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ABSTRACT

Bird song can be divided into a sequence of syllabic ele-
ments. In this paper we investigate the possibility of bird
species recognition based on the syllable pair histogram of
the song. This representation compresses the variable-length
syllable sequence into a fixed-dimensional feature vector.
The histogram is computed by means of Gaussian syllable
prototypes which are automatically found given the song
data and the dissimilarity measure of syllables. Our rep-
resentation captures the use of the syllable alphabet and
also some temporal structure of the song. We demonstrate
the method in bird species recognition with song patterns
obtained from fifty individuals belonging to four common
passerine bird species.

1. INTRODUCTION

The work reported in this paper is related to the develop-
ment of technology for automatic recognition of bird songs.
Technology for sound-based identification of birds would
be a significant addition to the research methodology in or-
nithology, and biology in general. There is also significant
commercial potential for such systems because bird watch-
ing is a popular hobby in many countries. Extensive interna-
tional programs such as the Global Biodiversity Information
Facility (www.gbif.org) which are building biological mul-
timedia databases facilitating automatic classification and
identification of species are also boosting the activity in the
area of bioacoustic signal processing and pattern recogni-
tion. Nevertheless, relatively little has been done previ-
ously in the field. In a few studies the feasibility of auto-
matic recognition of bird species [1, 5, 6] using sound has
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been demonstrated. This article is a follow-up work to [3]
which presented promising results in automatic recognition
of fourteen Finnish song bird species. That work was based
on the use of separate syllables as the recognition unit. A
subset of the data was also investigated by means of the
Self-Organizing Map in [9]. The species used in the present
study are listed in Table 1.

Bird song is typically divided into four hierarchical lev-
els: notes, syllables, phrases, and song [2]. Syllables canbe
seen as elementary building blocks of bird vocalization [1].
Fig. 1 shows an example of three songs. In many species
there is high individual and regional variability in phrases
and song patterns. This can be seen both as a drawback and
advantage, depending on the application. It may facilitate
the identification of bird individuals, but at the same time it
makes the bird species recognition more challenging.

A histogram collected from single syllables would be
invariant to the temporal structure of the song. But the his-
togram based on consecutive syllables, like in our case the
syllable pairs, is able to reveal some temporal structure of
the song. The main contributions of our present work are
the representation of the variable-durational song by means
of the Gaussian syllable prototypes, how to construct the
prototype bases, how to avoid sparseness of the histogram
representation, and finally, how to compare the histograms.

2. METHODS

The representation of the song in this study is based on the
syllable histograms. In order to form the histograms, the
syllable space must first be divided into bins. This is done
by finding a set of syllable prototypes. First the dissimilarity
measure between the syllables is defined and the prototypes
are then automatically found based on this measure.
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Fig. 1. Examples of bird songs after sinusoidal modeling [3]. Fre-
quency trajectories of consecutive syllables are from three birds.
The two songs from FRICOE and PHYLUS (on the top) are
melodic where the structure of song is spread over several con-
secutive syllables whereas the song of PHYCOL (on the bottom)
is more “binary”; lower- and higher-frequency syllables alternate
in the sequence.

Table 1. Birds in the current study. Columns give an abbreviation
derived from the Latin name (a widely used convention), the Latin
name, and a common English name. The numbers of FRICOE,
PHYLUS, PHYCOL, and PARMAJ individuals in the current data
set are 12, 14, 13, and 11, respectively.

Lat. Abbr. Latin name Common name
FRICOE Fringilla coelebs Common Chaffinch
PHYLUS Phylloscopus trochilus Willow Warbler
PHYCOL Phylloscopus collybita Common Chiffchaff
PARMAJ Parus major Great Tit

2.1. Dissimilarity of syllables

A typical duration of a syllable is in the range of a few to a
few hundred milliseconds and it may feature rapid changes
in the spectrum. In some cases there may be dozens of dif-
ferent syllables per second in bird song.

In [3], the comparison of syllables was based on com-
puting the Euclidean distances between the trajectories of
sinusoid parameters. Variable-length sequences were first
zero padded to equal lengths and aligned so that the frames
corresponding to the maximum values of the amplitude en-
velope in two sequences corresponded to each other [3].
This facilitated the use of Euclidean distance without time
axis warping. However, in the present work the similarity
between two syllables is defined using dynamic time warp-
ing (DTW) [8]. The cumulative distance between the fea-

ture vectors of two sequences is computed along the warp-
ing function which changes the time axis of the sequences
nonlinearly so that the maximum fitting between the se-
quences is attained. DTW handles well the durational dif-
ferences between sequences. In [9] it was found that DTW
outperformed the maximum amplitude alignment based Eu-
clidean distance between syllables when the task was single-
syllable based bird species recognition.

