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Key concepts

Kautz filters – a special class of pole-zero (IIR) filters, forced
structurally to produce orthonormal tap output impulse re-
sponses - rational orthonormal basis representations for sig-
nals and systems - a generalization of the z-transform

Frequency warping – a dispersive signal transformation, cor-
responding to an one-to-one conformal mapping of the z-
transform representation - a method for producing frequency
responses on a warped non-uniform frequency scale

What’s really so novel?

�The utilization of Kautz filters in challenging pure filter syn-
thesis by modern DSP means in design and implementation

�The proposed method for the optimization of Kautz filter
poles - or more generally, a new IIR filter design tool

�The use of an intermediate warping procedure in the pole
optimization to allocate desired frequency resolution

What is achieved?

�Efficient modelling of complicated audio responses - sharp
focusing on distinct resonances with accurate phase as well
as magnitude modelling

�Benefits of the orthonormality - explicit control of the mod-
elling error, trivial model reduction - simultaneous time- and
frequency-domain design

�An additional design parameter trough the warping step -
e.g, detailed models for the low-frequency region

Kautz functions and filters

Kautz filters originate from rational orthonormal functions
[10]

����� �

�
�� �����

�� �����

����

���

��� � ���
�� �����

� � � �� �� � � � � (1)

defined by some set of points�������� in the unit disk. Func-
tions (1) have a recurrent structure, i.e., a (finite) weighted sum
of functions (1) form a transversal filter
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defined by poles� � ��� � � � �� �� and tap-output weights
� � ��� � � � �� �

� , where the transversal part is a tapped all-
pass chain
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In agreement with the continuous-time counterpart [6],
������ ���� is called a Kautz filter, depicted as

Properties and interpretations of the Kautz filter

�Causal and stable for���� 
 � and any choice of����
�Orthonormality - for the tap-output impulse responses,
���� ��� ��
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�Special cases of the Kautz filter:

– For�� � � it degenerates to an FIR filter
– For�� � ���� 
 � 
 �, it is a Laguerre filter [7]
– Generalized orthonormal basis functions by Heuberger[5]

�When equipped with (Kautz-Fourier) weights�� � ��� ���:

– An orthonormal (Fourier) series expansion - a generaliza-
tion of the z-transform - a complete basis representation,
defining Fourier transforms for any finite-energy� or�:
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– Orthogonal projections - truncated series expansions,
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taps are independent of ordering and approximation order

�The real-valued Kautz filter for complex conjugate poles [2]
- prevents dealing with complex signals and weights:

– �� �
�
��� ����� � �� � ����� and�� �

�
��� ����� � �� � �����,

where�� � �������� and�� � ����
�

– A mixture of structures is used for both real and cc-poles

Pole position optimization – the BU-method

Our choice of Kautz filter parametrization is the orthonormal
expansion coefficients, as in (2), since the contribution of each
chosen pole to the approximation error
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is explicitly at hand. The “only” design problem is then how
to choose the poles. Very few attempts has been made to solve
this complicated task:
�Methods that restrict to structures with identical sub-blocks,

e.g., the Laguerre filter and the two-pole Kautz filter [3, 9]

�A direct adaptive gradient search [4] and an iterative method
based on a linearization of the optimization problem [8]

The latter two methods are based on an old concept of com-
plementary signals [11], which states that minimization of (3)
is equivalent to an optimization criterion related solely on the
all-pass operator	���� defining the Kautz filter. Without ref-
erence to [11] or to Kautz filters, Brandenstein and Unbehauen
deduce the same optimization criterion for the determination
of the denominator in pure FIR-to-IIR filter conversion - our
modification and adoption to the context of Kautz filters is
named the BU-method.
The BU-method is capable of producing very large sets of ac-
curate poles for challenging target responses:
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The warped BU-method

The BU-method operates directly on time-domain responses
- desired characteristics can be emphasized in the pole gener-
ation using target response manipulations. Here we demon-
strate the effect of intermediate frequency warping. Laguerre-
warping is used since it is the true orthonormal transformation:

�Chose a warping parameter�,�� 
 � 
 �

�Warp the target response h(n) - a simple implementation:
feed����� to a Kautz filter with�� � � and read the tap-
outputs����� � ��������� at� � �: 
���� � �����

�Generate BU-poles using
� and some model order N

�Map the pole set according to� �
 �� � ����� � ���

�Evaluate�� � ��� ��� and compose	���� �
��

��� �������

Some illustrative examples

In the following examples a measured acoustic guitar body im-
pulse response is modelled using various warpings and Kautz
model orders.

�Warped BU-poles (� � ���) with respect to the model order:
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�Corresponding Kautz model magnitude responses, along
with the target magnitude response at the top:
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Magnitude responses − the target and 2−80 order Kautz models

�For comparison, the same setup for the un-warped case:
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�A fixed model order 68 is chosen and the effect of warping
is demonstrated using warping parameters� � ���
 � ���

with steps of���
:
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