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Abstract

Diversity reception is a widely used technique in radio communications to alleviate signal
fading due to complex propagation environments such as downtown areas in large cities.
This study concentrates on the design problem of an antenna array which can be used in
a base station of a radio communication system to provide diversity. A design method for
antenna arrays is introduced, which results in exactly the same power pattern but dissimilar
phase patterns for the array. Radio signal reception using different phase pattern provides
possibility to reduce destructive interference of incoming plane waves while the unchanging
power pattern quarantees the fulfilment of original cell and network planning. The developed
theory is rather general and can be applied for linear, planar and 3-dimensional array design.
The well-known space diversity technique is shown to be a simple specific solution of the
introduced method.

1 Introduction

There exist many techniques which can be utilized in order to reduce fading problem in mobile
communication systems. This paper is focused on design method of diversity arrays that can be
used as base station antennas in mobile telecommunication networks. Since the diversity is a
property of a group of antenna elements rather than a single antenna element one can easily list
the parameters allowing the existence of diversity reception: amplitude and phase excitations,
physical locations and polarizations of the antenna elements. In the following analysis we neglect
the polarization of the antenna elements and furthermore polarization diversity, because its
implementation is quite straightforward procedure and does not seem to provide interesting
prospects for further generalizations. Instead, the emphasis of the presented analysis is on
phase diversity properties of antenna arrays. For every imaginable array geometry of two or
more antenna elements there are excitations which correspond to exactly the same amplitude



2 Theory

Let us study diversity properties of two similar antenna elements. In general the far-field radi-
ation due to a two-element antenna array can be presented in the following form

E(r) = E0(r)fAF(θ) (1)

where E0(r) is the radiated electric field arising from the element located at the origin whereas
fAF(θ) denotes the array factor of two similar antennas. It does not affect the polarization of
the radiated field whereas it may have a great effect on the amplitude and phase properties of
the array. For two-element arrays the array factor can be written as

fAF(θ) = 1 + I1e
j(kd1 cos θ+δ1) (2)

where the first term is due to the antenna element at the origin and the second term corresponds
to the other element whose excitation is determined by the current ratio I1 and the phase
difference coefficient δ1 and is situated at a distance d1 from the origin. k denotes the free space
wave-number

k =
2π
λ0
= ω

√
ε0µ0 (3)

The array factor has three freely choosable parameters which can be used when designing the
radiation properties of the array. The current and phase differences are electrically tunable and
the tuning can be adaptively implemented with a digital signal processor. The element separa-
tion d1 is, in practice, a fixed constant, which however can be considered as a free parameter at
the design stage of the array.

2.1 Radiation properties of a two-element array

The radiation pattern of the array is given by

|fAF(θ)| =
√
1 + 2I1 cos(kd1 cos θ + δ1) + I2

1 (4)

which is proportional to electric field. The power-normalized pattern or the directivity function
of the array can be expressed as



However, if two or more plane waves are received simultaneously the phase pattern of an antenna
together with the power pattern determine how the complex sum of the incoming waves is formed.
Two extreme cases are either a constructive or destructive combination of the incoming waves.
Mobile telecommunication networks in densely built urban cities form a radio channel where
base station antennas may receive hundreds of plane waves simultaneously due to the multipath
propagation of radio waves. Furthermore, the base station reception and transmission should
be nominally insensitive to the location of a mobile terminal which implies that the radiation
pattern of a BS antenna should be relatively omnidirectional in the horizontal plane. This
emphasizes the effect of the phase properties of an BS antenna in reception, but not in a strict
deterministic way. The radio channel is changing temporarily due to dynamic variations in the
overall path between the receiving and transmitting radio terminals. In practice, this fluctuation
of the radio channel can not be completely compensated by changing the phase properties of a
receiving BS antenna, since it would require arbitrarily tuneable phase pattern of the antenna,
which cannot be implemented with an array of finite number of elements. However, if any
changes in the phase-pattern of a BS antenna can be made, one has possibilities to compensate
temporal variations of the radio channel by choosing between the multiple choices for the phase
pattern. While keeping the radiation pattern of BS antenna constant its varying phase pattern
can be used as a resource to achieve diversity reception to reduce fading effects of narrow
bandwidth radio channels. Naturally, the radiation pattern could also be changed in order to
achieve diversity but from the cellular network point of view this might cause problems, since
the coverage areas of the base stations would also fluctuate in time. Diversity produced by
changing the phase pattern is unconstrained from this drawback.
The technique for simultaneous reception of a mobile terminal transmission with different

phase patterns is called phase diversity to distinguish it from other diversity schemes such as
e.g. space diversity in which two relatively distant antennas are used to simultaneously receive
two uplink signals whose fast fading components are dissimilar. The key issue here is to find
antenna configurations whose phase properties could be controlled without any alteration in
its power pattern. Since a single antenna has well-defined amplitude and phase properties, at
least two similar antennas are needed for phase diversity reception. Let us study the normalized
power pattern of a two-element array (5). If one substitutes the coefficient I1 as

