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One way to significantly increase the capacity of the third−generation mobile
communications systems is to employ adaptive antenna array technologies together
with sophisticated signal processing algorithms. From the added value service provider
and operator point of view there are increasing demands for position location methods
of mobile users in wireless systems. The position location information can be utilized,
e.g., in the applications of emergency management and location sensitive billing.

The position locating and tracking of mobile users can be realized by applying antenna
arrays at multiple BSs with adaptive spatial spectrum DOA estimation methods. The
classical and subspace based spatial spectrum estimation methods can be utilized for
the calculation of DOA information of mobile users only in stationary signal scenarios.
Because of the time−varying nature of communications channels the main focus of this
licentiate thesis was directed towards the development of adaptive DOA tracking
methods of mobile users in non−stationary signal scenarios.

First we develop an adaptive method for the convergence parameter for the efficient
tracking of a time−varying manifold of the antenna array. This method can combine
fast convergence speed and low estimation error with low computational complexity
both in the stationary and non−stationary signal scenarios. In the sequel for the similar
framework, a tracker based on a step−by−step updating approach of a reference signal
based CG method was developed for the tracking system. For the class of high−
resolution methods a simplified gradient based approach was developed for the
adaptive tracking of a parameter vector in the noise subspace from a time−varying
eigenstructure. For the same tracking scheme we also developed a control strategy for
noise subspace roots that can alleviate DOA association problem of mobile users
caused by spurious roots. As a final point, the implementation aspects were considered
for the CG−based tracking system. A suitable systolic architecture was proposed by
means of which the computational complexity of the tracking system was furthermore
reduced by an order of a magnitude.
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Adaptiiviset antennit yhdessä kehittyneiden signaalinkäsittelyalgoritmien kanssa
mahdollistavat kapasiteetin kasvattamisen kolmannen sukupolven matkapuhelin−
järjestelmissä. Langattomien järjestelmien mobiilikäyttäjien paikkatiedolle on yhä
suurempaa tarvetta lisäarvopalveluja tarjoavien ja operaattorin kannalta. Paikkatietoa
voidaan käyttää hyväksi mm. hätäpuheluiden paikallistamisessa ja käyttäjien sijaintiin
perustuvassa laskutuksessa.

Käyttäjien paikallistaminen voidaan toteuttaa tukiasemien antennirivistöillä, joissa
adaptiivisilla menetelmillä kayttäjien tulosuuntaa estimoidaan. Muuttumattomassa
tukiaseman signaaliympäristössä tulosuuntia voidaan helposti laskea perinteisillä
keilanmuodostusmenetelmillä tai käyttämällä tarkan erottelukyvyn omaavia
aliavaruuden menetelmiä. Aikariippuvien radiokanavien takia tämän lisensiaattityön
päämääräksi rajattiin adaptiivisten algoritmien kehittäminen käyttäjien tulosuunnan
estimointia varten muuttuvassa signaaliympäristössä.

Tässä työssä kehitimme aluksi käyttäjien tulosuunnan seurantajärjestelmää varten
adaptiivisen menetelmän konvergenssiparametrille. Tämä menetelmä pystyy
saavuttamaan sekä nopean konvergoinnin että alhaisen estimointivirheen muuttuvissa
ja vakiokanavissa. Seuraavaksi käyttäjien tulosuunnan estimoinnissa kehitettiin näyte
kerrallaan päivittyvä referenssisignaalipohjainen CG−menetelmä. Korkean
erottelukyvyn omaavien aliavaruusmenetelmien luokassa kehitettiin yksinkertainen
gradienttimenetelmä ajassa muuttuvan kohina−aliavaruuden seuraamiseen. Samaisessa
järjestelmässä kehitettiin lisäksi myös kontrollistrategia kohina−aliavaruuden juurille,
mikä lievittää virheellisten juurien vaikutusta tulosuunnan estimaattien yhdistämisessä
oikeisiin käyttäjiin. Käyttäjien seurantajäjestelmän laitteistollista toteuttamista varten
tarkasteltiin CG pohjaista järjestelmää. Sopiva systolinen arkkitehtuuri esiteltiin,
minkä avulla seurantasysteemin laskennallista tehokkutta voitiin parantaa.

Avainsanat:
Tulosuunnan estimointi, Seurantajärjestelmät, Aliavaruuden
seuraaminen, Signaalialiavaruuden seuraaaminen, Kohina−
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1. Introduction

In recent years, the cellular communication technology has grown enormously. The

customers from the mobile telephone networks want similar services that exist in the

wireline networks, such as multimedia capabilities and Internet services. This growth

pressure from the customers’ side has compelled to make advances in the

communication technology. This has resulted in that the operators and manufacturers

are continuously searching for methods for improving performance, capacity and

coverage of the mobile communication systems. Therefore, the current research on 3rd

generation mobile systems aims at increasing the system capacity for efficiently

handling the growing group of subscribers. This has resulted in a great amount of work

that has been done on adaptive antenna research in the area of the mobile

communications industry and within the academic world. The current research work is

concentrated on employing multiple antenna elements at the Base Station (BS) and

utilizing adaptive algorithms for multi−user detection, spatial processing of

communication channels and channel parameter tracking [Rap98]. In the user tracking

context the mobility and its management have also become an important part of the

overall system design [Zon97].

Traditionally, several target position locating and tracking problems arise in a number

of different applications [Rap96b]. The location information is useful for navigational

services where the movement of nearby ships is tracked in order to avoid collisions. The

target tracking can be used for airport applications where air traffic controllers keep

track of incoming and outgoing aircrafts for which the radar applications are usually

targeted. The target tracking problem also arises in the design of an optimal route in

transport applications. Tracking systems have been utilized for the position locating and

steering of autonomous vehicles like farm tractors without human control [Rek98].

In a similar way, in cellular applications the location information can be utilized in

numerous different ways. Traffic congestion in busy traffic roads can be monitored by

position locating and tracking of mobile users. Car driving can be assisted furthermore

with fixed terminals installed in the cars that track the position of nearby vehicles

[Abb99]. Also, network operators can bill mobile subscribers based on their location.

The location information of subscribers also enables position dependent advertising.
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Furthermore, target tracking algorithms can be used for assisting beamforming

procedures in order to enhance the quality of a communication link to a mobile user as

depicted as an example in Figure 1 [Zet97]. The system’s capability of finding reliable

estimates for the channel parameters is of great value in beamforming based

applications [Com88].

Different applications set different demands on the accuracy of the position locating

estimation. The Federal Communications Commission (FCC) has risen a requirement

that the position locating of mobile users should be done within an accuracy of 125

meters within 67% of the time. Therefore, the requirements for the development of

efficient algorithms and methods for tracking the location and Direction−of−Arrival

(DOA) information of targets are evidently justified.

Figure 1 Illustration of a base station antenna working in the beamforming mode in a

rural area

In this thesis, we concentrate on developing efficient, robust and realizable algorithms

for mobile user tracking systems. We concentrate especially on developing various

algorithms for user tracking systems. The interest is not directed towards network

related issues. The DOA estimation of mobile users in a stationary signal scenario can

be dealt with in a more straightforward way. Therefore, the main focus is on problems

that arise in non−stationary channels where efficient adaptive parameter estimation

schemes are required.
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Therefore, in the design of the tracking system the following three aspects should be

considered and are addressed in this thesis, namely:

1: The system should have fast tracking capability

2: The system should have low parameter estimation error

3: The system should be of low complexity

The thesis is organized in the following way. To start with, in Chapter 2 the research

work done in the area of adaptive antennas will be discussed. In Section 2.1 the

characteristics of the communication channels are briefly presented. In Section 2.2 the

motivations of making use of adaptive antenna arrays in mobile communication systems

are identified and some of their implications are addressed. Section 2.3 gives a brief

survey of some of today’s position locating systems and especially explains how the

adaptive arrays at the BS site can be utilized for position locating of mobile users. In

Section 2.4 the mathematical foundation is constructed for analyzing the linear antenna

arrays that will act as a basis for the tracking algorithm development. As a result of the

presented signal model, two categories for the correlation matrix based trackers can be

identified, a spatially structured approach and an eigenstructure based approach. In

Section 2.5 the stationary DOA estimation methods, with the special focus on

eigenstructure based high−resolution methods, are reviewed from the literature for

locating mobile users in the stationary signal scenario. In Section 2.6 we focus on

adaptive DOA estimation methods for continuous tracking of mobile users. For the

spatially structured methods a gradient based tracker and a Conjugate Gradients (CG)

based tracker are developed for tracking a time−varying manifold of the antenna array.

