
Abstract− In this paper for the user tracking application
we develop a step−by−step adaptation method for
tracking the parameter vector in the noise subspace.
Also, we develop the control strategy for the noise
subspace roots eliminating the problems with the
spurious roots. The performance comparison of the
developed user tracking system will be investigated in
terms of the tracking capability. As the performance
criterion, the mean Direction−of−Arrival (DOA) error
will be invoked in the stationary and non−stationary
signal scenarios. The simulation results confirm that the
proposed noise subspace approach can achieve similar
tracking performance as the signal subspace approach in
terms of the convergence speed and the final
misadjustment level.

I. INTRODUCTION

Adaptive array processing techniques can provide more
system capacity by reducing co−channel interference.
This can be realised by the beamforming based
communication [1]. For this aim the parameter
estimation must be appropriately carried out for all the
users of interest both in the stationary and non−stationary
signal scenarios. These parameters could be estimated by
any of the well−known spectrum estimation methods like
MUltiple SIgnal Classification (MUSIC) algorithm but
their inherent computational complexity makes their
continuos invocation infeasible [1]. Therefore, the
adaptive target tracking methods continuously update
tracking parameters of all the users. There are numerous
methods that can be applied for the multi−target tracking
problems. In [2], for the user tracking system, a step−
by−step update mode of Conjugate Gradient (CG) based
algorithm was developed for directly updating the signal
subspace related array response vector. Instead, in this
paper, a different viewpoint has been taken. For our user
tracking system, we will develop an adaptive high−
resolution noise subspace approach.

The paper is organised as follows: in Section 2, the
signal model is introduced on which the paper will be
based. Section 3 introduces the overall system design by
partitioning the user tracking problem into three different
separate system blocks, namely tracking, Direction−of−
Arrival (DOA), and the beamforming units. The design

and the analysis of these different blocks will be carried
out. Section 4 presents some numerical results
comparing both the signal and the noise subspace
approaches. Section 5 draws conclusions about the
proposed system design.

II. SIGNAL MODEL

The observation vectorx(t) of a one−tap channel model
for the antenna receiver can be expressed as

x t = P
k

k=1

K

∑ b
k

t a θ
k
+n t (1)

where the column vectorsa(θk) and n(t) are the array
response vector forkth user (k=1, ...,K) and the Additive
White Gaussian Noise (AWGN) vector, respectively [1].
The total number of co−channel users has been denoted
asK. The array response vector has been parameterised
by θk representing DOA on the azimuth plane. The
transmitted signal waveformbk(t) is modelled as a zero−
mean Gaussian distributed process with the variancePk.
Similarly, the additive noise vectorn(t) independent
from user signals is also drawn from a Gaussian
distribution with the varianceσn

2I . Signal−to−Noise
Ratio (SNR) for the presented signal model is defined to
be 10log(Pk/σn

2) [3].

For the Uniform Linear Antenna (ULA) arrays the
normalised array response vectora(θk) with the λ/2
spaced elements can be defined in the following way:
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In the matrix notation, Eq (1) can now be expressed
more compactly asx(t)=A(θ)s(t)+n(t), where the antenna
response vectors of each users are collected into a single
matrix A(θ)=[a(θ1) ... a(θΚ)]. The antenna response
matrix A(θ) is assumed to be slowly varying with respect
to the parameterθ. Finally, the model correlation matrix
for the antenna array, which is symmetric, non−negative
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definite and Toeplitz can be defined as
R=E[x(t)x(t)H]=ASAH+σn

2I , whereS is a diagonal signal
correlation matrix [1].

The user tracking problem is that of continuously
tracking the parameterθk of the linear model in Eq (1).
In the following sections, the adaptive algorithms are
developed for tracking variations in the parameter value.
There exists Cramer−Rao Lower Bound (CRLB) on the
minimum variance of the parameterθ that any unbiased
estimator can only asymptotically approach [3]. Based
on the presented signal model the CRLB can be
calculated by some algebraical manipulation as

var θ
k
= N

σ
s

2

σ
n

2

∂a θ
k

∂θ
k

2
B1

(3)

whereN is the total number of samples. This bound is
too loose in the sense that it gives optimistic
performance values compared to the bounds of the
adaptive estimators. However, this bound reflects many
interesting properties about the effect of the presented
signal model on the minimum variance of the parameter.