Durational differences of the syllables are ignored since
the cumulative distances obtained by DTW are normalized
by the lengths of the syllables. But although the timing in-
formation was not used in thie present study, the durations
of syllables and especially the durations of silence regions
between the syllables could be used as an auxiliary infor-
mation in future studies.

2.2. Gaussian syllable prototypes

Based on the DTW-distances between syllables, k-means
type clustering algorithm can be used [7]. The following
algorithm for findingk syllable prototypes is used:

Step 1. Select randomlyk syllables in the data set and use
them as initial prototypes.

Step 2. For each data syllable in the data set: compute its dis-
similarity against all prototypes and add the data syl-
lable to the list of its ’closest’ prototype (having the
smallest DTW-distance).

Step 3. For each prototype: replace the old prototype by the
centermost data syllable in its list. The centermost
data syllable is defined having the smallest sum of
DTW-distances to other syllables in the list.

Step 4. Repeat Steps 2 and 3 until convergence.

In our experiments, the algorithm typically converged
in five iterations. Several random initializations can be used
and the syllable prototypes which give the smallest quanti-
zation error is then selected. Quantization error is computed
by summing the smallest DTW-distances between the data
syllables and their closest prototypes.

This kind of k-means type clustering gives a codebook
which already can be used as a basis of song representation.
But in our work we used the result as a basis for building
Gaussian prototypes. Based on the quantization errors of
syllable data we can add a variance parameter to each pro-
totype. This enables us to compute the posterior probabili-
ties of prototypesi = 1 . . . k for any data syllablex in the
following way:

p(i|x) =
1/(

√
2πσi) exp(−d2

ix/2σ2

i )
∑k

j=1
1/(

√
2πσj) exp(−d2

jx/2σ2

j )
, (1)



wheredix is the DTW-distance between data syllablex
and prototypei, andσ2

i is the variance parameter. The vari-
ance parameter of prototypei can be set by computing the
average of the squared DTW-distances between the proto-
type i and the data syllables to whom the prototypei is the
closest prototype.

Fig. 2 illustrates the posterior probabilities of prototypes
for data syllables using Eq. (1). Already from this picture it
can be noticed that the song structure of FRICOE and PHY-
LUS are mutually more similar than the two other species.
In fact, typical melodic line in territorial singing of PHY-
LUS and FRICOE are strikingly similar and the species are
easy to confuse. However, temporal and spectrum structure
of a typical syllable is different. For example, in [4] it was
found that 74 % of syllables from PHYLUS are almost pure
sinusoidal chirps. In FRICOE, syllables have a strong har-
monic structure and the second harmonic of the fundamen-
tal frequency is dominant in almost 33 % of the syllables. In
the current work, however, the syllable representation was
based on only single time-varying sinusoid as in [3].
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Fig. 2. Prototype posteriors for song data. Vertical axis represents
the posterior value of 10 Gaussian prototypes for each of the 4344
syllables from 257 songs in the horizontal axis. Vertical dashed
lines separate four species, from left to right: FRICOE, PHYLUS,
PHYCOL, and PARMAJ.

2.3. Histogram of consecutive syllables

N-gram is a sequence of N consecutive symbols. It is simple
to extract the N-grams from a symbol string. For syllable
sequence, we can use the indices of the best-matching pro-
totypes in order to build the N-grams. But representing the
syllable using only one prototype in time gives quite crude
representation of the original syllable. The more accurate
representation is gained if the number of prototypes is in-
creased, but this results in sparse N-grams and the compar-
ison of sequences is not robust. For some songs in our data
set, the number of syllables is relatively small and there-
fore we need proper smoothing for the N-grams. This is our
main motivation for using Gaussian prototypes instead of
simple vector-quantization type histogram bins. By means
of Gaussians we can represent the syllables smoothly using
all prototypes (not just the closest prototype) and thus avoid
the sparseness of the N-grams. The number of consecutive
syllables N can be arbitrary, but in the current work we have
used syllable pairs (bigrams, N=2).

