2 0
FRICOE 1 58 0 2 2 0 0 0 1 0 1 5 2 2
PARATE 8 4 20 4 1 0 7 2 2 0 1 1 1 0
PARMAJ 29 2 27 55 15 0 6 1 12 4 14 3 4 0
PHOPHO 6 3 0 9 9 1 2 3 8 0 2 9 4 2
PHYBOR 0 2 0 0 5 56 5 18 3 1 0 1 0 0
PHYCOL 9 1 21 2 7 15 51 16 8 0 1 5 1 1
PHYDES 4 2 12 0 5 23 9 29 6 7 1 3 0 0
PHYLUS 9 6 16 15 29 4 14 16 47 1 8 16 3 9
PHYSIB 1 1 1 2 1 0 0 7 0 83 2 1 0 0
SYLATR 14 2 1 5 2 0 2 0 2 2 41 13 7 8
SYLBOR 11 11 1 0 16 1 2 7 8 2 15 25 18 16
TURMER 2 0 0 5 4 0 0 0 0 0 7 10 32 31
TURVIS 1 0 0 0 2 0 0 0 2 0 4 7 26 31

Table 3. Columns give the percentage of syllables in a bird in-
dicated in the top row being identified as a syllable of a species
indicated in the leftmost column.

neglected in identification. In addition, the case of a typical field
recording with multiple birds could be handled without the need to
separate songs of individual birds. Sinusoidal representation is a
natural approach for recognition of songbirds since their calls and
syllables are often clearly sinusoidal.

The presented results are very encouraging. They show that
a model of one tone syllable with no song-level contextual infor-
mation is already sufficient for the identification of many species
in this selection of 14 species with relatively similar vocalizations.
The original hypothesis that species could be identified by sylla-
bles only seems plausible. Test also verifies that the proposed sig-
nal model captures some essential properties of many bird sounds.

However, the risk of misclassification is high for some species.
Many different effects are involved. For example, PHOPHO, SYL-
BOR and TURMER in Table 1, has a rich vocabulary which sim-
ilar syllables to many other species. The signal model is proba-
bly too simplified for general recognition of syllables. This can
be easily heard by synthesizing a song from estimated sinusoidal
components. The song has the same melody line but the timbre of a
synthesized song may be very different. Often the actual sound has
a clear harmonic structure at least up to the second and third har-
monic of the fundamental frequency. It is also very common, e.g.,
in FICHYP, that sounds contain frequency and amplitude modu-
lated components which have a period smaller than the 256-point
FFT window used in the current article. Finally, almost all species
feature non-tonal sounds like clicks and rattles which cannot be
modeled with a simple sinusoidal model.

There are basically two ways to improve results. First, the sig-
nal model needs to be refined by incorporating parametric repre-
sentations of harmonic structure, modulation, and non-tonal sounds
in syllables. Secondly, some song-levelstatisticalandstructural
descriptions may need to be added to the current framework. Sta-
tistical description could contain, for example, a probabilities of
different types of syllables in song of a species. Hidden Markov
models could also be used since bird song often is composed of se-
quences of repeating phrases. However, a vast database of record-
ings would be needed for training HMM or neural network models
for a recognizer. One useful structural description is the rate at
which syllables follow each other in a typical song.
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