Furthermore, an adaptive gradient based approach is developed for the adaptive tracking

of the time−varying eigenstructure. Chapter 3 summarizes the publications on mobile

user tracking, together with the identification of the main results. Finally, Chapter 4

draws the conclusions with the main contributions.
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2. Review of Previous Work

2.1 Communication Channels

The communication systems always comprise atransmitter site, a receiver siteand a

communication channelbetween them. The present understanding of communication

channels is rather mature [Sil84][Pah95]. The characteristics of the radio

communication channels are needed in the design of high−capacity communication

systems. The radio propagation environment can be typically characterized by

numerous propagation mechanisms such as reflection, refraction and scattering of radio

waves. However, the complicated time−varying channel can be adequately modeled

mathematically using the impulse response approach [Has93]. Modeled or measured

communication channels have been typically utilized as a design criterion in the

development of communication systems.

The most important signal propagation mechanism is themultipath fadingas illustrated

in Figure 2. The multipath phenomenon arises from the fact that different signal

components propagate along slightly different paths. The transmitted signal is often

reflected or refracted from the surrounding buildings or from other physical structures.

The fading is a time−varying phenomenon which causes fluctuations in the signal

power. Depending on the relative phase values, the signal components may add together

either constructively or destructively causing a strong signal or deep fades to abruptly

appear in the signal power [Has93]. Depending on the rapidity of the underlying fading

processes these fading phenomena can be classified into slow fading or fast fading.

The spatial and temporalcorrelation properties of a typical multipath fading channel

have been investigated through the measurements of an 8−element adaptive antenna

array at a 2.154 GHz range outdoor radio channel by the authors in [Kar98]. Many

authors have explored the correlation properties of the multipath channels, for example

Rappaportet al. in [Rap91] and Dossiet al. in [Dos96]. However, the correlation

research work here has been refined by taking into account the complex valued taps of

the adaptive antenna array. The correlation properties of multipath signals are important

when analyzing the performance of different diversity reception schemes.
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Figure 2 Illustration of a communication system comprising a transmitter (at the base

station), a receiver (at the mobile unit) and the multipath fading channel with a direct

path and two indirect (reflected) paths

The performance and reliability of communication systems may be degraded unless the

deleterious effects of the multipath propagation are taken into account. The multipath

propagation generates InterSymbol Interference (ISI) in the time domain, the effect of

which can be efficiently mitigated through adaptive channel equalization [Qur85].

Diversity schemes with adaptive antenna arrays have also been successfully applied for

mitigating the harmful effects of the multipath fading.

The Co−Channel Interference(CCI) is one of the most prohibiting factors restricting

better performance gains in present communications systems. The CCI occurs as signals

of the same carrier frequency is received from two different transmitters. The influence

of CCI on Time Division Multiple Access (TDMA) systems and Code Division

Multiple Access (CDMA) systems is quite different [Rap96a][Vit95]. In TDMA based

systems CCI mainly arises from adjoining cells whereas in CDMA based systems CCI

originates from the current cell and adjoining cells and, therefore, is spatially more

uniformly distributed. In conclusion, the locating of co−channel interference sources

will be easier in TDMA based systems with the adaptive tracking algorithms.
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2.2 Adaptive Antenna Arrays

2.2.1 Single−Antenna Element Systems

Radio antennas are devices which are used to couple the electromagnetic energy

received in certain frequency ranges to a suitable physical medium like coaxial cable or

fiber. The most common antenna structure for wireless communication systems is the

dipole antenna. The dipole antenna radiates uniformly for the environment having an

omnidirectional radiation pattern. Therefore, a large amount of energy is lost when the

transmitted signal reaches the desired user. The desired user can only be reached by

increasing the signal power. Evidently, this kind of omnidirectional property wastes

transmitter power and radio spectrum. In addition, interference from adjoining cells can

directly couple into the receiver [Ala92]. Therefore, in order to reduce the interference

problem antennas with certain fixed transmission and reception directions have been

constructed. This has resulted in antenna structures having the directionality property.

In sectored antenna systems directional antennas are used to cover the whole cell area.

Directional antennas are commonly used to cover part of the radiation pattern of the

omnidirectional antennas, usually 60 or 120 degrees which can result in a significant

increase in the antenna gain.

2.2.2 Diversity Systems

One of the means to significantly increase the capacity of future telecommunication

systems is to employ adaptive antenna array technologies. This concept is based on

adding multiple antenna elements resulting in more sensitive receiving antenna

structures. At present, the most common antenna array structure is thephased antenna

array which can be configured in many ways and can be directly incorporated into the

BS [Ala92]. By applying more antennas as such does not improve the performance and

intelligence of the communication system. Therefore, diversity systems have been

introduced to improve the effectiveness of communication systems [Win92b]. The

diversity systems, in addition tospatial diversity, can be based onfrequency, time or

polarization diversityschemes [Pro85]. Spatial diversity can be implemented using

spatially distributed antenna elements and temporal diversity exists in the radio channel

in the form of multipath propagation [Has93]. During propagation the electromagnetic
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wave includes electric field and magnetic field components which are used to define the

horizontal and vertical polarization of signal. Polarization diversity systems extract the

two available information bearing signals in two cross−polarized branches [Tur95].

A wide variety of diversity combining schemes exist which offer different performance

gains [Pro85].Switched diversitysystems make switching decision among the elements

so that an antenna element having the best signal will be selected. TheMaximum Ratio

Combining (MRC) method combats the Rayleigh fading of the desired signal only

[Sal94]. In this method the received signal in each element is weighted according to the

Signal−to−Noise Ratio (SNR) of each diversity branch. TheOptimum Combining(OC)

method combats the Rayleigh fading of the desired signal and simultaneously

suppresses interfering signals [Sal94]. In another approach, instead of totally nulling of

an interfering signal the interference power is reduced. TheMean Square Error(MSE)

[Bal92] combiner does not force the interference power to zero but merely reduces the

power of an interferer closer to the noise level so that the effect of the interferer can be

subtracted. These diversity systems have been mostly applied in the uplink case, i.e.,

from the mobile unit to the BS, due to the fact that the BS can be more easily equipped

with the hardware required for the computations.

2.2.3 Smart Antenna Systems

The smart antennaconcept is based on simultaneous utilization of multiple antenna

elements with the sophisticated Digital Signal Processing (DSP) algorithms [Raz99].

The present software radio architecture with smart antenna technology can provide a

potential approach for wireless communication due to the presence of sufficiently

powerful general purpose processors, digital signal processors and beamforming based

signal processing algorithms. Smart antennas have a spatial discrimination capability

because they can follow changes in the signal environment and react accordingly by

appropriately adjusting the beam pattern of the antenna array as shown in Figure 3.

According to the way these beam patterns are employed, smart antenna systems can be

basically divided into two different groups.Switched antenna systemsmake use of

preselected beam patterns with fixed directions and gains whileadaptive arrayshave

full control over the formation of the beam patterns [Com88].
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Figure 3 Illustration of beamforming procedures where the beams are established in

the desired signal direction and nulls in the interference signal directions

2.2.4 Smart Antenna Systems over Single−Antenna Element Systems

Smart antennas can offer substantial increase in capacity in interference limited

communication systems [Win92a]. The main advantage of smart antennas arises from

the possibility to suppress the CCI of other users in the same cell or from users in the

adjoining cells. The beam pattern is directed towards the desired user, while at the

direction of the interfering signals signal nulls are placed. However, there must exist

enough spatial separation between the desired and interfering signal sources for them to

be resolved. However, the spatial separation problem can be mitigated by multipath

propagation in frequency−selective channels. If the control of signal nulls can be

efficiently executed in an adaptive way the high interference signal scenario becomes

much more profitable for the adaptive antennas because they can gain relatively much

more in relation to the antennas in switched beam systems or the sectored antennas in a

conventional communication system. This spatial directivity enables the adaptive

antennas to utilize the limited radio spectrum much more efficiently.

In areas of high traffic density, communication channels are already crowded due to the

rapid growth of the number of mobile users. This has traditionally resulted in the cell

splitting procedure in order to maintain an acceptable service level for all the mobile
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subscribers. However, this is expensive, thus placing the emphasis in the system design

on the efficient reuse of frequencies.

By suitably combining the available signal power from the antenna elements, an

increased gain can be achieved in the desired signal direction [Ala92]. However, this

requires adaptive beam steering and interference nulling capability. The higher gain

makes it possible to enlarge the coverage area of cells. The narrow beampointing

property at the BS makes it possible for mobile phones to communicate at a reduced

power level. This could considerably save the lifetime of the batteries in the mobile

handset.

