BIRD SONG RECOGNITION BASED ON SYLLABLE PAIR HISTOGRAMS
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ABSTRACT been demonstrated. This article is a follow-up work to [3]
which presented promising results in automatic recogmitio

il(reitssonla fﬁlg bg (2:/|\(/jvzdirl:/:ac;t? zfgl:ﬁgcis;smgatg? t?ilr?j- of fourteen Finnish song bird species. That work was based
- bap 9 POSSIDILY on the use of separate syllables as the recognition unit. A
species recognition based on the syllable pair histogram of

; . . subset of the data was also investigated by means of the
the song. This representation compresses the variatlighlen - . - :
: ) . . Self-Organizing Map in [9]. The species used in the present
syllable sequence into a fixed-dimensional feature vector.

The histogram is computed by means of Gaussian syIIabIeStUdy are listed in Table 1.

prototypes which are automatically found given the song  Bird song is typically divided into four hierarchical lev-
data and the dissimilarity measure of syllables. Our rep- €ls: notes, syllables, phrases, and song [2]. Syllablebean
resentation captures the use of the syllable alphabet andeen as elementary building blocks of bird vocalization [1]
also some temporal structure of the song. We demonstratd-ig. 1 shows an example of three songs. In many species
the method in bird species recognition with song patterns there is high individual and regional variability in phrase
obtained from fifty individuals belonging to four common and song patterns. This can be seen both as a drawback and
passerine bird species. advantage, depending on the application. It may facilitate
the identification of bird individuals, but at the same tirhe i
makes the bird species recognition more challenging.
1. INTRODUCTION
A histogram collected from single syllables would be
The work reported in this paper is related to the develop- invariant to the temporal structure of the song. But the his-
ment of technology for automatic recognition of bird songs. togram based on consecutive syllables, like in our case the
Technology for sound-based identification of birds would Syllable pairs, is able to reveal some temporal structure of
be a significant addition to the research methodology in or- the song. The main contributions of our present work are
nithology, and biology in general. There is also significant the representation of the variable-durational song by mean
commercial potential for such systems because bird watch-0f the Gaussian syllable prototypes, how to construct the
ing is a popular hobby in many countries. Extensive interna- Prototype bases, how to avoid sparseness of the histogram
tional programs such as the Global Biodiversity Informatio  representation, and finally, how to compare the histograms.
Facility (www.gbif.org) which are building biological mul
timedia databases facilitating automatic classificatinod a
identification of species are also boosting the activityhim t
area of bioacoustic signal processing and pattern recogni- 2. METHODS
tion. Nevertheless, relatively little has been done previ-
ously in the field. In a few studies the feasibility of auto-
matic recognition of bird Species [11 5, 6] using sound has The I’epl’esentation of the song in this Study is based on the
syllable histograms. In order to form the histograms, the
*Dr. Somervuo was supported by the Academy of Finland, projectn  syllable space must first be divided into bins. This is done
I‘L‘:}iseGPggﬁvaﬁﬁremzagg’g_%g‘;’ss'”g principles” (Finnish @erof Excel- -,y finding a set of syllable prototypes. First the dissinitjar
Dr. Harma was supported by the Academy of Finland and the graduate Measure between the syllables is defined and the prototypes
school GETA are then automatically found based on this measure.
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2.2. Gaussian syllable prototypes

Fig. 1. Examples of bird songs after sinusoidal modeling [3]. Fre- .
quency trajectories of consecutive syllables are from three birds.Based on the DTW-distances between syllables, k-means
The two songs from FRICOE and PHYLUS (on the top) are type clustering algorithm can be used [7]. The following
melodic where the structure of song is spread over several con-algorithm for findingk syllable prototypes is used:
secutive syllables whereas the song of PHYCOL (on the bottom)
is more “binary”; lower- and higher-frequency syllables alternatéStep 1. Select randomly syllables in the data set and use

in the sequence. them as initial prototypes.

Step 2. For each data syllable in the data set: compute its dis
Table 1. Birds in the current study. Columns give an abbreviation similarity against all prototypes and add the data syl-
derived from the Latin name (a widely used convention), the Latin lable to the list of its 'closest’ prototype (having the

name, and a common English name. The numbers of FRICOE,
PHYLUS, PHYCOL, and PARMAJ individuals in the current data
setare 12, 14, 13, and 11, respectively. Step 3. For each prototype: replace the old prototype by the
centermost data syllable in its list. The centermost
data syllable is defined having the smallest sum of
DTW-distances to other syllables in the list.

smallest DTW-distance).

