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Abstract - A general purpose wideband radio channel model
implemented in MATLAB has been designed specifically for
testing the performance of wideband chaotic communication
systems utilising a radio interface. The theoretical basis of the
model is presented in the paper, as well as a short description
of the MATLAB program and some illustrative examples of
the output signal under given input signal and channel
conditions. The channel model is based on a number of  time-
varying taps modelling the signal dispersion in a multipath
environment. Generation of the tap fading process is
implemented using a novel method based on summation of a
number of complex phasors.

I. INTRODUCTION

A wideband channel model has been designed in

MATLAB at the Helsinki University of Technology, based

on the experience gained in channel modelling acquired

during the years 1993-1996 within the project SARF (New

Radio Communication Systems and their RF-technology)

sponsored by the Finnish Academy. The model uses a

novel tap generation method, and utilises subroutines

written in C language in order to maximise the speed of the

program. This model was originally developed for testing

chaotic communication systems, but contains all the

essential features for general purpose wideband channel

modeling and simulation.

The chaotic communication wideband channel model is

based on the tapped delay line or FIR (Finite Impulse

Response) filter structure presented in Section II, which

has been used extensively for simulation of mobile

communication systems, regardless the different radio

environments (indoor, urban, rural, mobile satellite),

different bit rates (several kbit/s to several Mbit/s) and

different system technologies (TDMA, CDMA, FDMA) or

system concepts (GSM, DECT, IS-54, IS-95, UMTS)

existing or conceived. Since the channel modeling is

performed in equivalent low-pass (ELP) signal domain,

processing of complex signals is required.

The theoretical background of the model is given in

Sections II and III. A general outline of the MATLAB

program and some illustrative MATLAB displays of the

output signal under given input signal and channel

conditions are presented in Section IV. Details of the

MATLAB implementation are not considered in this

paper.

II. THE FIR FILTER CHANNEL MODEL

A wideband (dispersive) multipath radio channel is

generally characterised in complex equivalent low-pass

signal domain by a time-variant FIR filter, implemented as

a tapped delay line with K complex time-variant tap

coefficients h tk ( ) , k K= −0 1 1, ,..., , as shown in Figure 1.
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Figure 1: Tapped delay line presentation of a wideband

multipath radio channel.

The channel input and output signals are x t( ) and y t( ) ,

respectively. For some modulation schemes (e.g. binary

phase-shift keying, BPSK), x t( ) can be chosen real,

whereas the tap coefficients h tk ( )  and thus y t( )  are

generally complex. The unit tap delay of the model is



denoted ∆τ , which must be an integer multiple of the

sampling interval Ts  of the simulation system (often

∆τ = Ts ). The number of taps K should be chosen such that

( )K −1 ∆τ  is equal to or larger than the maximum

anticipated delay spread of the radio channel to be

simulated.

The tap delays need not necessarily be uniformly

spaced. For example, in the GSM TU (Typical Urban) six

tap channel model the sampling interval is 0.1 µs and the

tap delays are at 0, 0.2, 0.5, 1.6, 2.3 and 5.0 µs [1]. A tap

delay model with non-uniform tap delay spacing

corresponds to the uniformly spaced tap delay model

shown in Figure 1 where a number of taps are simply set to

zero.

According to the theory of communications, the

following important relationship must be satisfied in order

to avoid aliasing and unrecoverable signal distortion in the

A/D and D/A conversion processes [2]

∆τ ≤ 1

2B
(1)

where B is the bandwidth of the equivalent low-pass signal

x t( ). To conclude, the signal or system bandwidth and

maximum delay spread together determine the number of

taps required in the channel model.

