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Abstract- In this paper for the user tracking application and the analysis of these different blocks will be carried
we develop a step-by-step adaptation method foout. Section 4 presents some numerical results
tracking the parameter vector in the noise subspaceomparing both the signal and the noise subspace
Also, we develop the control strategy for the noiseapproaches. Section 5 draws conclusions about the
subspace roots eliminating the problems with theproposed system design.

spurious roots. The performance comparison of the

developed user tracking system will be investigated in 1. SIGNAL MODEL

terms of the tracking capability. As the performance

criterion, the mean Direction—of-Arrival (DOA) error The opservation vectax(t) of a one—tap channel model
will be invoked in the stationary and non-stationaryio, the antenna receiver can be expressed as
signal scenarios. The simulation results confirm that the

proposed noise subspace approach can achieve similar «

tracking performance as the signal subspace approach in _ / 1
terms of the convergence speed and the final x(v ; P (t)a(g,) +n(t 1)
misadjustment level.

where the column vectora(6) and n(t) are the array

. INTRODUCTION response vector fdith user k=1, ...,K) and the Additive
Adaptive array processing techniques can provide moré/hite Gaussian Noise (AWGN) vector, respectively [1].
system capacity by reducing co-channel interferencel N€ total number of co-channel users has been denoted
This can be realised by the beamforming base@SK. The array response vector has been parameterised
communication [1]. For this aim the parameterby 6« representing DOA on the azimuth plane. The
estimation must be appropriately carried out for all theiransmitted signal waveformg(t) is modelled as a zero—
users of interest both in the stationary and non-stationarjiéan Gaussian distributed process with the varidhce
signal scenarios. These parameters could be estimated Bimilarly, the additive noise vecton(t) independent
any of the well-known spectrum estimation methods likffom user signals is also drawn from a Gaussian
MUltiple Signal Classification (MUSIC) algorithm but distribution with the varianceo,?. Signal-to—Noise
their inherent computational complexity makes theirRatio (SNR) for the presented signal model is defined to
continuos invocation infeasible [1]. Therefore, thebe 10logP/a.?) [3].
adaptive target tracking methods continuously update
tracking parameters of all the users. There are numerogr the Uniform Linear Antenna (ULA) arrays the

methods that can be applied for the multi-target trackingyormalised array response vecta(d,) with the A/2
problems. In [2], for the user tracking system, a stepg

i y (J)aced elements can be defined in the following way:

by-step update mode of Conjugate Gradient (CG) base
algorithm was developed for directly updating the signal 1 P it = Dl T
subspace related array response vector. Instead, in this a(@k):—[l e e ]
paper, a different viewpoint has been taken. For our user \/M
tracking system, we will develop an adaptive high-
resolution noise subspace approach. In the matrix notation, Eq (1) can now be expressed

) _ ) ) more compactly ag(t)=A(8)s(t)+n(t), where the antenna
The paper is organised as follows: in Section 2, thgesponse vectors of each users are collected into a single
signal model is introduced on which the paper will bematrix A@®)=[a(8) .. a®J)]. The antenna response

based. Section 3 introduces the overall system design b trix A(O) i d to be slowl . ith ¢
partitioning the user tracking problem into three differen a (6) is assume 0 be Slowly varying W' resp_ec
separate system blocks, namely tracking, Direction—of10 the paramete8. Finally, the model correlation matrix

Arrival (DOA), and the beamforming units. The designfor the antenna array, which is symmetric, non—negative

(2)



definite and Toeplitz can be defined asnecessary for the functionality of the tracking system and
R=E[x(t)x(t)"]=ASA"+0.2, whereS is a diagonal signal its consideration will be discarded in this paper.
correlation matrix [1].