Lat. Abbr.  Latin name Common name
FRICOE Fringilla coelebs Common Chaffinch
PHYLUS  Phylloscopus trochilus  Willow Warbler
PHYCOL Phylloscopus collybita Common Chiffchaff
PARMAJ  Parus major Great Tit

Step 4. Repeat Steps 2 and 3 until convergence.

In our experiments, the algorithm typically converged
in five iterations. Several random initializations can bedis
2.1. Dissimilarity of syllables anq the syllqble prototypes which g_ive_the smal_lest quanti-
zation error is then selected. Quantization error is cosgbut
A typical duration of a syllable is in the range of a few to a by summing the smallest DTW-distances between the data
few hundred milliseconds and it may feature rapid changessyllables and their closest prototypes.
in the spectrum. In some cases there may be dozens of dif-  This kind of k-means type clustering gives a codebook
ferent syllables per second in bird song. which already can be used as a basis of song representation.
In [3], the comparison of syllables was based on com- But in our work we used the result as a basis for building
puting the Euclidean distances between the trajectories ofGaussian prototypes. Based on the quantization errors of
sinusoid parameters. Variable-length sequences were firstyllable data we can add a variance parameter to each pro-
zero padded to equal lengths and aligned so that the framesotype. This enables us to compute the posterior probabili-
corresponding to the maximum values of the amplitude en-ties of prototypes = 1...k for any data syllable: in the
velope in two sequences corresponded to each other [3]following way:
This facilitated the use of Euclidean distance without time
axis warping. However, in the present work the similarity ) )
between two syllables is defined using dynamic time warp- p(ile) 1/(v2m0;) exp(=d3, /207)

T) = = , 1
ing (DTW) [8]. The cumulative distance between the fea- ijl 1/(V2mo;) exp(—d3, /207%) @)




whered;,, is the DTW-distance between data syllable Letz;_; andz; denote two consecutive syllables of the
and prototype, ando? is the variance parameter. The vari- song anc;_; andp; the corresponding posterior probabil-
ance parameter of prototypecan be set by computing the ity vectors of Gaussians, respectively. The value of bigram
average of the squared DTW-distances between the protofor prototype paiti, j and syllables:;_1, z; is:

typei and the data syllables to whom the prototype the Diovp
t—1,iPt,j

closest prototype. hij(t) = S S — (2
Fig. 2 illustrates the posterior probabilities of protatgp Zi’d" Pt—1,i'Pr.j’
for data syllables using Eq. (1). Already from this picture i The smooth bigrant; ;(¢) for all ¢, can be conve-

can be noticed that the song structure of FRICOE and PHY-niently expressed by the product pf_; andp! (p is a

LUS are mutually more similar than the two other species. column vector and” denotes the transpose pa_;p! is a

In fact, typical melodic line in territorial singing of PHY-  k-by-k matrix) . The histogram representation for the entire
LUS and FRICOE are strikingly similar and the species are song is then obtained by summing the instantaneous bigram
easy to confuse. However, temporal and spectrum structureyalues over the song duratidn

of a typical syllable is different. For example, in [4] it was

found that 74 % of syllables from PHYLUS are almost pure L T T
sinusoidal chirps. In FRICOE, syllables have a strong har- H=> p.1p!/Ipi1p/ ]|, 3)
monic structure and the second harmonic of the fundamen- =2

tal frequency is dominant in almost 33 % of the syllables. I~ where the start index= 2 is for bigrams (denoting the
the current work, however, the syllable representation wastime index of the first syllable by = 1). The numerator in
based on only single time-varying sinusoid as in [3]. Eq. (3) is the normalization term for instantaneous bigram
values (the sum of the elements in maix ,p;) .
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An example of histograms is shown in Fig. 3. It can
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gl l\ | lfl i HHI l H‘\l\‘ln\‘“\‘\ |||.lll‘“| “H‘I‘Hw‘li \\ “‘m m \ W ” m‘” “l