Spatial diversity reception enables mitigation of themultipath fading[Pro85]. Multipath

combining schemes with antenna arrays reduce the delay spread of the channel allowing

higher bit rate services to be deployed.
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2.3 Position Locating Systems

In this section, we briefly review the techniques behind the position locating systems.

There are a number of satellite based position locating systems in the world, the Global

Positioning System (GPS), Qualcomm’s OmniTRACS® System for the transportation

industry from the USA and the GLObal NAvigation Satellite System (GLONASS) from

Russia. GPS is the most well−known and popular system for locating users’ terminals

[Owe95]. This is due to the worldwide availability, reasonable low cost of GPS

terminals and the high accuracy of position location estimates. Standard GPS receivers

can achieve a horizontal position accuracy of 100 meters within 95% of time whereas

the differential and military receivers can even achieve the accuracy of a few meters

fulfilling the FCC’s requirements. In wireless applications the GPS receivers can be

integrated inside the mobile unit. However, this may cause problems because of the cost

of receivers, size of the installation and additional power consumption. Furthermore, in

indoor environments and certain tall building and dense foliage terrains can result in the

GPS signal and the associated position location information may not be available all the

time. Consequently, in order to enhance the functionality and practicality of the position

location methods for mobile users, the infrastructure of the existing cellular systems

may be utilized either alone or in conjunction with other position location methods.

The position location methods in wireless communications can be basically categorized

into two different classes. In the first category, the methods based on the direct

measurement of the DOAs at the BS site can be identified. These Direction Finding

(DF) systems utilizes the adaptive antenna arrays together with sophisticated DOA

estimation methods and algorithms. The second category comprises methods based on

the utilization of the Time−of−Arrival (TOA) measuring techniques.

2.3.1 DOA−Based Position Locating Systems

Mobile users can be located when the minimum of two or more DOA estimates are

established at multiple BSs. The position locating results in a trigonometric type of

problem that can be worked out by finding the coordinates from the intersection of two

or more Line−of−Bearings (LOB) where iterative techniques have been commonly

applied as illustrated in Figure 4. The determination of the DOA is realized by an
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adaptive antenna array at the BS in conjunction with sophisticated signal processing

algorithms. The mobile phone can be located when two or more DOA estimates are

established at the antenna arrays of the BS [Rap98]. As more LOBs are utilized the

estimation accuracy improves, but at the cost of increased computational complexity.

DOA−based position locating systems have some inherent problems. One problem is

multipath propagation which is the prevailing phenomenon especially in urban areas.

The estimation of time−varying multipath channels can lead to catastrophic errors in the

DOA estimates. This problem can be alleviated by sorting different multipath

components, i.e., the Line−of−Sight (LOS) component from other later arriving

multipath components with the aid of a channel estimation procedure. As a result, the

target direction can be estimated by utilizing the first arrived multipath component.

However, the DOA estimation procedure cannot be accomplished in the case of Non

Line−of−Sight (NLOS) situations.

Another issue is the audibility problem [Rap96b]. When a mobile user is close to one

BS, it is difficult for other BSs to measure the DOA of the distant mobile user. This is

because the cells are usually designed to have a sufficiently good quality

communication link only in the coverage area of one BS. This is a problem especially in

rural areas where the design is dictated by coverage issues rather than capacity

considerations which are important for the cell design of urban areas.

θ3

θ1 θ2

Figure 4 Locating procedure of a mobile user at the intersection of three LOBs as

drawn from the BSs in the azimuth angle θ1, θ2, and θ3
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2.3.2 TOA−Based Position Locating Systems

The distances in Time−of−Arrival (TOA) systems are computed based on the time

delays of the radio signal replicas propagating from the mobile unit to the BS. The

design of a TOA−based system is complicated by the difficulty of implementing exact

clock synchronization at the BSs and the mobile units. In addition, timestamps must be

inserted into the transmitted messages to be able to calculate the absolute time of the

probing signal from the mobile unit to the BS. Therefore, Time Difference−of−Arrival

(TDOA) systems are used in practice. The TDOA estimation scheme eliminates the

problems that exist in the TOA−based systems, such as the requirement of having clock

synchronization both at the BS and the mobile unit. The TDOA method is based on the

difference in the arrival times at two separate locations. The TDOA problem can be

efficiently solved by using general correlation techniques [Gar92]. In the ideal case, the

mobile phone can be located at the intersection of spheres by utilizing the measurements

of the multiple BSs. This geometrical problem results in a set of nonlinear equations

which can be solved by iterative methods or linearization techniques [Ho93].
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2.4 Signal Models

In this section, the signal model is developed for antenna arrays, which acts as a

mathematical foundation for the later algorithm development. Particularly, the uniform

linear antenna array structure has been chosen for the following investigation. Because

of its mathematical simplicity and tractability the periodic array structure results in a

low computational complexity.

The narrowband modelis an essential assumption in the formulation of signal

processing algorithms for the antenna arrays [Com88]. In the narrowband model, the

bandwidth of the information bearing signal compared to the carrier frequencyf0 is

insignificant. Consequently, the wavelength of the propagating wave can be adequately

characterized byλ=c/f0 wherec is the speed of light. The electromagnetic wave is also

plane and hence this signal model is valid only forfar−field sources. Figure 5 shows the

plane wave of a source impinging on a group ofM isotropicantenna elements. The time

delays between signals impinging on adjacent antenna elements can be modeled using

the phase delay 2πdsin(θ)/λ where d is the inter−element distance.

d M4321 ...

...

θ

Array
normal

  dsin(θ)

θ

Endfire
direction:

Broadside
direction:Point source

Figure 5 Plane wave impinging from a far−field source on the M antenna elements

arranged in the linear array structure

Realistic channels are complex in nature but the complicated time−dependent channels

can be adequately modeled by a linear Finite Impulse Response (FIR) filter model
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[Has93]. The received signal waveform at the antenna array in the absence of multipath

propagation can be expressed by one complex−valued channel tap as

x t = P
k

k=1

K

∑ b
k

t a θ
k
+n t (1)

whereK is the number of users,Pk is the signal power,bk(t) is the transmitted signal

waveform, θk is the DOA measured with respect to the array normal and n(t) is Additive

White Gaussian Noise (AWGN) with varianceσn
2, independent from the transmitted

signals.

With uniform arrays, prohibitive factors in achieving better performance gains are the

grating lobephenomenon, i.e., an aliasing effect of sparsely located antenna elements in

the spatial domain, and themutual couplingeffect, i.e., electric current coupling

between closely located antenna elements [Com88]. Therefore, the half−wavelength

spacing of elements (d=λ/2) has been chosen as a compromise between grating lobe and

mutual coupling effects. Consequently, the normalized antenna response vectora(θk)

can be expressed as

a θ
k
= 1

M
1 exp B j π sin θ

k
w exp B j π M B1 sin θ

k

T

(2)

whereM is the number of antenna elements and the phase delay is parametrized with

respect toθk. This could also be expressed as a function of elevation angle or range to

the target [Sat95].

The sampling of the continuous time signal waveform of Eq. (1) provides sufficient

statistics for signal detection according to Shannon’s sampling theorem. As a result, the

discrete−time baseband signal model is expressed as

x n =A θ s n +n n (3)

whereA(θ) defining thearray manifoldis a parameter matrix which arranges the array
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response vectors as aVandermondematrix A(θ)=[a(θ1), ..., a(θK)], s(n) is a vector

containing the received signal samples ass(n)=[s1(n), ..., sK(n)]T andn(n) is the antenna

noise vector.

In our user tracking application the tracking problem is equivalent to adaptive tracking

of variations in θ where θ=[θ1, ..., θK]T. Therefore, the reminder of the thesis is

concerned with constructing mathematical models for the tracking parameter

estimation.

2.4.1 Spatially Structured Correlation Matrix

The spatially structured correlation matrixis based on the autocorrelation sequence of

the discrete−time stochastic processx(n) and can be defined for an AWGN channel

model as follows:

R=E x n x
H

n =ASA
H

+σ
n

2

I (4)

whereS=E[s(n)s(n)H] is a full−rank covariance matrix of the signalss(n). However,

uncorrelated sources reduce the covariance matrixS into a diagonal form

diag(P1, ..., PK). In this signal model a structured basis has been established where the

ASAH part of the correlation matrix represents thesignal subspace. The complement of

the signal subspace constitutes the noise subspace.

The Wide−Sense Stationary (WSS) discrete−time stochastic processx(n) leads to a

correlation matrix which has a symmetric structure, nonnegative definite property and

Toeplitz structure. The Levinson recursion, as developed in [Hay86] and [Hay89], can

solve in an efficient way the Toeplitz structure of the correlation matrix in Eq. (4),

inside of which the tracking parameter information is embedded.