It should be noted that the time-variant tap coefficients

(tap gains) h tk ( )  are complex. The relationship between a

real rf signal s t( )  and the corresponding complex

equivalent low-pass signal (also called the complex

envelope) u t( )  is [2]

s t u t j f tc( ) Re ( )exp( )= 2π (2)

where fc  is the rf carrier frequency. If x t( ) is the ELP

input signal, the corresponding ELP output signal y t( )

from the wideband radio channel characterised by its time-

variant ELP impulse response h t( , )τ  is obtained through

convolution

y t h t x t d h t x t kk
k

K

( ) ( , ) ( ) ( ) ( )= − = −
=

−

−∞

∞

∑]τ τ τ τ∆
0

1

(3)

where the expression on the right hand side can be

interpreted as the sum of delayed and time-varyingly

weighted replicas of the signal x t( ).

III. MODELLING THE TIME-VARIANT TAP
GAIN (“TAP FADING”)

In discrete time simulation programs, the tap coefficients

h tk ( )  are not time continuous, but are instead sequences of

complex samples hk i,

h t h t iTk k i s
i

( ) ( ),= −
=−∞

∞

∑ δ (4)

where δ ( )⋅  denotes the Dirac impulse function.

Since the time constant characterising the channel

variation in time domain is orders of magnitude larger than

the channel time spread in delay domain (even in high-

speed terrestrial mobile radio systems), the tap coefficient

samples hk i,  need to be updated very infrequently in terms

of Ts . Between successive calculated updates, spaced by

∆T , the tap coefficient samples may be interpolated

utilising some suitable interpolation algorithm. The upper

limit of ∆T  is set by the maximum Doppler shift expected

in the channel (see below). Like all time or frequency

variables, ∆T  must be specified in terms of Ts  in the

MATLAB simulation model.

The Doppler frequency of a propagation path, ν , is

related to the linear velocity of motion of the mobile

station V, the rf wavelength λ , and the angle α  between

the direction of motion and the received path, in the

following way (see Figure 2)

ν
λ

α= V
cos (5)

α
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Figure 2: Example for calculating Doppler frequency of a

propagation path.



According to the Nyquist sampling criterion, the

interval between updates ∆T  should be less than the

inverse of the total Doppler spread

∆T
V

< =1

2 2ν
λ

max

(6)

where ν max  is the maximum possible Doppler shift, equal

to V λ . When there are several unresolved paths

contributing to the actual fading of a tap, there are several

Doppler frequencies involved. Since these Doppler shifts

can not be observed directly, we have to resort to the

Doppler spread function sk ( )ν , which is obtained through

Fourier transform of h tk ( )

s h t j t dtk k

T

( ) ( )exp( )ν πν= −] 2
0

(7)

In software simulation, the time dependent fading

process of the k:th tap (or the corresponding time domain

samples hk i, ) can be generated in several ways. In this

model, a novel approach is used. A number Mk  of phasors

are generated, where each phasor (representing a

propagation path) is rotating in complex plane at a Doppler

frequency ν km  drawn from a specified Doppler distribution

confined to the range −V λ  ... V λ . The tap fading as a

function of time is simply the complex sum of these

phasors,

h t A j tk km km km
m

Mk

( ) exp= +
=

∑ 2
1

πν φE J (8)

where the random variables Akm  and φ km  are the phasor

amplitudes and initial phasor phases, respectively. The

initial phasor phases are essential in order to avoid

complete phase alignment between the rotating phasors at

time instant t = 0, and can be randomly chosen from the

uniform distribution ( ... )0 2π .

The choice of distribution(s) for Akm , however, is a non-

trivial matter. In the MATLAB simulations presented at

the end of the paper, the Mk  amplitudes of the k:th tap are

chosen equal, which to a close approximation results in a

Rayleigh envelope distribution of the composite tap fading

process when Mk  is larger than, say, 6. On the other hand,

a specular (or Rician) tap, for instance in case of a line-of-

sight (LOS) channel the tap at k = 0, is obtained by

choosing Ak0  much larger than the remaining phasors Akm ,

m ≠ 0 . This tap model is versatile since also other tap

distributions can be generated, if required.