” Illwll‘?\‘l\l e M \

similar than PHYCOL.
HIII‘ | H\H“I (i1 -H\ ’\I\H HHH Il

b HH

Fig. 2. Prototype posteriors for song data. Vertical axis represents ~
the posterior value of 10 Gaussian prototypes for each of the 4344 -
syllables from 257 songs in the horizontal axis. Vertical dashed S e e S e e

lines separate four species, from left to right: FRICOE, PHYLUS, . o )
PHYCOL, and PARMAJ. Fig. 3. Syllable pair histograms computed over the entire data

set for FRICOE, PHYLUS, and PHYCOL. Ten Gaussians (not the
same ones as used in Fig. 2) were used as syllable prototypes. Dark
shade of gray represents high value.
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2.3. Histogram of consecutive syllables

N-gram is a sequence of N consecutive symbols. Itis simple

to extract the N-grams from a symbol string. For syllable

seguence, we can use the indices of the best-matching pro2.4. Comparison of histograms
totypes in order to build the N-grams. But representing the
syllable using only one prototype in time gives quite crude
representation of the original syllable. The more accurate
representation is gained if the number of prototypes is in-

creased, but this results in sparse N-grams and the compa
ison of sequences is not robust. For some songs in our dat
set, the number of syllables is relatively small and there-
fore we need proper smoothing for the N-grams. This is our

Histograms can be compared quantitatively by computing
their mutual correlations. Ldi be a column vector repre-
senting a histogram (the column vectors of histogram ma-
|1r|x H being concatenated). In casefoprototypes and if
0 consecutive syllables are used as a building block of
e histogram, the dimension &f is k2. The correlation
coefficientc between two histogranis; andh, is:

main motivation for using Gaussian prototypes instead of h’h
simple vector-quantization type histogram bins. By means c(hi, hy) = ———t 4)
) ’ /MT /T,
of Gaussians we can represent the syllables smoothly using hi hiy/h; hy
all prototypes (not just the closest prototype) and thugdavo The correlation coefficient is 0 is two histograms are to-

the sparseness of the N-grams. The number of consecutivéally disjoint, i.e. there is no common histogram bin where
syllables N can be arbitrary, but in the current work we have both histograms contain data. The value is closer to 1 the
used syllable pairs (bigrams, N=2). more the two histograms have data in the common histogram



bins. Correlations computed between song-wise histogram

are shown in Fig. 4.
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SI'able 2. Confusion matrix for bird species classification. The
order of columns and rows from left to right and top to down are
FRICOE, PHYLUS, PHYCOL, and PARMAJ. Rows represent the
species being recognized and columns represent the target classes.
Row-sum of confusion matrix gives the number of bird individuals
in each species.

50 Gaussians

10 Gaussians 30 Gaussians

239 4 5 27 3 7 4 26 7 5 3
8§ 60 2 1 4 651 1 1 66 2 2
3 3 45 6 1 4 45 7 1 4 48 4
8 2 5 51 7 2 8 49 5 4 8 49

4. CONCLUSION

In this study we have demonstrated the use of syllable pair
histograms as the basis of bird species recognition. Entire
songs or parts of them can compared using this represen-
tation. The fixed-dimensional representation of variable-
length syllable sequences enables also the use of several
analysis methods. For example, based on the histogram rep-

Fig. 4. Correlations between song-wise syllable pair histograms.
Dashed lines divide FRICOE, PHYLUS, PHYCOL, and PARMAJ
from left to right and top to bottom. Dark shade of gray represents
high value.

(1]
3. RECOGNITION RESULTS

Songs from 50 bird individuals were used in the recognition (21
experiments. The individuals belonged to four species, c.f
Table 1. There were 257 songs containing altogether 4344 (3]
syllables in the data set.

Syllable pair histograms were formed for each song as
explained in Sec. 2.3 and the comparison of songs was based*
on Eqg. (4). The “songs” containing only one syllable were
removed from the data set and the remaining 235 songs werel5]
used in the classification. We used the nearest neighber clas
sifier in our study. During the classification all songs which
belonged to the bird invidual currently being classifiedever
removed from reference songs. The classification was per—[
formed for three different histogram representations thase
on three Gaussian syllable prototype sets containing 10, 30
and 50 Gaussians. The confusion matrices of the classifica-L"
tions are shown in Table 2. The corresponding classification
accuracies are 76 %, 79 %, and 80 %. It is interesting that
the histogram based on only 10 Gaussians gave comparablé8
results to those of using larger number of Gaussians. Al-
though the optimal number of Gaussians should reflect the
variability of the syllables (syllable alphabet), thereshi
be no danger of using even larger number of Gaussians be-
cause of the bigram smoothing explained in Sec. 2.3.

resentations, we can easily cluster the data and find typical
songs for different species.
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