Tracking unit
The user tracking problem is that of continuously
tracking the parameted, of the linear model in Eq (1). In this section, we derive a step-by-step update
In the following sections, the adaptive algorithms are@lgorithm  for tracking the minimum eigenvector
developed for tracking variations in the parameter valuecorresponding to the minimum eigenvalue of the model
There exists Cramer-Rao Lower Bound (CRLB) on thé:o_rr_elgtlon matrixR. As the performance criterion we
minimum variance of the paramet®ithat any unbiased Minimize the total output power at the output of the
estimator can only asymptotically approach [3]. Basedray. In order to prevent the power decreasing to the

on the presented signal model the CRLB can b&Sr the constraint for the weight vector will be
calculated by some algebraical manipulation as introduced. The quadratic cost function can be expressed

as in Eq (4) and will be used as the minimization
criterion of interference and noise components.
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g

The minimisation of this performance criterion subject to
where N is the total number of samples. This bound isthe constraint wiw=1 leads us into the minimum
too loose in the sense that it gives optimisticeigenvector. This can be deduced by diagonalising the
performance values compared to the bounds of themodel correlation matrix by invoking the Eigenvalue
adaptive estimators. However, this bound reflects manpecomposition (ED) as
interesting properties about the effect of the presented
signal model on the minimum variance of the parameter. M
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In this section, the user tracking system will bewhereunis an eigenvector. As a result, the eigenvectors
formulated. In [2], we investigated the step—by-stepum (M1, ..., K) will form the orthonormal basis for the
adaptation scheme for updating the signal subspacignal subspace. In the similar way, the eigenvectnys
vector. We utilise similar construction for the tracking ("=K+1, ..., M) will form the orthonormal basis for the
system but we concentrate on the design and theoise subspace. Clearly, the cost function will be
implementation of the step—-by-step update scheme faninimised asw converges intouv. Typically, the

the noise subspace. Figure 1 describes the systemndinary adaptive eigensubspace algorithms track the
components of the noise subspace based user trackinghole subspace. Because of the orthonormal subspace
Thetracking unitdeals with the adaptive algorithms for requirement, many of these subspace algorithms will
tracking the noise subspace. In our approach, ieventually need to invoke for example thHeram-
essentially consists oRayleigh solverfor seeking the Schmidt  orthonormalisation procedure. The
vectorw(n) corresponding to the minimum eigenvalue ofcomputational complexity may be prohibitive when
the model correlation matrix. ThRBOA unit deals with  utilising the high—dimensional subspace. Due to the fact
the extraction procedures for finding the necessargf not utilising the whole subspace we experience some
parameter valueHere, we develop a recursive rooting performance losses. However, as the signal subspace
method for the parameter tracking. Theamforming dimensionK approachedvl the available information in
unit deals with the beamforming procedures forthe noise subspace will anyway diminish. Furthermore,
enhancing the desired signal reception and nulling ththe model order estimation methods, i.e., the estimation
interference. However, the beamforming unit is notof number of users will be required by these methods. If
the model order has been underestimated greater
performance losses can be expected compared to the
overestimation, because part of the signal subspace has
been included on the estimation. Therefore, in this case
by using only one noise eigenvector will be more robust
> ¥(M)  and also enough in terms of performance.

x(n) —» 6(n)

Tracking DOA The model correlation matrix can be estimated through
unit w(n) unit exponentially decaying data windowlrhe rank one

Figure 1 Overall block diagram for the noise subspace baseduPdate scheme has been chosen for the exponentially
mobile user tracking system (n: iteration index) decaying correlation matrix estimat®(n) with the




forgetting factorAs. The forgetting factois reflects the direction vectors could be evaluated for gaining the

amount of signal non-stationarity in the correlationP€tter performance and finally, we would end up in the

matrix estimate. The model correlation matf¢n) can  CC like algorithm. However, quite often one update step
be expressed as and sometimes one residual vector computation for the

parameter vectorw(n) is enough because of not

; obtaining very much additional performance gain.