The mean power of the k:th tap is equal to the sum of

the square of the phasor amplitudes

P Ak km
m

Mk

=
=

∑ 2

1

(9)

where, in a typical wideband radio channel, it can be

assumed that the mean power decreases exponentially with

increasing tap number. The mean tap powers of the six

taps in the GSM TU channel model mentioned in Section

II are -3, 0, -2, -6, -8 and -10 dB, respectively.

The Doppler spectrum of the k:th tap simply consists of

the power localised at the Doppler frequencies allocated to

the Mk  phasors

S s Ak k km km
m

Mk

( ) ( ) ( )ν ν δ ν ν= = −
=

∑2 2

1

. (10)

Often, however, the Doppler spectrum is assumed to be of

the form [3]

S
P

k
k( )

max
max

ν

πν ν
ν

=

−
)
+*

,
.-1

2
(11)

for − < <ν ν νmax max  and zero otherwise. This spectrum is

based on the assumption that the delayed and reflected or

scattered signals arrive at the mobile receiver from all

directions with equal probability. Theoretically, the

Doppler shifts of the Mk  unresolvable propagation paths of

the k:th tap should be randomly chosen from the U-formed

distribution of (11), to be exact, but are chosen in the

MATLAB simulation program for simplicity from the

uniform distribution −V Vλ λ...E J without causing

significant changes in the average fading behaviour. The

assumption leading to (11) is, in practice, rarely fulfilled

anyway.

 Finally, the Mk  phasor amplitudes of the k:th tap are

obtained from (9) once the mean tap powers and amplitude

distribution(s) are specified. In case of equal amplitudes

we simply obtain



A P Mkm k k= . (12)

IV. THE MATLAB CHANNEL MODEL

In the MATLAB channel model, the computational

routines in the model are written in C programming

language in order to speed up the computations. The built-

in capability of MATLAB to exploit C language routines is

utilised in form of the mexFunction interface between

MATLAB and C code.

The channel model comprises two separate MATLAB

mex-files. The file tapset.mex sets the initial values for the

amplitudes Akm , initial phases φ km  and Doppler frequencies

ν km  of the phasors employed for generating the tap

coefficients. These values are used at the beginning of the

simulation.

The file wchannel.mex takes care of the actual channel

modelling. Samples are taken from the input signal x t( ),

these samples are then processed utilising the tap

coefficients after the predetermined update interval. Since

the processing is performed in blocks of a specific length,

a signal split up into a set of blocks may contain

discontinuities at the block boundaries, due to the memory

of the channel. The program is constructed in such a way

that this is avoided.

To demonstrate the operation of the MATLAB channel

model, the GSM TU (Typical Urban) six tap channel

model mentioned in Section II was employed in a test

simulation. In this model, the tap delays are at 0, 0.2, 0.5,

1.6, 2.3 and 5.0 µs [1], which leads to a reasonable choice

for sampling interval of Ts = 0 1.  µs. The corresponding tap

mean powers are -3, 0, -2, -6, -8 and -10 dB. In order to

obtain approximately Rayleigh fading, 5 phasors were

chosen for each tap. In this example, for illustrative

purpose, a very high relative maximum Doppler frequency

of 0 0002. Ts  was chosen, requiring a small tap updating

interval, in this case 32Ts .

In Figure 3, the complex output signal y t( ) , in form of

real and imaginary parts, is displayed for the case when the

input signal x t( ) is a constant, real signal of unit

amplitude.

Figure 4 shows the impulse response of the simulated

channel as a function of time. Each tap fades

independently with an approximately Rayleigh distributed

envelope. A (narrowband) complex summation of the tap

coefficients without taking into account the (wideband)

signal dispersion in form of tap delays results in a similar

waveform as that shown in Figure 3.
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Figure 3: GSM channel simulation output with constant

input signal.
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Figure 4: Impulse response of the simulated GSM channel

as a function of time (in units of 128 sample intervals).


