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ABSTRACT

This article is related to the development of techniques for
automatic recognition of bird species by their sounds. It has
been demonstrated earlier that a simple model of one time-
varying sinusoid is very useful in classification and recog-
nition of typical bird sounds. However, a large class of bird
sounds are not pure sinusoids but have a clear harmonic
spectrum structure. In this article, we introduce a way to
classify bird syllables into four classes by their harmonic
structure.

1. INTRODUCTION

Automatic classification and recognition of sound sources
and generic audio material differs from speech recognition
in many ways. In the most generic case we cannot specify a
source model which would aid in finding efficient paramet-
ric representations for sound events. In speech recognition a
certain source model assumed and we may expect the signal
to obey the laws of a specific spoken language with a vocab-
ulary and a grammar. In other than speech signals, such as
music, environmental sounds, or animal sounds, this is not
always clear. Nevertheless, there are classes of other than
speech sounds which probably have avocabularywhich in
automatic recognition can be characterized using a set of
descriptive parameters.

Bird songs is a good example of a class of natural sounds
where we can expect to find a vocabulary. In bird vocal-
ization we also have a pretty good understanding on the
physics of sound production, see, e.g., [1], for references.
Automatic recognition of bird species and even individuals
by their sounds is a potential new tool for biological sci-
ences. There are also extensive international initiatives on
building biological multimedia databases on all living or-
ganisms (such as theGlobal Biodiversity Information Facil-
ity (GBIF) by the OECD countries). So far, little has been
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done to incorporate animal sounds into those, but quite ob-
viously that will be considered in the future.

In [1] we studied automatic recognition of fourteen bird
species common in all Northern Europe. The working hy-
pothesis was that it would be possible to recognize bird
species directly fromsyllableswhich are elementary build-
ing blocks of bird song [2]. Typically the duration of a syl-
lable ranges from few to few hundred milliseconds. If this
should be possible, the recognition of species could be per-
formed even from brief clean periods in a noisy environ-
mental recording. The alternative approach of recognizing
song melodies is difficult in some species due to high re-
gional variability and imitation of the song of other species,
which is a common phenomenon. A majority of earlier
work on automatic recognition of bird species have focused
on recognition of melodies, see [3] for review.

In [1] the parametrization was based on sinusoidal mod-
eling of syllables. Recognition results were encouraging
even if the signal model was clearly oversimplified: each
syllable was represented by frequency and amplitude tra-
jectories of a single time-varying sinusoid. A time-varying
model is significantly better in recognition of syllables than
just a center frequency of a syllable, which has been used,
for example, in recognition of song melodies in a pioneer-
ing work by McIlraith [4]. Our recent result in Fig. 1 also
show that the use of a time-varying sinusoidal model instead
of a center frequency of a syllable increases the accuracy of
song recognition rate by 10-30 %.

In the current article, we study how harmonic structure
of sounds can be efficiently estimated and parametrized to
further improve the accuracy in recognition of bird species.

2. METHODS

In the current article, syllables of bird vocalization are mod-
eled using a parametric line spectrum estimation method
which is often called Analysis-By-Synthesis/Overlap-Add
(ABS/OLA) when referring to an efficient frequency-domain
algorithm proposed by George and Smith [5]. This tech-
nique is better than the one we used in [1] because it guar-
antees that the removal of a new sinusoid in a frame will
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Fig. 1. The song recognition percentage as a function of the
number of consecutive syllables. Upper plot: DTW-based
distance function between syllables represented as a time-
varying sinusoid. Lower plot: Euclidean distance between
syllables represented by the average frequency over its du-
ration. Previously unpublished results left out of [3].

always decrease the energy of the residual signal.
The segmentation of a recording to individual syllables

is done using an iterative time-domain algorithm. First, we
compute a smooth energy envelope of the signal and find the
global maximumMdB. Next, we initialize a thresholdDdB

to a suitable value (e.g., 20 dB). Then we apply the follow-
ing algorithm sequentially until it converges such that the
estimate of the level of the background noiseNdB becomes
sufficiently stable.

Algorithm 1
1. Find maximum points and regions which are within

D dB below the global maximum of the envelope.
2. EstimateNdB from gaps between high energy regions.
3. Update the threshold, e.g.,DdB = (MdB − NdB)/2

and return to step 1.