Let xt−1 andxt denote two consecutive syllables of the
song andpt−1 andpt the corresponding posterior probabil-
ity vectors of Gaussians, respectively. The value of bigram
for prototype pairi, j and syllablesxt−1, xt is:

hi,j(t) =
pt−1,ipt,j

∑

i′,j′ pt−1,i′pt,j′

. (2)

The smooth bigramhi,j(t) for all i, j can be conve-
niently expressed by the product ofpt−1 andpT

t (p is a
column vector andT denotes the transpose sopt−1p

T
t is a

k-by-k matrix) . The histogram representation for the entire
song is then obtained by summing the instantaneous bigram
values over the song durationL:

H =
L

∑

t=2

pt−1p
T
t /|pt−1p

T
t | , (3)

where the start indext = 2 is for bigrams (denoting the
time index of the first syllable byt = 1). The numerator in
Eq. (3) is the normalization term for instantaneous bigram
values (the sum of the elements in matrixpt−1p

T
t ) .

An example of histograms is shown in Fig. 3. It can
be seen qualitatively that FRICOE and PHYLUS are more
similar than PHYCOL.
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Fig. 3. Syllable pair histograms computed over the entire data
set for FRICOE, PHYLUS, and PHYCOL. Ten Gaussians (not the
same ones as used in Fig. 2) were used as syllable prototypes. Dark
shade of gray represents high value.

2.4. Comparison of histograms

Histograms can be compared quantitatively by computing
their mutual correlations. Leth be a column vector repre-
senting a histogram (the column vectors of histogram ma-
trix H being concatenated). In case ofk prototypes and if
two consecutive syllables are used as a building block of
the histogram, the dimension ofh is k2. The correlation
coefficientc between two histogramsh1 andh2 is:

c(h1,h2) =
hT

1
h2

√

hT
1
h1

√

hT
2
h2

. (4)

The correlation coefficient is 0 is two histograms are to-
tally disjoint, i.e. there is no common histogram bin where
both histograms contain data. The value is closer to 1 the
more the two histograms have data in the common histogram



bins. Correlations computed between song-wise histograms
are shown in Fig. 4.
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Fig. 4. Correlations between song-wise syllable pair histograms.
Dashed lines divide FRICOE, PHYLUS, PHYCOL, and PARMAJ
from left to right and top to bottom. Dark shade of gray represents
high value.

3. RECOGNITION RESULTS

Songs from 50 bird individuals were used in the recognition
experiments. The individuals belonged to four species, c.f.
Table 1. There were 257 songs containing altogether 4344
syllables in the data set.

Syllable pair histograms were formed for each song as
explained in Sec. 2.3 and the comparison of songs was based
on Eq. (4). The “songs” containing only one syllable were
removed from the data set and the remaining 235 songs were
used in the classification. We used the nearest neighbor clas-
sifier in our study. During the classification all songs which
belonged to the bird invidual currently being classified were
removed from reference songs. The classification was per-
formed for three different histogram representations based
on three Gaussian syllable prototype sets containing 10, 30,
and 50 Gaussians. The confusion matrices of the classifica-
tions are shown in Table 2. The corresponding classification
accuracies are 76 %, 79 %, and 80 %. It is interesting that
the histogram based on only 10 Gaussians gave comparable
results to those of using larger number of Gaussians. Al-
though the optimal number of Gaussians should reflect the
variability of the syllables (syllable alphabet), there should
be no danger of using even larger number of Gaussians be-
cause of the bigram smoothing explained in Sec. 2.3.

Table 2. Confusion matrix for bird species classification. The
order of columns and rows from left to right and top to down are
FRICOE, PHYLUS, PHYCOL, and PARMAJ. Rows represent the
species being recognized and columns represent the target classes.
Row-sum of confusion matrix gives the number of bird individuals
in each species.

10 Gaussians 30 Gaussians 50 Gaussians
23 9 4 5 27 3 7 4 26 7 5 3
8 60 2 1 4 65 1 1 1 66 2 2
3 3 45 6 1 4 45 7 1 4 48 4
8 2 5 51 7 2 8 49 5 4 8 49

4. CONCLUSION

In this study we have demonstrated the use of syllable pair
histograms as the basis of bird species recognition. Entire
songs or parts of them can compared using this represen-
tation. The fixed-dimensional representation of variable-
length syllable sequences enables also the use of several
analysis methods. For example, based on the histogram rep-
resentations, we can easily cluster the data and find typical
songs for different species.
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