2.4.2 Eigenstructure Based Correlation Matrix

The Eigenvalue Decomposition (ED) is an important tool for the analysis and design of

tracking systems. The eigenvalues and eigenvectors can be extracted from the
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correlation matrix by applying different factorization techniques based on either the

diagonalization, unitary diagonalization or unitary triangularization techniques [Gol96].

TheSchur decomposition theoremstates that the eigenvalues of the correlation matrixR

appear on the main diagonal after applying an orthogonal similarity transformation

matrix U [Gol96]. Consequently, any positive definiteeigenstructure based correlation

matrix can be expressed as

R= λ
m

2

m=1

M

∑ u
m
u

m

H

(5)

whereum is them:th eigenvector andλm the corresponding eigenvalue. In general, the

eigenvectors are arranged in the order of the respectively decreasing eigenvalues. The

eigenvectorsum (m=1, ..., K) lie in the signal subspace while the remaining eigenvectors

um (m=K+1, ..., M) lie in the noise subspace.

In the matrix notation the eigenstructure based correlation matrix can be expressed as

R=U
s
Λ

s
U

s

H

+U
n
Λ

n
U

n

H

(6)

where the matrixUs contains the desired signal and interfering signal eigenvectors

orthogonal to each other and the matrixΛs contains the signal and interference

eigenvaluesλm (m=1, ..., K) on its diagonal. In a similar way, the matrixUn contains the

orthogonal noise eigenvectors and the matrixΛn contains the noise eigenvaluesλm

(m=K+1, ..., M) on its diagonal. In the ideal case the noise eigenvalues are equal to the

noise power σn
2. 

As a result of this subspace construction, the noise subspace will be the complement of

the signal subspace. As a final point, it should be noted that the respective signal and

noise subspaces created by the eigenstructured based correlation matrix and spatially

structured correlation matrix can be related to each other though a linear transformation

matrix. This is an important observation as the subspace decomposition also provides a

way of finding the tracking parameters.

Page: 16



In conclusion, tracking systems can be basically divided into two different groups

depending on whether the eigenstructure or spatial structure of the correlation matrix is

utilized. This classification is a direct result of the interpretation of the signal model

presented. Furthermore, a group of methods which avoid the computation of the

correlation matrix and instead, operate directly on the received samples can be

identified as a third group.

2.4.3 Sample Correlation Matrix

Practical tracking algorithms based on the spatially structured or eigenstructure based

approaches utilize the available parameter information in the sample correlation matrix

obtained from the antenna array output. The correlation matrix can be estimated using

the Maximum Likelihood (ML) approach [The92]. The joint probability density

function p(X|θ) of identically independently distributed (i.i.d) Gaussian sequence

X = {x(n), n=1, ..., N} with zero mean and correlation R can be expressed as

p X |θ = 2π
BMN ⁄2

Det R
BN⁄2

exp B1
2

tr R
B1

x
n=1

N

∑ n x n
H

(7)

whereN is the number of samples [Sor80]. From this expression it can be deduced that

a sufficient statisticof the correlation matrix estimate is given by the average of outer

products of the vectorx(n) with itself. In the practical algorithms the correlation matrix

is recursively updated through the rank−one update scheme which can be defined as

R̂ n =λ
f
R̂ nB1 + 1Bλ

f
x n x n

H

(8)

where the time−varying nature of the data is taken into account through the forgetting

factor λf. The rank−one update from time instantn−1 to time instantn results in small

changes in the array manifold and eigenstructure. In the stationary signal scenario better

correlation matrix estimates can be obtained with longer observation periods. However,

due to the nonstationarity this is not practical and the estimation must be based on a

short−term observation interval.
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In the exponentially decaying data window the previous correlation matrix estimate is

reduced by the factorλf and the new data vector is influenced by the factor 1−λf. By

selecting a suitable forgetting factor, an accurate correlation matrix estimate can be

obtained. In the stationary signal scenario the rank−one update method results in a

forgetting factorλf of (n−1)/n and an influence factor (1−λf) of 1/n. However, in the

nonstationary signal scenarioλf should be chosen from the range [0, 1]. We can

determine an asymptotic sample length for exponentially decaying window models

where the practical values of λf are close to 1.

The methods based on the direct updating of the covariance matrix are not numerically

stable owing to the squaring operation in the calculation of the outer product in Eq. (8).

Therefore, the methods for directly updating the DOA parameters without the

estimation of the correlation matrix are more effective, thus preferable in practice. The

ED of the correlation matrixR(n) and the Schur decomposition theorem can be related

through theCholesky factorizationor QR factorization[Gol96]. These two approaches

provide a stable way of updating the sample correlation matrix. However, a better

estimate of the sample covariance matrix can be obtained by imposing, for example, the

Toeplitz and periodic constraints [Du92].
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2.5 Stationary DOA Estimation Methods

In this section, a literature review of stationary DOA estimation methods is presented.

The different methods can be categorized according to prior information they utilize

and a model that underlying unknown processes are assumed to generate. Therefore,

these well−known spectrum estimation methods can be basically classified into two

different categories, conventional methods and subspace methods. 

2.5.1 Conventional Methods

The parametric and nonparametric properties characterize algorithms in a group of the

conventional methods. Thenon−parametric methodsare based on theEinstein−

Wiener−Khintchine theorem expressing a relationship between the autocorrelation

sequence of the received signal and its power spectrum by the Fourier transform theory

[Hay89]. These Fourier−based methods are generally applicable for a much wider range

of applications than the other methods. These methods have also the spatial spectral

counterpart when the output power of the antenna array is expressed as a function of the

DOA that is termed as thespatial spectrum P(θ). The output power spectrum of the

classical beamformer, i.e., phase delay−and−sum beamformer can be expressed as

P θ =a
H

θ Ra θ (9)

where the value ofθ that maximizes the output power gives the direction of the desired

user. These methods do not have a very good performance because they do not make

any assumptions about the underlying signal statistics. Therefore, they have poor

resolution capability in theRayleigh criterionsense related to the broadness of the main

beam as dictated by the array parameters. However, these methods work well in the

case of a single signal source scenario. In the case of several users or a multipath

channel, partial power from other users’ signals or from other users’ multipath

components is coupled through the sidelobes of the beamformer into the measured look

directions.

The poor resolution was a problem in the classical beamformer. In Capon’s minimum
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variance method the powera(θ)HRa(θ) is minimized while maintaining unity gain

a(θ)Ha(θ0)=1 in the look directionθ0. This minimization problem can be solved by the

Lagrange multiplier method, transforming the constrained minimization problem into

an unconstrained one. As a result of the minimization, the output power spectrum in

Capon’s beamformer is given by

P θ = 1

a
H

θ R
B1

a θ
(10)

Capon’s minimum variance method has a much better resolution capability than the

classical beamformer. However, correlated interfering signals may cause the

cancellation of the desired signal. In addition, a computationally expensive matrix

inversion is needed in the calculation of the spatial spectrum.

Parametric methodsfocus on the parameters of the model. The methods falling into this

class comprise the AutoRegressive (AR), Moving Average (MA), AutoRegressive

Moving Average (ARMA) and Prony methods [The92]. In the AR, MA and ARMA

models the stochastic discrete−time processes are modeled by the rational transfer

function model. On the other hand, the Prony method is based on the modeling of

signals by the linear combination of exponentials that can be used to approximate

ARMA models [The92]. The original input processx(n) can be generated by applying

an innovation process, e.g., a white noise process with varianceσn
2 [Hay89]. The output

power spectrum of the ARMA model is expressed as

P θ =σ
n

2 w
AR

H

a θ

w
MA

H

a θ
(11)

where wAR and wMA are the AR and MA model coefficients, respectively.

2.5.2 Subspace Methods

The majority of the recent research work in the field of spectrum estimation has focused

on high−resolutionsubspace methods for DOA and frequency estimation [Mar89]. The
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strength of these methods stem from their resolution capability. Two point sources can

be separated in case of sufficient SNR which is the well−known Rayleigh criterion. The

high−resolution or super−resolution capability is defined to be a limit beyond the

Rayleigh criterion. Methods that are based on ED can achieve high resolution because

their resolution capability is not restricted by SNR, rather by the number of available

samples N.

Numerous different algorithms can be found in this category. Model based high−

resolution methods realize the computationally expensive ED or Singular Value

Decomposition (SVD) [Gol96]. The vast majority of the methods that can be found in

this class are the statistical Maximum Likelihood (ML), MUltiple SIgnal Classification

(MUSIC), the Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT), Minimum Norm (MN) and Weighted Subspace Fitting (WSF) methods.

The optimum procedure for finding DOA estimates is through the ML approach. The

ML solution can be derived using eitherstochasticor deterministicapproaches [The92].