III. SYSTEM MODEL

In this section, the user tracking system will be
formulated. In [2], we investigated the step−by−step
adaptation scheme for updating the signal subspace
vector. We utilise similar construction for the tracking
system but we concentrate on the design and the
implementation of the step−by−step update scheme for
the noise subspace. Figure 1 describes the system
components of the noise subspace based user tracking.
The tracking unit deals with the adaptive algorithms for
tracking the noise subspace. In our approach, it
essentially consists ofRayleigh solverfor seeking the
vectorw(n) corresponding to the minimum eigenvalue of
the model correlation matrix. TheDOA unit deals with
the extraction procedures for finding the necessary
parameter values. Here, we develop a recursive rooting
method for the parameter tracking. Thebeamforming
unit deals with the beamforming procedures for
enhancing the desired signal reception and nulling the
interference. However, the beamforming unit is not

necessary for the functionality of the tracking system and
its consideration will be discarded in this paper.

Tracking unit

In this section, we derive a step−by−step update
algorithm for tracking the minimum eigenvector
corresponding to the minimum eigenvalue of the model
correlation matrixR. As the performance criterion we
minimize the total output power at the output of the
array. In order to prevent the power decreasing to the
zero the constraint for the weight vector will be
introduced. The quadratic cost function can be expressed
as in Eq (4) and will be used as the minimization
criterion of interference and noise components.

J=w
H

Rw (4)

The minimisation of this performance criterion subject to
the constraint wHw=1 leads us into the minimum
eigenvector. This can be deduced by diagonalising the
model correlation matrix by invoking the Eigenvalue
Decomposition (ED) as

J=w
H

σ
m
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H
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whereum is an eigenvector. As a result, the eigenvectors
um (m=1, ..., K) will form the orthonormal basis for the
signal subspace. In the similar way, the eigenvectorsum

(m=K+1, ..., M) will form the orthonormal basis for the
noise subspace. Clearly, the cost function will be
minimised as w converges intouM. Typically, the
ordinary adaptive eigensubspace algorithms track the
whole subspace. Because of the orthonormal subspace
requirement, many of these subspace algorithms will
eventually need to invoke for example theGram−
Schmidt orthonormalisation procedure. The
computational complexity may be prohibitive when
utilising the high−dimensional subspace. Due to the fact
of not utilising the whole subspace we experience some
performance losses. However, as the signal subspace
dimensionK approachesM the available information in
the noise subspace will anyway diminish. Furthermore,
the model order estimation methods, i.e., the estimation
of number of users will be required by these methods. If
the model order has been underestimated greater
performance losses can be expected compared to the
overestimation, because part of the signal subspace has
been included on the estimation. Therefore, in this case
by using only one noise eigenvector will be more robust
and also enough in terms of performance.

The model correlation matrix can be estimated through
exponentially decaying data window. The rank one
update scheme has been chosen for the exponentially
decaying correlation matrix estimateR(n) with the
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Figure 1 Overall block diagram for the noise subspace based
mobile user tracking system (n: iteration index)



forgetting factorλf. The forgetting factorλf reflects the

amount of signal non−stationarity in the correlation
matrix estimate. The model correlation matrixR(n) can
be expressed as

R n =λ
f
R nB1 + x n x n

H (6)

We useLagrange’s theoremfor solving the minimisation
problem. The Lagrange’s unconstrained cost function is
defined as

J
L
=w n

H

R n w n Bλ n w n
H

w n B1 (7)

The negative gradient of the modified cost function of
the Lagrange theorem can be calculated as

g n =
B∂ J

L

∂w n
=2 BR n w n +λ n w n (8)

This residual vectorg(n) will be used for the gradient
estimate in our adaptive minimisation method.
Lagranges’s multiplier can be respectively evaluated
from the gradient of the cost function  JL as

λ n =w n
H

R n w n

w n
H

w n
(9)