In the current article the implementation of ABS/OLA
is such that we first use it to find a single time-varying si-
nusoidal component over a syllable. To get a smooth sinu-
soidal representation we start at the energy maximum of a
syllable ad proceed forward and backward in time so that
the maximum frequency difference between peaks in con-
secutive frames is not allowed to exceed a certain limit.
With the step size of 127 samples (with a 256-sample Han-
ning window and FFT-size of 1024) at the sampling rate of
44.1 kHz we allow a 5% deviation (in relation to the cen-
ter frequency) in going from one frame to another. The
frequency trajectory of a sinusoid is terminated when the
amplitude of the estimated sinusoid falls belowDdB (see
above).

In a framen we first find the frequency of the maximum
ωn (within the allowed frequency range) and utilize the fre-
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Fig. 2. The top left panel shows a spectrogram of a typical
syllable from Willow Warbler. The top right panel shows
frequency and amplitude trajectories of the one-sinusoid
model (in FFT-bins and decibels). The two lower panels
show spectrograms of a synthesised signal and the residual
after substracting the sinusoid from the original signal. The
y-axis represents frequency in kHz and the x-axis is time in
milliseconds.

quency domain algorithm proposed in [5] to find phaseφn

and magnitudemn corresponding to an optimal sinusoidal
pulse. Conceptually, we may write a function call

[mn, φn, ŝn] = absola(x̂n, ωn), (1)

wherex̂n is a windowed signal segment corresponding to
the nth frame of the original signalx, and ŝn is a sinu-
soidal signal which can be used to synthesize a sinusoidal
representation of the signal, denotedsI , in the overlap-add
sense. We can also compute a modeling error signal by
eI = x− sI .

As was demonstrated in [1], a single sinusoidal model
is often enough. However, syllables with a clear harmonic
structure are common. In this article we divide sounds into
four classes by their harmonic structure.

Class I representation is the one-sinusoid model. For
example, a syllable from the Willow Warbler (Phylloscopus
trochilus) illustrated in Fig. 2 is a good example of a pure
sinusoidal syllable. In Class II representation the single si-
nusoid is a fundamental of a harmonic series. For example,
the top left spectrogram of Fig. 3 representing a syllable
from Blackbird (Turdus merula) has the first and the second
harmonic of the estimated sinusoidal component clearly vis-
ible.

Fig. 4 represents a typical Class III syllable from Icter-
ine Warbler (Hippolais icterina). In this class the funda-
mental component is weak and the sinusoidal component
with the highest amplitude is the first harmonic of the series.
In Fig. 5, from March Warbler (Acrocephalus palustris), the
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Fig. 3. Representations of a syllable from Blackbird with
two harmonic components of the fundamental sinusoidal.
Panels are similar to Fig. 2.

sinusoid with the highest amplitude is the second harmonic
of the series which is characteristic for Class IV syllables.
In our database of bird recordings cases of harmonic sounds
where the dominant sinusoidal component would be higher
than the second harmonic are rare.

The estimation of the levels of harmonic components
can be done using the following procedure. First, we fit
one time-varying sinusoidal signal over a syllable to find
time-varying parametersωn, φn, mn, for n = 0, ..., N − 1,
synthesized signalsI and residualeI . After that we may use
frequency estimates corresponding to the dominant sinusoid
ωn to estimate the level of itskth harmonic. Using the no-
tation from (1), estimation of parameters for a harmonically
related component ofωk is given by

[mnk, φnk, ŝnk] = absola(ên, kωn). (2)

For example, frequency curves in Fig. 3 corresponding to
Class II were computed using valuesk = kII = 1, 2, 3. In
Class III, k = k̄III = 1

2 , 1, 3
2 , ..., and finally Class IV is

represented by a harmonic series formed byk = k̄IV =
1
3 , 2

3 , 1, 4
3 , .... Synthetic signalssC whose spectrograms has

been illustrated in bottom left panels in Figs. 2-5 were cre-
ated using overlap-add synthesis of a sum of correspond-
ing synthesized componentsŝnC , whereC denotes a class.
Moreover, the residual signal in bottom right panels was
given byeC = x− sC .

Next, we note that̄kIII andk̄IV intersect withkII. There-
fore, in the following we define Class III and IV harmonic
serieskIII andkIV so that multipliers 2, 3, and 4 have been
removed from sets. In addition, we define a new group A of
harmonics which is obtained as an union of all other classes.
That is,kA = kII ∪ kIII ∪ kIV.