In general, the ML solution results in a multidimensional search problem. The problem

can be solved by applying the methods of general optimization techniques, for example,

Gauss−Newton or gradient methods [Sor80]. The ML method tends to be

computationally expensive and the convergence of the iterative algorithms is not

guaranteed. Therefore, the ML approach may not be practical for DOA−based

estimation and tracking unless simplifications are done in the algorithm development

[Sat95]. However, a promising approach for solving the ML problem in practical ways

is by the Expectation−Maximization (EM) algorithm [Fed88] or faster converging

Space Alternating Generalized EM (SAGE) algorithm [Fes94]. The EM as well as

SAGE algorithm decouple the parameter estimation problem into separate simpler

optimization problems.

The original work contributing to the area of subspace methods was the introduction of

the Pisarenko method [Sto88]. This method is based on finding a minimum eigenvector  

qM corresponding to a minimum eigenvalueσM of the correlation matrixR. This

construction causes signal eigenvector components of theUs to be orthogonal to the

minimum eigenvector. According to the theorem roots of the minimum eigenvectorqM

are given by a root expressionzm = rkexp[−jπsin(θm)] (m=1, ..., M) from which theK

Page: 21



roots closest to the unit circle provide the final DOA estimates.

The major improvement to the performance shortcomings of the Pisarenko method was

the introduction of the MUSIC method. The MUSIC algorithm is a well−known high−

resolution method for the detection and localization of signal sources and the method

was originally proposed by Schmidt [Sch86]. The resolution capability of the MUSIC

method has been analyzed in [Sto90]. The spatial spectrum function of the MUSIC

method can be defined as

P θ = 1

a
H

θ U
n

2 (12)

The DOA parameterθ is obtained from the value of the parameter vectora(θ) which

maximizes the spectrum expression of Eq. (12). The MUSIC method can be applied to

arrays of arbitrary geometry for estimating azimuth angles, elevation angles and

polarization of the incoming signal. However, this generality causes drawbacks since

the method is sensitive to deviations in the array parameters. Therefore, the method

must be calibrated and a few improvements have been suggested by Tsenget al. in

[Tse95]. From the algorithmic point of view the MUSIC method is computationally

expensive which deteriorates its implementation possibilities for real−time applications.

However, the MUSIC method provides better performance than the Pisarenko method.

An improved version of the MUSIC algorithm is the computationally more efficient

root−MUSIC method, originally developed by Barabell in [Bar83] whereas its

performance has been analyzed by Raoet al. in [Rao89]. The algorithm involves a

root−finding procedure and, therefore, can only be applied to periodic arrays [Dow96].

The ESPRIT algorithm is a very close relative to the MUSIC algorithm and it was

developed by Royet al. [Roy89]. This computationally efficient method utilizes the

rotational invariance property of the underlying signal subspaces which can be obtained

by the translational invariance of the antenna arrays. The desired DOA estimates can be

directly calculated from the eigenvalues. As a result, the computationally costly search

procedure and the storage requirements of the MUSIC algorithms can be relaxed. The

method partially overcomes the problem of array calibration, a difficulty in the MUSIC

algorithm, but the offset between antenna pairs must be known exactly. The efficient
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and practical way to solve the ESPRIT algorithm is using the TLS−ESPRIT method

whose performance has been investigated by Ottersten et al. in [Ott91].

The MUSIC and ESPRIT methods fail to work properly in the presence of multipath

propagation due to the collapse in the rank of the signal correlation matrixS. As a

remedy,Spatial Smoothing(SS) techniques have been presented, first introduced by

Evanset al. in the context of array processing [Eva82]. In this method the correlation

matrix is pre−modified asR = ½(Rf + Rb) where Rf and Rb are the translational

invariant forward and backward defined correlation matrices that restore a collapse in

the rank with the degrees of freedom reduced to 2M/3 [Xu94].

The MN procedure was originally proposed by Kumaresan and Tufts in [Kum83]. The

method is similar to the Pisarenko method in the sense that a single vectorw of the

noise subspace is constructed. The spectrum function in the MN approach is given by

P θ = 1

a
H

θ w
2 (13)

where the vector w is defined in the following way:

min
w

w
H

w subject toU
s

H

w=0 and w
H

e
1
=1 (14)

wheree1 has the unity value as the first element of the vector and is zero elsewhere.

This represents the minimization of the squared magnitude ||w||2 subject to two

constraints: the vectorw belongs to the noise subspace and the first component of the

vectorw has the unity value. These constraints effectively break noise subspace roots

down into two different groups: a set of signal roots lying on the unit circle and a set of

spurious roots uniformly distributed inside the unit circle.

The WSF method is a member of the same class of subspace fitting algorithms as the

deterministic ML method [Vib91]. The minimization criterion function for the WSF

method can be expressed asθ = argmin trace{PnEHE}, where Pn is a noise subspace

projection matrix andE is a suitably defined matrix. In the WSF method the matrixE is
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chosen asUs(Λs−σ0
2I )1/2 [The92]. Most of the subspace algorithms can be cast into a

similar framework by defining a suitable matrix E.

2.5.3 Conventional Methods over Subspace Methods

In this section, most well−known methods for DOA estimation in the stationary signal

scenario were reviewed. The parametric methods have an advantage of being simple

and efficient to implement but they perform drastically worse in multipath channels.

The high−resolution methods have better dynamic range and superior resolution

capability but they also perform poorly when the signals are correlated. The high−

resolution subspace methods require an estimate for the sample correlation matrix by

means of which the respective signal or noise subspaces are established. However, the

ED is expensive to compute and difficult to update. Therefore, these methods can only

be applied for the accurate DOA estimation of stationary signal sources. In addition, the

subspace algorithms are often exploited as a periodic estimation procedure of array

parameters like DOAs θk and powers Pk.

Most of the subspace methods and parametric methods require the knowledge of the

number of incident signal sources through the statistical model order estimation

methods. These methods comprise theFinal Prediction Error (FPE), Akaike´s

Information theoretic Criterion(AIC) andMinimum Description Length(MDL) that are

based on counting the number of occurring smallest eigenvalues [Hay89]. It was shown

in [Xu94] that the SS technique applied for the multipath channels complicates the

model order estimation procedure since the penalty terms associated with these criteria

need to be modified accordingly.

Table 1 Comparison of conventional and subspace based approaches

Conventional Methods Subspace Methods

Advantages 1. Low computational complexity 1. High−resolution property

Disadvantages

1. Multipath channels and multiple users

result in performance losses

2. Parametric methods require the

determination of the model order

1. Subspace decomposition is expensive

to establish

2. Most subspace methods require  the

determination of the model order
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Table 1 summarizes some of the main properties discussed of the methods presented for

DOA estimation. Much of the recent research related to these spectrum estimation

methods has concentrated on finding fast algorithms for array beamforming and

efficient implementation structures of the subspace based high−resolution algorithms.

The adaptive DOA estimation algorithms, being the topic of Section 2.6, are targeted at

direct tracking of a time−varying eigenstructure or array manifold of the correlation

matrix.
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2.6 Nonstationary DOA Estimation Methods

The requirements for well−designed tracking schemes arise especially in the case of

non−stationary signal scenarios where computationally efficient adaptive algorithms are

needed for the DOA−based parameter tracking. Tracking systems can be basically

classified into two different groups,spatially structured methodsutilizing an array

manifold of the spatially structured correlation matrix andeigenstructure based

methods utilizing the eigenstructure of the correlation matrix.

The tracking systems can be furthermore presented as depicted in the block diagram of

Figure 6. The tracking unit is responsible for tracking time−varying parameter

information from the received antenna response vectorx(n) through a parameter matrix

W(n). The DOA unit is responsible for estimating the DOA parameters

θ(n)=[θ1(n) ... θK(n)]T from the parameter matrixW(n)=[w1(n) ... wK(n)]. Depending on

the specific tracking or DOA extraction criterion, different realizations can be derived

for these units.

θθθθ(n)x(n) W(n)Tracking
unit

DOA
unit

Figure 6 Block diagram showing the components of the tracking system

2.6.1 Spatially Structured Methods

Adaptive spatially structured methods track a time−varying manifold of the correlation

matrix R(n) based on the previous array manifold information inR(n−1) from which

the DOAs can be extracted. In this section we focus on developing two efficient

spatially structured methods, the gradient based tracker and the CG based tracker.