I1 → 1
I1

(7)

the shape of the radiation pattern remains exactly the same. Virtually this means simply that
the real current coefficients of the antenna element are interchanged. However, when doing this,
the phase pattern of the array is transformed into

(f (θ)) −1

(
sin(kd1 cos θ + δ1)

)
(8)



2.2 Space diversity

Let us study two-element phase diversity in the specific case, where the ratio of the current
coefficients tends to infinity. For the radiation and phase patterns one obtains

lim
I1→0

D(θ) = 1, lim
I1→0

arg(fAF(θ)) = 0 (9)

and

lim
I1→∞

D(θ) = 1, lim
I1→∞

arg(fAF(θ)) = kd1 cos θ + δ1 (10)

Physically the limit I1 → 0 means that the element at the distance d1 from the origin is switched
off and the element at the origin is receiving alone. Its radiation and phase patterns are omni-
directional ones. The second case i.e. I1 → ∞ means that the element at the origin is switched
off and the other element is receiving. Likewise in the previous situation its radiation pattern
is omnidirectional. However, its phase properties with respect to the element at the origin are
quite different due to the physical distance, d1, from the phase center at the origin. These
observations lead directly to the well-known space-diversity scheme, in which two antennas are
separately used in reception to eliminate fading dips of radio signal. It is thus nothing but a
special case of the phase diversity technique, where different phase patterns are produced by
separate locations of antennas.

3 General diversity arrays

In the previous section mainly the phase diversity properties of a two-element antenna array
were discussed. The element radiation properties were neglected since array properties are
independent of element characteristics. However, if the elements themselves are arrays having
diversity properties i.e. a diversity array is embedded into a diversity array, one can find easily
controllable antenna arrays whose diversity properties are far more versatile than that of a two-
element array. One can easily construct linear, planar or full 3D-arrays whose phase properties
can be changed in a relatively simple fashion. The element spacing needs not to be constant as
is shown in the next section.

3.1 4-element linear diversity array

The array factor of a four-element diversity array consisting of two subarrays each having two
elements can be written as



result in exactly the same normalized radiation pattern. These are found by selecting I1 from
{a1, a

−1
1 } and I2 from {a2, a

−1
2 } where a1 and a2 are assumed to be positive and greater than

one i.e. a1, a2 > 1 without losing generality.
Hence, the normalized radiation pattern can be expressed as

D(θ) =
1
A
(1 + 2I1 cos(kd1 cos θ + δ1) + I2

1 )(1 + 2I2 cos(kd2 cos θ + δ2) + I2
2 ) (12)

where the normalization constant A is

A = (1 + I2
1 )(1 + I2

2 ) +
2I1(1 + I2

2 ) cos δ1 sin(kd1)
kd1

+
2I2(1 + I2

1 ) cos δ2 sin(kd2)
kd2

+

2I1I2 cos(δ1 − δ2) sin[k(d1 − d2)]
k(d1 − d2)

+
2I1I2 cos(δ1 + δ2) sin[k(d1 + d2)]

k(d1 + d2)
(13)

From the equation above it can be easily seen that the radiation pattern remains the same if
either or both current excitation values I1 or I2 are inverted. The corresponding phase patterns
are found from the equation

arg(fAF(θ)) =

tan−1

(
I1 sin(kd1 cos θ + δ1) + I2 sin(kd2 cos θ + δ2) + I1I2 sin(k(d1 + d2) cos θ + δ1 + δ2)

1 + I1 cos(kd1 cos θ + δ1) + I2 cos(kd2 cos θ + δ2) + I1I2 cos(k(d1 + d2) cos θ + δ1 + δ2)

)

(14)

by selecting values of I1 and I2 as explained above. The result contains two, three or four
element space diversity as specific cases if the extreme cases of excitations I1 → 0 or ∞ and
I2 → 0 or ∞ are investigated.
Figures 8 and 9 show the radiation and phase patterns of four-element linear diversity array,

whose parameters are arbitrarily set to values I1 = 3, δ1 = 0, d1 = 1.3λ, I2 = 5, δ2 = 0 and
d2 = 0.5λ.

3.2 2N-element linear diversity array

In general a linear 2N -element diversity array can be described by the array factor

fAF(θ) =
N∏

1

(1 + Inej(kdn cos θ+δn)), (15)



I = {I1, I2, ...IN}, where In = an or In = a−1
n for all n (17)