The expression in Eq (9) is called Rayleigh quotient of
vectorw(n). The weight vector update step will be taken
in the search direction  g(n) as

w n =w nB1 +α n g n (10)

whereα(n) is the optimal step size and∆w(n)=α(n)g(n)
is the deviation imposed on the minimum eigenvector.
The quantityα(n) can be determined in the following
way: In the ideal case, when the eigenvalue spreadσ1/σΜ

is close to 1, the cost function is smooth and the
optimum solution could be achieved in one step.
Therefore, the gradient of the Lagrange’s cost function
will be orthogonal to the previous search direction, i.e.,
to the residual directiong(n−1). By some algebraical
manipulation and using the assumption of slowly
changing signal scenario the optimal step sizeα(n) can
be expressed as

α n ≈ η g n
H

g n

g n
H

R n +λ n I g n
(11)

where the parameterη is an auxiliary step size
introduced for increasing the performance. More search

direction vectors could be evaluated for gaining the
better performance and finally, we would end up in the
CG like algorithm. However, quite often one update step
and sometimes one residual vector computation for the
parameter vectorw(n) is enough because of not
obtaining very much additional performance gain.

The normalisation of the weight vector is required in
order to guarantee the constraint. Therefore, the
normalisation factorw(n−1)Hw(n−1) in the denominator
of Eq (9) will be of unity value and can be discarded.

w n = w n

w n
H

w n
(12)

The developed tracking method is the suboptimal one.
Therefore, we have chosen to compare the performance
of the developed method to the performance of high−
resolution root−MUSIC spectrum estimation method.
The weight vector estimatew(n) for a block of N
collected samples with the application of ED is

w n =trace∀d
u

m
m=K +1

M

∑ u
m

H
(13)

where trace∀d operation is targeted on all thedth
subdiagonals (d=0, ..., M−1) and scalars from the trace
operator are stacked on the column vector  w(n) [4].

It should be noted that the estimation of onlyM−1
tracking parameters can be realised in the noise
subspace. In addition, suitable recursive formulation is
needed for discarding thedata associationproblem
which does not exist with the reference signal based
methods. Therefore, the noise subspace approach makes
it more difficult in the efficient and robust way to extract
the tracking parameters. In the next section, we
concentrate on developing the parameter tracker.

DOA unit

In this section, the DOA extraction method will be
developed. As the weight vectorw(n) of the tracking unit
has converged it can be used for extracting the location
parameters. The location parameters can be basically
estimated by using two different approaches, the
companion matrixbased methods[5] or zero−tracking
based methods[6]. Here, we concentrate especially on
the zero−tracking method and develop a control strategy
for controlling motion of the roots. This effectively
discards the problems with thespurious roots and
alleviates some numerical problems.

Companion matrix methods are based on the special
structure of the non−symmetric companion matrix.
Eigenvalues of the companion matrix are the same as the



roots of the minimum eigenvector and therefore, it can
be used for the parameter estimation[5]. Finding
eigenvalues of the unsymmetric matrix is ill−conditioned
in nature. Ordinary adaptive algorithms cannot be
utilised in the computation unless introducing symmetric
matrix. However, for solving the roots theclassical
power method, the inverse power methodor theRayleigh
Quotient Iteration(RQI) method or their modifications
have been generally utilised for the root extraction[7].
These methods experience difficulties in not always
converging into the right root locations, especially, if
initial parameter estimates are not close enough to true
estimates.

By using the well−known Pisarenko theorem we can find
the harmonic frequencies contained in the correlation
matrix by solving the roots of the minimum eigenvector
[7]. The respective Autoregressive (AR) power spectrum
equation corresponding to the minimum eigenvector is

W z =w
1
+...+w

M
z
BM +1 (14)

This expression corresponds to theminimum phasefilter
although the root estimator is not necessarily constrained
to have all the zeros inside the unit circle. The spatial
user locations are to be extracted from the roots of this
minimum eigenvector. For this aim the spectrum
equation is first expressed in terms of zeros as

W z =w
1

1B z
m
z
B1

m=1

M

∑ (15)

where zk(n)=rkexp(−jπsin(θk(n))) are the root locations.
The final location extraction function corresponding to
the presented model can be expressed as

Θ n =Barcsin imag log rootsw n ⁄π (16)

where the roots−operator extractsM roots from whichK
roots closest to the unit circle are chosen. The extracted
parameters are stacked in the column vector  θ(n).