R(n)=a, R(n-1)+x(n)x(n) (6)
The normalisation of the weight vector is required in

We useLagrange’s theorerfor solving the minimisation ©°'der to guarantee theH constraint. Therefore, the
problem. The Lagrange’s unconstrained cost function i§ormalisation factow(n-1)"w(n-1) in the denominator

defined as of Eq (9) will be of unity value and can be discarded.
3, —win” Rinhw(n) - atmlwin winl =1 (@) win) =l (12
w(n) win)

The negative gradient of the modified cost function of
the Lagrange theorem can be calculated as The developed tracking method is the suboptimal one.
Therefore, we have chosen to compare the performance
of the developed method to the performance of high-
_ resolution root-MUSIC spectrum estimation method.
ow(n) 2[=Rnjwin) +aln)win)] ~ (8) The weight vector estimatev(n) for a block of N
collected samples with the application of ED is

g(n)= —0J, _

This residual vectoig(n) will be used for the gradient
estimate in our adaptive minimisation method.

[ M
Lagranges’s multiplier can be respectively evaluated W<”):trac%d‘m§+lumuw (13)
from the gradient of the cost functiahas
H where trace, operation is targeted on all theith
A(n):%(”)w(”) 9) subdiagonalsd=0, ..., M-1) and scalars from the trace
win) w(n) operator are stacked on the column veaign) [4].

ft should be noted that the estimation of oniy-1
tracking parameters can be realised in the noise
subspace. In addition, suitable recursive formulation is
needed for discarding thelata associationproblem
which does not exist with the reference signal based
w(n)=w(n-1) +<x(n)g(n) (10) methods. Therefore, the noise subspace approach makes
it more difficult in the efficient and robust way to extract
wherea(n) is the optimal step size antw(n)=a(n)g(n) the tracking parameters. In the next section, we
is the deviation imposed on the minimum eigenvectorSoncentrate on developing the parameter tracker.
The quantitya(n) can be determined in the following

way: In the ideal case, when the eigenvalue speéal,

is close to 1, the cost function is smooth and th§, this section, the DOA extraction method will be
optimum solution could be achieved in one stepyeyeloped. As the weight vectar(n) of the tracking unit
Therefore, the gradient of the Lagrange’s cost functiofog converged it can be used for extracting the location
will be orthogonal to the previous search direction, "e"parameters. The location parameters can be basically
to the residual directiorg(n-1). By some algebraical oqtimated by using two different approaches, the
manipulation and using the assumption of SIOWIycompanion matrixoased method$5] or zero-tracking
changing signal scenario the optimal step sifa) can based method§6]. Here, we concentrate especially on
be expressed as the zero-tracking method and develop a control strategy
for controlling motion of the roots. This effectively

g(n) g(n) (11) discards the problems with thepurious rootsand
g(n)H[R(n) +aln)1]g(n) alleviates some numerical problems.

The expression in Eq (9) is called Rayleigh quotient o
vectorw(n). The weight vector update step will be taken
in the search directiog(n) as

DOA unit

Companion matrix methods are based on the special
where the parametem is an auxiliary step size structure of the non-symmetric companion matrix.
introduced for increasing the performance. More searckigenvalues of the companion matrix are the same as the



roots of the minimum eigenvector and therefore, it can

R o oW (2
be used for the parameter estimatigh]. Finding z(n)=z(n-1)+Aw(n)
eigenvalues of the unsymmetric matrix is ill-conditioned k
in nature. Ordinary adaptive algorithms cannot be
utilised in the computation unless introducing symmetridn Eq (16), we process the totdM roots of which we
matrix. However, for solving the roots thelassical have M-K additional spurious roots. Sometimes, these
power methogdtheinverse power methoor theRayleigh  spurious roots approach the unit circle and confuse us to
Quotient Iteration(RQI) method or their modifications choose some of them instead of the true roots. Therefore,
have been generally utilised for the root extractigh. ~ we focus on developing a control strategy for roots. The
These methods experience difficulties in not alwaydnethod is based on the division of the unit semicircle on
converging into the right root locations, especially, iftwo different regions as determined by the limit
initial parameter estimates are not close enough to truearameter (r<1). This has been illustrated in Figure 2.
estimates. In addition, theM users have been divided into two

groups, the group of thi€ real users and the group e~

By using the well-knowrPisarenko theorerwe can find K virtual users. These real users have been constrained to
the harmonic frequencies contained in the correlatiode in the annulus close to the unit circle. In the
matrix by solving the roots of the minimum eigenvectorinitialisation process, the real users will be placed on the
[7]. The respective Autoregressive (AR) power spectruny/nit semicircle at their initial angular positions whereas

equation corresponding to the minimum eigenvector is the M—K virtual users are evenly distributed on the unit
semicircle at the magnitude distance rofThe control