In the general case there are 2N different excitation vectors In for the array.
By simple expansion of the array factor it becomes obvious that it is realizable with a linear

array, whose

• current excitations are: {1, I1, I2, ..., IN , InIm
n<m≤N

, InImI�
n<m<�≤N

, ..., I1I2...IN}

• phases are: {0, δ1, δ2, ..., δN , δn + δm
n<m≤N

, ..., δn + δm + δ�
n<m<�≤N

, ..., δ1 + δ2 + ...δN}

• antenna element distances from the origin are:
{0, d1, d2, ..., dN , dn + dm

n<m≤N
, ..., dn + dm + d�

n<m<�≤N
, ..., d1 + d2 + ...dN}

3.3 Planar diversity array

Even more general approach for a diversity array can be presented, if the array elements are
allowed to lie in a two-dimensional plane instead of the one-dimensional line discussed before.
Two vectors are needed to determine a plane in three-dimensional space. Hence let us therefore
define two unit vectors, u1 and u2, which specify the plane of a planar array. If diversity array
elements may be placed freely to this plane, the radiation properties of an 2N -element array can
be described with the array factor

fAF(ur) =
N∏

n=1

(1 + Inej(kur·ρn+δn)), (18)

which indicates that the true locations of the diversity array elements are given by sum combi-
nations of vectors ρn = ρ1nu1+ρ2nu2. Instead of a single angle as before, the array factor is now
a function of unit vector ur, which points towards the observation point. In fact by expanding
of the array factor it can be seen how it corresponds to an array, whose

• current and phase excitations are determined in the same way as in case of 2N -element
linear array

• antenna element locations are specified by:
{0, r1, r2, ..., rN , rn + rm

n<m≤N
, ..., rn + rm + r�

n<m<�≤N
, ..., r1 + r2 + ...rN}

Without losing much generality of the approach, one may limit the element placement to a
rectangular grid hose a es in the follo ing are represented b the orthonormal ectors u and



correspond to the same radiation pattern but dissimilar phase patterns. These phase diversity
excitations are attained by choosing M and L- component amplitude vectors a1 and a2 so that

a1 = {a11, a12, ...a1M}, a2 = {a21, a22, ...a2L}, where a1n, a2n > 1, for all n. (20)

After the values of the base vectors are known, the corresponding current excitation vectors are
defined in the similar way as before such that

I1 = {I11, I12, ...I1M}, I2 = {I21, I22, ...I2L}, where Imn = amn or Imn = a−1
mn for all m and n.

(21)

By expansion of the separable parts of the array factor it can be observed how the grid-line
locations are determined by the grid-spacing parameters d1m and d1� in the similar way as it
was presented for the linear array case.

3.4 3D diversity array

In general, array elements can be situated anywhere in three-dimensional space. The previously
presented approach can be easily generalized to allow this by defining the geometrical space by
a set of three orthonormal unit vectors: u1, u2 and u3. If diversity antenna elements can reside
freely in this space, the radiation patterns of the array are obtained from the array factor

fAF(ur) =
N∏

n=1

[
1 + Inej(kur ·rn+δn)

]
, (22)

where the true antenna element locations are given in the respective way by sum combinations
of vectors rn = r1nu1 + r2nu2 + r3nu3 in arbitrary three-dimensional space. Analogically to the
planar case, the array factor can be factorized, if the antenna elements are located in a grid
with respect to some orthogonal unit vectors: u1, u2 and u3. Therefore the array factor for a
3D grid based diversity antenna of size 2M x 2L x 2K (N = M + L+K) reads

fAF(ur) =
M∏

m=1

[
1 + I1mej(kd1mur ·u1+δ1m)

]
·

L∏
�=1

[
1 + I2�e

j(kd2�ur ·u2+δ2�]
]
·

K∏
k=1

[
1 + I3ke

j(kd3kur ·u3+δ3k ]
]
,

where the grid is defined by the distance paremeters d1m, d2� and d3k. The array has 3(M+L+K)
arbitrary parameters, which can be used to yield up to 2M+L+K phase diversity excitations. The
phase diversity excitations can be obtained by choosing M , L and K- component base vectors
a1, a2 and a3, which will be of the form

a1 = {a11, a12, ...a1M}, a2 = {a21, a22, ...a2L}, a3 = {a31, a32, ...a3K},



to 2N radiation patterns that are exactly the same while the corresponding phase patterns are
dissimilar. The array has 2N + 1 freely choosable parameters - N current coefficients, N phase
constants and the common element spacing d. If the element separation is allowed to vary, there
are at most 3N free parameters while the element number is increased to 2N .
The theory of linear diversity arrays was shown to be easily generalized for two and three

dimensional arrays whose array factors can be factorized similarly as in the one-dimensional
arrays.
The most natural application of this theory is in mobile telecommunications where diversity

reception is needed especially in micro-cell and indoor environments. The use of diversity arrays
provides possibility for realizing a simple but versatile means to alleviate problems arising from
signal interference due to multipath propagation. However, this diversity scheme does not
disturb the conventional network planning utilizing fixed radiation patterns. The widely used
space diversity technique was shown to be a specific case of a two-element phase diversity.
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Figure captions

• Figure 1. A normalized field radiation pattern (linear scale) of a two-element array with
parameters I1 = 4, δ1 = 0 and d1 = 1.2λ.

• Figure 2. Cosine of the phase patterns as function of θ corresponding to excitation in
Figure 1.

• Figure 3. A normalized field radiation pattern of a four-element linear diversity array
defined by parameters I1 = 3, δ1 = 0, d1 = 1.3λ, I2 = 5, δ2 = 0 and d2 = 0.5λ

• Figure 4. Cosine of the phase patterns as function of θ corresponding to excitation in
Figure 3.
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Figure 3.
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