An example of spatially structured methods is the algorithm proposed by Swordet al. in

[Swo90] and later improved by Loet al. in [Lo92]. Their approach is based on a

recursive formulation for tracking DOAs where small changes in the difference of the

correlation matrix estimatesR(n) andR(n−1) result in small changes in the difference

of the steering matricesA(θ(n)) andA(θ(n−1)) from which the DOAs can be extracted.
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In a similar way, in a method proposed by Sastryet al. the DOAs are estimated by

minimizing a specific cost function involving the error norm of the sample and model

covariance matrices for solving of which the block CG algorithm is invoked

periodically [Sas91]. However, as a drawback of both approaches the number of the

users, their DOAs and especially their signal powers must be periodically estimated

using a signal subspace algorithm. One of the problems with these tracking algorithms

is thedata association problem, i.e., associating the DOA estimates established at the

previous time instantn−1 to that of time instantn [Rao94]. In the case of the gradient

based tracker we rely on the recursive formulation and in the case of CG based tracker

we rely on the existence of a unique reference signal.

2.6.1.1 Gradient Based Tracker

In this section a gradient based approach for tracking the parameter matrix will be

derived. The formulation of this method can be approached through the general cost

function given by

J=arg min
W

E x BW W
H

W W
H

x
2

(15)

whereW is the weight vector matrixW=[w1 ... wK]. This can be interpreted as the

projection of the incoming signal vectorx into a complement subspace spanned by the

columns of the matrixW. Depending on howW is constrained, different tracking

methods can be derived. The cost function can be simplified by constrainingWHW=1.

However, this may not be necessary due to the self−fulfilling property of the

constraining criterion. By constraining the component vectors of the weight matrixW

to belong to the array manifold the gradient based adaptation algorithm can be derived

as originally proposed by Affeset al. in [Aff94] and [Aff96]. By taking the gradient

with respect toW in the cost function of Eq. (15), and after some algebraical

manipulations the adaptive Least Mean Squares (LMS) update formula can be

expressed as follows:

w
k

n =w
k

nB1 + x n Bw
k

nB1 s
k

n µ s
k

n (16)

In the stationary signal scenario the method converges to the steering vectors ofK users
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corresponding to the signal subspace part of the correlation matrix. However, in  order to

guarantee the constraint the continuous structure fitting back to the array manifold is

needed. In the nonstationary signal scenario the adaptation method tracks slowly

variations in the steering vectors. The generation of the user signalsk(n) is needed but it

will be provided explicitly from the adaptation weight vectorwk(n). It should be noted

that the classical steering vector based methods are very sensitive to the pointing errors

in the DOA estimates and even slight deviations cause significant losses at the output

Signal−to−Noise plus Interference Ratio (SNIR) of the beamformer [Hon87]. However,

in this method robust beamforming is achieved during the adaptation self−correcting

DOA errors for the beamformer. In [P1], the focus was on this steering vector based

method for which we developed an adaptive step size method for increasing the tracking

performance.

2.6.1.2 CG Based Tracker

The existence of the known sequencesk(n) called the reference signal in a

communications system is valuable because it can be utilized for the reference signal

based adaptive algorithms. For these adaptive algorithms the optimum solution in the

Minimum Mean Square Error (MMSE) sense is the one which minimizes the quadratic

error between the reference signalsk(n) and the output of the beamformer

yk(n)=wk(n)Hx(n), i.e., the quadratic cost function E[(sk(n)−wk(n)Hx(n))2]. This

minimization criterion results in the cost function that can be expressed as

J=w
k

H

Rw
k
+w

k

H

b (17)

where b=E[sk(n)x(n)] is the cross−correlation vector between the desired signal

sequencesk(n) and the array response vectorx(n). The reference signal should have low

cross−correlation with all other interference signal components. As a result, this

quadratic cost function can be used as a minimization criterion of interference signal

components. These reference signal based algorithms relax the requirement to have

more antenna elements than signals to be received. In addition, the methods are less

sensitive to errors in the antenna array parameters, for example in the sensor locations.

However, the major drawback of this approach is the requirement to know or generate a

reference signal. Therefore, the tendency is towards blind methods.
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The residual vector for the cost function of Eq. (17), i.e. the gradient with respect towk

results in a Wiener−Hopf equationgk = Rwk + b. In general, the solving of this kind of

time−varying Least Squares (LS) type problem can be approached by the methods of

the adaptive filtering theory like LMS or Recursive Least Squares (RLS) algorithms

[Din97] or SVD based adaptive subspace algorithms [Fer90],[Kav94]. The well−known

CG algorithm provides an efficient way to solve the system ofM linear equations. The

CG method was originally developed independently by Stiefel and Hestenes [Hes52].

The method collects a block of data samples and converges to the solution after

accomplishingM iteration steps. Therefore, it doesn’t suite well for the estimation of

time−varying parameters.

The key point for the sample−by−sample processing basing on the CG based approach

is the incorporation of the time−varying estimates of the correlation matrixR(n) and

cross−correlation vectorb(n) into the residual vectorgk(n) [Cha98]. Consequently, after

some algebraical manipulations the residual vector can be formulated as 

     g n =λ
f
g nB1 Bα n R n p nB1 + x n d n B x n

H

w nB1 (18)

whereα(n) is a convergence parameter andp(n−1) is a search direction vector as they

are defined in a similar way in the context of the ordinary block CG algorithm [Gol96].

In [P2] the tracking unit was implemented with this expression of the residual vector for

the CG algorithm.

2.6.1.3 DOA Extractor

In this section a function for the DOA extraction will be developed for the spatially

structured methods. This unit serves as a two−way purpose: primarily, it can used for

the extraction ofθk:s from the array manifoldA. Secondly, but as essentially as in the

first case, it serves as a way to restore deviations in the estimated steering vectors

caused by the array manifold tracking algorithms back to the array manifold. Deviations

in the steering vector a(θk) can be modeled as
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a θ
k
=H θ

k
+n (19)

where the column vectorH for the uniform linear arrays has as its elements

2πd(m − 1)sin(θk)f/c with m (m=1, ..., M) being an index andn represents a deviation

vector caused by the adaptation algorithm. The LS fitting criterion based on the time

differences of the array manifold at the time instants n and n−1 can be formulated as

θ̂
k

LS

n = H
T

H
B1

H
T

Im log
w n

a θ
k

nB1
(20)

where H=[0 π 2π ... (M−1)π]T with λ/2 spaced antenna elements,w(n) is a current

estimate for thek:th steering vector and the Im−operation, log−operation and vector

division are defined to be elementwise. In [P2], this unit is developed and its

implementation is discussed in detail.

2.6.2 Eigenstructure Based Methods

The eigenstructure based tracking methods are based on finding eigenvalues and

eigenvectors of the correlation matrixR. The adaptive eigenstructure based methods

track a full or partial time−varying eigenstructure of the correlation matrixR(n) based

on prior knowledge of the eigenstructure inR(n−1). Because the ED is generally

expensive to compute and difficult to update in an efficient way we focus on developing

a simple adaptive gradient based approach. In the beginning, some of the developed

subspace methods are reviewed.

2.6.2.1 Adaptive Subspace Trackers

Pisarenko was the first to prove that the harmonic frequencies contained in the white

noise can be found through eigenvalue analysis [Pis73]. Later, the statistical

performance of the Pisarenko harmonic decomposition method was analyzed in [Sto88].

The original concept of estimating the signal subspaceUs was first developed by

Owsley [Ows78]. Thompson was the first to implement a method for seeking an

eigenvectorqM corresponding to the minimum eigenvalueσM of the correlation matrix
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R [Tho80]. In [Hay86] the applicability of the classical methods, i.e., the power

method, the inverse power method and the Rayleigh Quotient Iteration (RQI) [Gol96]

for computing Pisarenko harmonic decomposition were reviewed and an efficient

algorithm based on the Levinson recursion was developed based on the Toeplitz

structure. In [Com90] a class of classical algorithms like Lanczos based trackers are

reviewed for tracking eigenvectors of the correlation matrix.

Thompson’s method can be derived from the generalized cost function as expressed in

Eq. (15). If the constraint of the weight vector matrixW belonging to the array

manifold is released, the minimization criterion is changed to the minimization of a cost

function J=E[||x−UsUs
Hx||2] [Yan95]. This cost function can be interpreted as the

projection of the incoming signal vectorx onto the complement of the signal subspace

Us. This method, first proposed by Yanget al., extended the idea of tracking a single

eigenvector for tracking a restricted set of eigenvalues and eigenvectors or a signal

subspace spanned byK eigenvectors corresponding to the largest eigenvalues or a noise

subspace spanned byM−K eigenvectors corresponding to the smallest eigenvalues

respectively [Yan88]. Yang’s method can be regarded as a generalization of

Thompson’s approach.