In this article, we compute a modeling gain correspond-
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Fig. 4. Representations of a syllable from Icterine Warbler
the strongest sinusoidal is actually the first harmonic. Panels
are similar to Fig. 2.

Sample HI HII HIII HIV R
Fig. 2 0.933 0.140 0.324 0.43 0.53
Fig. 3 0.226 0.472 0.042 0.27 7.02
Fig. 4 0.000 0.005 0.736 0.0240 22.66
Fig. 5 0.002 0.001 0.006 0.951 18.10

Table 1. Harmonic parameters corresponding to syllables
in Figs. 2-5

ing to a classC in the following way:

GC = 20 log10

(
E[x2]
E[e2

C ]

)
, (3)

whereE[.] denotes expectation. For ABS/OLA it holds
that for any signalGI < GA, and all other class estimates
will fall in [GI, GA]. Therefore, we define a range measure
R = GA −GI which gives the difference in modeling gain
between the cases where only one sinusoid has been mod-
eled (Class I) and where the dominant sinusoid and all its
harmonics and sub-harmonics have been modeled. Finally,
we define a test which gives a likelihood that a certain syl-
lable is from Class C={II, III, IV }:

HC = (GC −GI)/R, with 0 < HC < 1. (4)

In order to determine if a signal belongs to Class I, we
introduce a heuristic measure given by

HI = ((1+exp(0.6R−3))(1+exp(−0.2GI−2)))−1 (5)

which gives a value close to one when the modeling gain of
GI is large butR is small. In case of a high noise level or
signals which do not match any of the proposed models,GA

gives a small value. MeasuredHC values corresponding to
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Fig. 5. Representations of a syllable from Marsh Warbler
where the strongest sinusoidal component is the second har-
monic of a fundamental. Panels are similar to Fig. 2.

the signals in Figs. 2-5 are shown in Table 1. All signals are
classified as expected (the highest value is bolded).

The method can be made very efficient because the com-
putation of alleC can be implemented directly in the FFT-
domain due to the properties of ABS/OLA and the Parse-
val’s theorem.

3. RESULTS

The current XML-based bird song recording database col-
lected at HUT/Acoustics has nearly 2000 recordings from
almost 150 bird species. The total number of syllables in
the database is more than 30000. However, for a majority
of species the number of bird individuals is not sufficiently
large for reliable species recognition experiments. Classifi-
cation results over the passerine birds in the database shows
that almost 60% of syllables are classified as pure sinusoidal
sounds (Class I), and 14 % are in Class IV which is the sec-
ond largest class. But, only 7% of the syllables can be con-
sidered noise because of a low modeling gainGA (1–6 dB).

Statistics of four species are shown in Table 2. The re-
sults in Table 2 for the first four species seem reasonable.
For example, Willow Warbler’s syllables are typically clean
sinusoidal chirps while others have more variability in tim-
bre. The last species, Hooded Crow, is clearly an outlier.
Visual inspection of a spectrogram of a typical crow’s caw
shows very little harmonicity. However, the current classifi-
cation finds a high number of Class IV syllables.

4. CONCLUSIONS

In this article we introduced a computationally efficient tech-
nique to classify sinusoidal representations of brief segments
of bird song, syllables, to four classes by their harmonic

Species I II III IV Noise
Willow Warbler 83 11 4 0 1
Comm. Chaffinch 56 5 33 0 6
Blackbird 46 13 38 3 1
Marsh Warbler 41 5 20 26 8
Hooded Crow 0 9 9 81 0

Table 2. Percentages of syllables belonging to different
classes for a selection of species.

structure. It was demonstrated that the method is proba-
bly useful in developing system for automatic recognition
of bird species. It also seems that the proposed signal mod-
els match with the spectral structure in 93 % of syllables in
our database. Actual recognition results have not been re-
ported in the current article. This is work in progress and
a snapshot of recognition results is held up-to-date at our
web-site [6]. In many bird species the use of the proposed
harmonic class information improves recognition results by
5-20 %. However, in some species improvements are small
and suggest that the recognition cannot be done on the basis
of isolated syllables only, but it may be necessary to take
into account also song-level structural information.
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