In the zero−tracking method, small change of∆w(n) in
the minimum eigenvector results in small changes in the
root values∆z(n). The method is based on the derivative
of W(z) and can be expressed as
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The recursive zero−update formula for thekth user can
expressed as

z
k

n = z
k

nB1 +∆w n
∂W z

∂ z
k

n
(18)

In Eq (16), we process the totalM roots of which we
have M−K additional spurious roots. Sometimes, these
spurious roots approach the unit circle and confuse us to
choose some of them instead of the true roots. Therefore,
we focus on developing a control strategy for roots. The
method is based on the division of the unit semicircle on
two different regions as determined by the limit
parameterr (r≤1). This has been illustrated in Figure 2.
In addition, the M users have been divided into two
groups, the group of the K real users and the group of  M−
K virtual users. These real users have been constrained to
be in the annulus close to the unit circle. In the
initialisation process, the real users will be placed on the
unit semicircle at their initial angular positions whereas
the M−K virtual users are evenly distributed on the unit
semicircle at the magnitude distance ofr. The control
procedure will be executed in the following manner: If
kth virtual user cross the boundary the normalisation
operation will be carried out onzk(n). Real users are
usually wandering in the vicinity of the unit semicircle
and if the boundary crossing happens the normalisation
of the zeros will be executed.

It is well−known that the root−tracking problems are ill−
conditioned. As a fact, the zero tracking methods have
numerical problems because of a long product chain of
subtractions in the denominator. This will evidently
introduce some computational errors for the estimated
parameters. The problem can be alleviated by developing
the recursive estimation formula for the zero−tracking
method [4]. For our root−tracking strategy the condition
number ofkth user andmth coefficient can be evaluated
as
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which can be further simplified asK≤(1−r)−Μ+1. This is
the worst−case situation and reflects an occasion when

Figure 2 Schematic indicating the permitted regions for the
virtual and real users. Annulus of the width 2(1−r) around the
unit semicircle is reserved for the real users whereas the
virtual users are inside the semicircle of radius r
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all the virtual users are on the shortest distance from the
desired real user. As an advantage, this kind of control
strategy for zeros eliminates the spurious root problem.
However, as a drawback we need a criterion for the
model order estimation.

IV. NUMERICAL RESULTS

The ULA array with M=8 elements have been utilised
for the simulation system setting. The mobile users have
the moderate SNR of 20 dB. The numerical results have
been computed for two closely located sources at the
azimuthal locations of 10° and 0°. As the performance
measure, the mean DOA error criterion has been utilised
and the results have been averaged over 2000
independent realisations. For the performance
comparison, the mobile users possess the 5° pointing
errors in their initial azimuthal location estimates. The
performance comparison has been accomplished in terms
of convergence speed and misadjustment. In the case of
the stationary signal scenario, the users are at their fixed
locations whereas in the non−stationary signal scenario
the users are moving with the constant angular velocity
of 0.025 samples/deg.

Figure 3 shows the numerical results for the CG based
signal subspace method, our noise subspace method and
root−MUSIC method. Figure 3a) and b) compares the
tracking performance in the stationary and non−
stationary signal scenario, respectively. The performance
of our noise subspace method gives higher mean DOA
errors when in the low SNR. This is due to the fact that
in the signal subspace approach the rooting process can
be eliminated, thus, making the implementation of the
DOA tracking unit more simple and robust. However, in
the noise subspace the closely located sources can
generally be separated with the lower mean DOA error
than in the signal subspace. In general, the increase in
the mean DOA error will take place in both estimators
when the parameter valueθk approach the endfire of
array. This behaviour, as also suggested by the CRLB
limit of Eq (2), will reduce the applicability of these kind
of parameter estimators for the signal directions close to
the broadside. The computational complexity for the
tracking and DOA units in the proposed system is O(M2)
and O(KM) whereas for the CG based signal subspace
system it is O(KM2) and O(KM), respectively.

V. CONCLUSIONS

The system component design has been done for the user
tracking application by dividing the tracking problem
into three system blocks. The tracking problem has been
cast into the form of the constrained minimisation
problem and the adaptive step−by−step update scheme
has been derived for the tracking unit. For the DOA unit
the control scheme for the root tracking was developed.
Two different system approaches were compared by the
simulations showing similar tracking performance.
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