The tracking of the whole signal or noise subspace structure with the previous

eigenstructure methods is computationally demanding. In the way of reducing the

computational complexity of the expensive updating of the full eigendecomposition in

the subspace trackers Karasalo was first to introduce a concept of the noise subspace

averaging [Kar86]. The noise subspace averaging is realized by averaging the smallest

M−K eigenvalues and replacing them with an average value. Instead, DeGroat and

Dowling have introduced the subspace tracking method where the concept was extended

furthermore to the signal subspace [DeG92]. In their approach both the signal and noise

subspaces are averaged. An arbitrary orthonormal basis spanned by eigenvectors of the

signal and noise subspace has been established where the respective signal and noise

eigenvalues are replaced by their average values. This is desirable especially in the

DOA estimation methods that require only some arbitrarily oriented space. Due to the

spherical subspaces there is a decrease in performance but in the case of closely located

sources these methods perform even better as shown in [Dow92][DeG93]. In addition,

the deflation of both the signal and noise subspace leads into an eigenvalue problem of
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size 2 which can be efficiently solved noniteratively, but the estimate of the subspace

dimension K is needed [DeG90][DeG92].

The signal or noise subspace tracking problem can be formulated as a constrained

minimization problem. The constrained type of optimization problem expresses the

general quadratic cost function as

J= tr W
H

RW subject toW
H

W =1 (21)

For solving of this minimization problem many adaptive signal processing algorithms

have been utilized, e.g., gradient, Gauss−Newton and RLS methods [Din97] have been

employed. Yanget al. in [Yan88] has applied the gradient based approaches together

with the Gram−Schmidt (GS) orthonormalisation procedure for accomplishing the

orthonormality constraint [Tre97]. Mathew and Reddy in [Mat95] transformed the

optimization problem into the unconstrained one first by estimating a single eigenvector

by the Gauss−Newton based algorithms and then extending the estimation to that of the

total subspace through the inflation based approach. In the single eigenvector case the

optimization problem can be transformed into an unconstrained minimization one

through Lagrange’s theorem. In [P3], based on this cost function, a step−by−step

adaptation method was developed for tracking a minimum eigenvector using the high−

resolution noise subspace approach.

2.6.2.2 DOA Extractor

In this section, a function for the DOA extraction is developed for the noise subspace

root−tracking. When the dominant subspace estimates have been established the

subspace spectrum estimation methods can be applied for finding the necessary DOA

estimates. However, in the case of the linear antenna arrays the problem of parameter

extraction can be expressed as that of a polynomial root−finding. It has been shown by

Raoet al. in [Rao89] that even a higher resolution capability can be achieved with the

root versions of the estimators than with their spectral counterparts of Section 2.5.2.

The coefficients of the null−spectrum function of the spectral estimators are expressed

as
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∑ m
1
,m
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whereP is a spectrum matrix. As an example the spectrum matrixP can be defined as

P=UnUn
H or P= qM qM

H for the MUSIC and the Pisarenko methods, respectively [Yan89].

One of the most difficult aspects in the DOA computation is that of solving the

polynomial root−finding problem in an efficient and stable way. It can be expressed as

an eigenvalue problem for which thecompanion matrixbased approaches can be

applied [Str97]. Eigenvalues of the companion matrix are the same as roots of the null−

spectrum function. The fundamental difficulty with the application of the methods is

that many familiar root−finding algorithms will only converge to a particular root if a

sufficiently close initial guess is provided. In addition, these methods experience

difficulties in not always converging into the correct root locations, especially, if initial

parameter estimates are not close enough to the true values. The Gauss−Newton, secant,

the classical power method, the inverse power method and the RQI methods etc. have

been modified for solving the root finding problem [Sta89][Yan89].

Therefore, in [P3] we concentrated on employing a zero−tracking method originally

proposed by Orfanidis [Orf86]. In this method, after locating the first root the root

polynomial can be deflated. However, the zero−tracking based approach for the

polynomial root tracking has two inherent problems. One of the problems arises due to

the recursive nature of the deflation procedure causing computation errors of root

estimates to propagate to the following roots. However, this problem can be solved by

the appropriate modification of the null−spectrum function [Ho92]. The second problem

is caused by unpredictable movement of these spurious roots resulting in spiky

estimation errors. In [P3] an adaptive control procedure for controlling the movement of

these spurious roots was developed that was based on the grouping of the roots into two

distinct categories.

2.6.3 Spatially Structured over Eigenstructure Based Approaches  

One of the largest differences between the spatially structured and eigenstructure based

approaches arises from the way how the DOA unit has been implemented. In the case of
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the eigenstructure based approaches the implementation of the DOA unit must be

carefully considered. Since these methods adaptively track the signal or noise

subspaces, ordinary DOA estimation methods of Chapter 2.5 can be applied for finding

the DOAs. As an example, the MUSIC method finds DOAs through a search procedure

over the parameter space. However, this computationally expensive search procedure

can be reduced by using the root version of the MUSIC method still requiring a solution

to an ill−conditioned polynomial root−finding problem. The problem with the adaptive

polynomial root−finding approach for the eigenstructure based methods is that they can

only be applied to linear array structures, therefore, reducing the applicability of these

methods whereas the spatially structured methods can be applied to antenna arrays of

arbitrary geometry. Altogether, the eigenstructure methods require a separate carefully

designed DOA unit adding some computational complexity to the overall system

whereas for the spatially structured methods the DOA unit can be implemented in a

more straightforward and robust way.

The convergence behavior of the tracking methods depends drastically on the proper

parameter initialization of the algorithms in both approaches. The performance of the

stochastic algorithms is greatly affected by the proper selection of the convergence

parameter. In [P1] the performance of the enhanced tracking system with an adaptive

convergence parameter was compared with the system with a fixed convergence

parameter. For the method with a fixed convergence parameter, performance losses

were experienced both in the stationary and the non−stationary signal scenarios.

Therefore, in parameter tracking problems initial DOA information is valuable for

providing faster convergence closer to the optimal solution. However, the initial DOA

estimates must be close to the true values for both approaches to converge. This

suggests that the adaptive methods can be initialized by using a computationally

complex DOA estimation method.

Round−off errors tend to propagate in recursively defined algorithms and a periodical

re−initialization procedure may be needed. For the ill−conditioned problems the

commonly used technique is to apply a technique of the square−root filtering for the

correlation matrix based algorithms. In this method the correlation matrix is

decomposed into an upper triangular matrix and its transpose and a diagonal matrix

[Gol96]. Somewhat more complex expressions have been obtained but the nonnegative
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definiteness is guaranteed.

Many adaptive beamforming algorithms are sensitive to errors in the DOA estimates.

Different beamforming methods based on the subspace approach have been developed

for enhancing the performance in the presence of pointing errors. These methods

require adaptive tracking of the signal subspace and good performance can be achieved

when the steering vectors fall into the tracked signal subspace [Cho97]. In the spatially

structured case the self−robustness for the beamforming is achieved through adaptation.

The tracking systems can be categorized based on their complexity. The computational

complexity of the subspace based approaches originates from a need to realize the ED

or SVD in every update step. These eigenstructure based subspace trackers can be

categorized into two groups of computational complexity, O(M2K) and O(MK2). The

complexity O(M2K) is the result of matrix−vector multiplications. Also, the tracking

system presented in [P2] falls into this category. The methods of the computational

complexity O(MK2) are based on a low−rank approximation of the correlation matrix.

However, both the signal and noise subspace dimensions can be deflated reducing the

computational complexity. The spatially structured methods can generally reach a lower

implementation complexity. This results from the fact that the implementation of the

tracking unit can be based directly on the the adaptive algorithms and the

implementation of the DOA unit is simple in nature. Therefore, in the spatially

structured case the computational complexity of O(MK) can be achieved.

One of the problems for both approaches is the lack of adaptive tracking of the subspace

dimension. Stewartet al. have proposed a URV based decomposition method acting as

a reliable substitute to the subspace based algorithms. The method can be applied for the

adaptive estimation of both the rank and noise subspace [Ste92]. The rank is

automatically detected when the sequence of plane rotations is applied to the correlation

matrix.
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To sum up, Table 2 characterizes the main properties discussed between the spatially

structured and eigenstructured based approaches.

Table 2 Comparison of spatially structured and eigenstructured based approaches

Spatially Structured Methods Eigenstructure Based Methods 

Advantages Arrays of arbitrary geometry

Simplified DOA procedure

High−resolution property

Array geometry not necessarily uniform

Disadvantages Model order estimation

No high−resolution property

Complicated DOA procedure

Model order estimation
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3. Summary of Publications

3.1 Publication 1

In the first paper, the configuration of an adaptive antenna system with multi−target

tracking is presented. The DOA estimation algorithms can be classified into two groups,

a group of stationary DOA estimation methods such as the MUSIC method and a group

of non−stationary DOA estimation methods such as Sword’s algorithm or the Kalman

approach. Few disadvantages of them were identified from the user tracking point of

view. The problem with the conventional adaptive tracking algorithms is that the

adaptation performance is greatly influenced by the proper choice of the convergence

parameter. A fixed choice of convergence parameter may be problematic since it causes

extra noise called misadjustment during the adaptation.