M1 procedure will be executed in the following manner: If
W<Z):W1+---+WMZ (14) kth virtual user cross the boundary the normalisation
operation will be carried out om(n). Real users are

This expression corresponds to timénimum phasdilter usually wandering in the vicinity of the unit semicircle
although the root estimator is not necessarily constraine@nd if the boundary crossing happens the normalisation
to have all the zeros inside the unit circle. The spatiaPf the zeros will be executed.
user locations are to be extracted from the roots of this
minimum eigenvector. For this aim the spectrumltis well-known that the root-tracking problems are ill-

(18)
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equation is first expressed in terms of zeros as conditioned. As a faCt, the zero traCking methods have
numerical problems because of a long product chain of
M subtractions in the denominator. This will evidently
W(z=w Z(l_ 27 (15) introduce some computational errors for the estimated
Y " parameters. The problem can be alleviated by developing

the recursive estimation formula for the zero-tracking
method [4]. For our root-tracking strategy the condition

where z(n)=rexp(-sin@«(n))) are the root locations. 2
The final location extraction function corresponding toggmber ofkth user andnth coefficient can be evaluated

the presented model can be expressed as

©(n)= —arcsir imag lod rootsw(n))))/mr)  (16) « IWmZm’ll< IM[ (2 -7) (19)
(k,m |W, ( 7 )| (3 ‘m
where the roots—operator extrad¥sroots from whichK

roots closest to the unit circle are chosen. The extractedh_ h ; N EVIVENER
parameters are stacked in the column veé(o). which can be urt_her _S|mpI|f|ed aK=(1-r) ™ Th_|s IS
the worst-case situation and reflects an occasion when

In the zero-tracking method, small change/wof(n) in

the minimum eigenvector results in small changes in the
root valuesAz(n). The method is based on the derivative
of W(2) and can be expressed as

—(M -1} 0
oW(2_1| 2z Z,
oz w| [ " (17)
I1z-2) Il (z,-2) < | B
m=1m#1 m=1,m=M Real users Virtual users Real users

Figure 2 Schematic indicating the permitted regions for the
The recursive zero—update formula for tkié user can virtual and real users. Annulus of the width 2(1-r) around the
expressed as unit semicircle is reserved for the real users whereas the
virtual users are inside the semicircle of radius r



all the virtual users are on the shortest distance from t’
desired real user. As an advantage, this kind of contr
strategy for zeros eliminates the spurious root probler
However, as a drawback we need a criterion for tr
model order estimation.

IV. NUMERICAL RESULTS

Subspace trackers in stationary signal scenario
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The ULA array withM=8 elements have been utilisec Subspace trackers in non-stationary signal scenario
for the simulation system setting. The mobile users ha
the moderate SNR of 20 dB. The numerical results ha
been computed for two closely located sources at tl
azimuthal locations of 10and 0. As the performance
measure, the mean DOA error criterion has been utilisi : : : : : : ; :
and the results have been averaged over 20 I e
independent realisations. For the performanc _ _ _
comparison, the mobile users possess the 5° pointinﬁlgure 3 Comparison of CG based signal subspace approach,
errors in their initial azimuthal location estimates. TheZ-" 0!S¢ s‘.JbSpace approafh and rOOI_MU.S'C me.thOd' a)
. . . Stationary signal scenarioA(=1), b) Non-stationary signal
performance comparison has been accomplished interms™" " "~ ~
of convergence speed and misadjustment. In the case geenano 4=0.8)
the stationary signal scenario, the users are at their fixed ACKNOWLEDGEMENTS
locations whereas in the non-stationary signal scenario
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