Therefore, in the paper we employed the multi−target tracking concept originally

proposed by Affeset al. that is based on the spatial structured correlation matrix. The

tracking system was modified by the inclusion of an adaptive control mechanism for the

convergence parameter. The method is based on DOA error function for each user

comprising a block of signs of DOA error samples from the model fitting unit. The

convergence parameters of all the users are accordingly adjusted depending on the

frequency of zero crossings in the error function, a similar approach for the adaptive

calculation of the convergence parameter as developed by Harriset al. in [Har86] in the

context of the adaptive filtering.

For the performance comparison the same simulation configuration has been utilized as

also in the later publications [P2] and [P3]. The performance comparison has been

accomplished in terms of convergence speed and misadjustment. The mobile users have

the initial 5° pointing errors in their DOA estimates. The simulation results showed that

the proposed adaptive control of the convergence parameter provided fast convergence

and small misadjustment errors that cannot be achieved by utilizing a fixed convergence

parameter. In the case of stationary sources, the adaptive convergence parameter

method can achieve slightly faster convergence and smaller DOA errors than methods

with fixed settings. By carefully selecting a fixed convergence parameter, a similar
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performance can be achieved. However, in the nonstationary case the method with

adaptive convergence parameter can easily outperform any fixed setting for the

convergence parameter, especially when mobile users move along curved trajectories.

3.2 Publication 2

In the previous publication [P1], a gradient method with an adaptive step size control

was developed for the user tracking system. The adaptive step size method was based

on the block processing form. For achieving better performance a block of samples was

gathered and one update iteration was performed. This might be disadvantageous due to

two reasons. Practical systems may speak in favor of a step−by−step update mode rather

than block update mode. More importantly, the performance of the block update model

decreases in the nonstationary signal scenario. 

In this paper, an adaptive step−by−step update scheme of the reference signal based CG

method is implemented for the user tracking system. In addition, a function was

developed for the DOA calculation in the array manifold adaptation methods. In the

proposed system the convergence parameter will be automatically adjusted for better

performance during the adaptation process. As a result of the updating process, the

method converges to the dominant signal subspace spanned by the signal subspace part

of the full rank correlation matrix. The simulation results confirm that the proposed CG

based system achieves better tracking performance than gradient methods both in the

stationary and non−stationary signal scenario. The better tracking performance is

achieved in terms of faster and smoother convergence and smaller misadjustment. In

addition of the analysis of the tracking performance, the computational complexity of

the system is also investigated.

3.3 Publication 3

In this paper we have derived a high−resolution noise subspace algorithm based on a

step−by−step adaptation scheme for tracking a minimum eigenvector of the correlation

matrix. The tracking algorithm is based on the adaptive version of the Pisarenko

harmonic decomposition method. The minimization of theRayleigh quotientis solved
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through the unconstrained cost function as defined by Lagrange’s theorem. The residual

vector is defined and the respective convergence parameter is calculated through the

line search procedure. As a result of the minimization, the update equations similar to

the method of Steepest Descent (SD) are obtained. The convergence parameter is

similar to that existing in the block CG algorithm but simpler than the expression in

[Fu95]. In the case of small eigenvalue spread the performance of the SD method will

be comparable to that of the CG method in the tracking unit.

In the DOA extraction unit for the zero−tracking based method [Orf86] we have

developed a control strategy for noise subspace roots eliminating the DOA association

problems with spurious roots. In this method, roots are classified into two different

groups, a set of roots corresponding to users lying close to the unit circle and a set of

spurious roots which are uniformly distributed inside the unit circle. The adaptive

control procedure for governing the movement of all the roots has been developed. This

decomposition of noise subspace roots into two different groups is similar to the

decomposition done for the MN method. However, in contrast to the MN spatial

spectrum estimator of Section 2.5 the movement of different roots is adaptively

controlled.

In the noise subspace the closely located sources can be generally separated with the

lower mean DOA error in the stationary signal scenario. The performance comparisons

confirm that the proposed noise subspace approach can achieve a similar tracking

performance in terms of convergence speed and final misadjustment level as compared

to the tracking algorithms of the spatially structured case in the publication [P3].

3.4 Publication 4

In this paper we focus on Very Large Scale Integration (VLSI) implementation of the

tracking system by developing a novel systolic architecture suitable for real−time

applications. For our user tracking system we have estimated the computational

complexities of different units. The computationally most complex operation is the

calculation of the convergence parameter in the algorithm of the tracking unit. Based on

these estimations the software and hardware implementation parts have been identified.

For the hardware implementation the systolic array is developed for the computationally
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intensive matrix−vector multiplications. The operations in the algorithm are distributed

into an array of distributed memory elements providing the fine−grain parallelism.

The proposed systolic architecture reduces the required computational complexity of the

tracking unit by an order of magnitude to O(M). Furthermore, the Strength Reduction

(SR) transformation technique is utilized for the implementation of the complex

multipliers that allows remarkable savings in silicon area and consumed power [Par99].

3.5 Author’s Contributions

In Publication [P1], the first author’s contribution was essential in designing the

tracking system, preparing the text for the article and planning the simulation software.

During the research work Prof. Timo Laakso and D.Sc. Jorma Lilleberg acted as

supervisors and they were also involved in setting the goals of this research project.

In the research work of the Publication [P2], the first author was responsible for

designing the CG based tracking system and performing the simulations while the

second author, Lic. Tech. Ramin Baghaie was responsible for a section in the article

discussing the computational complexity issues of the proposed tracking system.

The ideas presented in Publication [P3] initially originate from the author. The author

himself wrote the text in the article and was responsible for carrying out the

simulations.  Prof. Timo Laakso provided comments on the manuscript.

In Publication [P4], the first author Lic. Tech. Ramin Baghaie was responsible for

carrying out the estimation of the computational complexities and for designing the

practical systolic array while the second author was responsible for the software

development of the user tracking application and assisted in the preparation of the

article.
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4. Conclusions and Discussions

The main focus of this licentiate thesis was directed towards the development of

adaptive tracking algorithms for DOA estimation of mobile users in non−stationary

signal scenarios. Tracking systems should support fast tracking capability, have small

estimation errors for the tracking parameters and should have low implementation

complexity. In order to meet these criteria we focused on the construction of three

different tracking methods, adaptive convergence parameter method and step−by−step

CG method for the array manifold tracker of the spatially structured approach and a

simplified gradient based approach for the adaptive tracking of a minimum eigenvector

in the noise subspace.

An adaptive step size method was developed for more efficient tracking of a time−

varying manifold of the antenna array. The method with the fixed convergence

parameter experiences the performance losses in the MSE sense both in the stationary

and the non−stationary signal scenarios because it can not combine simultaneously the

requirements of the fast convergence speed and low estimation error. Consequently, the

adaptive step size method performs better. Furthermore, in another approach a reference

signal CG based tracker based on the step−by−step adaptation mode was also developed

that can unambiguously associate different DOA estimates, relax a requirement to have

the number of signals less than the number of antenna elements and is not sensitive to

nonidealities of the antenna array parameters. With these methods fast convergence

speed and small DOA estimation errors can be obtained. It can be deduced based on the

geometrical considerations of the BS environment that the tracking speed in the

developed adaptive algorithms is more than adequate also for closely located sources

near the BS.

We reviewed a class of adaptive eigenstructure based methods from the literature that

track a full or partial time−varying eigenstructure of the correlation matrix based on the

prior knowledge of the eigenstructure. For the utilization of the high−resolution

approach we developed a simplified SD based method for the adaptive tracking of a

minimum eigenvector from the time−varying eigenstructure of the correlation matrix.

Furthermore, the developed control strategy for the noise subspace roots alleviates the

DOA association problems due to the spurious roots.
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Differences in the spatially structured and eigenstructure based approaches lead us

toward different implementation structures for the tracking and DOA extraction units.

When considering the implementation aspects of our tracking system a suitable systolic

architecture for the CG based tracker was developed. The existing fine−grain

parallelism in the algorithms helped to reduce the computational complexity of the

tracking system by an order of the magnitude O(M).

As a future research work we propose DOA tracking of mobile users in more realistic

multipath channels associated with difficult challenges of the multipath propagation.

The research activity is especially directed towards the development of tracking

algorithms for CDMA based applications.
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