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Abstract - Adaptive antennas enable the increase in th§ SIGNAL MODEL
system capacity through spatial interference suppression
in the beamforming mode. All the spatial domain channeIT
estimators must react fast to abrupt changes in the channfilr‘ﬁ|
parameters. Additionally, they have to provide accurate
enough tracking capabilities. In this paper, we construct K
the user tracking system by employing an efficient x(t):z\/Fkbk (ta@@,) +n(t) 1)
Conjugate Gradient (CG) method based on a step-by-step k=1

adaptation scheme. Furthermore, the paper investigates

the tracking capability and the computational complexity whereM-sized column vectora(4) andn(t) are the array
issues of the proposed system. The simulation resultsesponse vector for thkth user k=1, ..., K) and the
confirm that the proposed CG method achieves betteAdditive White Gaussian Noise (AWGN) vector,
tracking performance than gradient methods both in theespectively. The number of co-channel userk.iShe

e observation vectot(t) of a one-tap channel model at
e antenna receiver can be expressed as

stationary and non-stationary signal scenario. array response vector is parameterised dywhich
represents Direction-of-Arrival (DOA) on the azimuth
| INTRODUCTION plane. As a result, the user tracking problem becomes that

of continuously updating the parametefi. The

. . . . transmitted signalb(t) is modelled as a zero-mean
Adaptive array processing techniques can provide MOres . ussian  distributed process with the variare

system capacity by reducing co-channel interference. I:O'E\Z-imilarly, n(t) is also drawn from a Gaussian distribution

this am the <_:hanne| mformatlon must be_ accura_ltelywith the variances’. Signal-to-Noise Ratio (SNR) is
acquired both in the stationary and non-stationary signal

1 2
scenario. The channel parameter-tracking problem arisegmclnecj to be 10log/ow’) [1]-

in the numerous situations, e.g., in the mobile user_l_h it s th lised
tracking where the spatial beamforming procedure must e quantity a(4) is the normalised array response

be carried out continuously for each user in order o Vector. For the Uniform Linear Antenna (ULA) arrays it
maximise the signal powers of the desired users. In oufan be expressed as

paper a training signal based CG method and the gradient 1

algorithm are implemented that adaptively in_the sample- a(@k)zﬁ[l exp(iw,) ... exp(i(M — )" 2)
by-sample manner update the signal eigensubspace

containing the relevant tracking parameters.
where the array factogy is defined to be &sin(4)f/c.

The paper is organised as follows: in Section 2, the signalf his factor includes the distance between elemeniise
model is formulated for the user tracking system. SectioncOmmunication frequendyand the speed of light

3 presents the overall system model partitioning the user- ) )

tracking problem to the tracking, DOA extraction and the N the matrix notation, Eq (1) can be expressed more
beamforming units. Section 4 discusses the computationafompactly as
complexity of the components of the tracking system. In

Section 5, the numerical results comparing the gradient

and the proposed CG methods are presented. Section 6

draws appropriate conclusions about the trackingA” the Steering vectors are collected into a mamx
performance of our adaptation schemes. which can be expressed as

x(t) = As(t) +n(t) (3)



A=[a@,) ...a,)] 4)

MN———p V()
ox(n)
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The model correlation matrix for the antenna array can be
A 4
expressed as Tracking
unit
— H_ H 2
R = E[X(t)x(t) ]_ ASA™ + a,l (5) Figure 1 Overall system block diagram for the signal subspace user
tracking (adaptation update step n).
where S=E[s(t)s(t)"'] is the signal correlation matrix and ] o
A is a slowly varying antenna response matrix for all the the computational complexity increase as opposed to the
users. The signal subspace updating schemes rely on trgadient method.
updating process of the adaptive algorithms to converge

to the dominant signal subspace spanned by the full rand he general cost function of the gradient method can be

signal correlation matriaSA" [2]. expressed as an unconstrained minimisation proptm
as

Although this is a crude signal model for a typical radio R

communication channel, it is assumed that the multipath J= E["x—A[AHA}AHx” } (6)

components essentially arrive from the same direction and
thus cannot be resolved by the beamformer. Furthermore,_, . . —
the possible resolved signal components are coherent an his can be mterpreted as t.he projection of - the
the coherency removing methods like Spatial SmoothingO servation vectox into the noise subspace. As an

(SS) are needed to restore the rank of the rank deficiencgdaptive implementation, the gradient based inflation like
matrix R pdate scheme with a step sizecan be invoked for

updating the signal subspack directly. In [4], we
modified the same cost function with the adaptive step
size control for faster convergence and lower
misadjustment.

The block diagram of Figure 1 describes the overall

system model for our tracking system. Next, the systemThe quadratic cost function of our CG problem for ktte
components will be described in detail. user can be formulated as follows:

I SYSTEM MODEL

Tracking Unit J =a(6,)"Ra¥,) +a(6,)"b (7)

whereR andb are the model correlation matrix and the

The signal subspace tracking unit deals with themodel cross-correlation vector, respectively. This

?’ﬂip?;;%:grergggr:;igr?dS:g]tﬂet:qe v?/ilﬁ]nsle Sfuotisrfﬁ;fe d quadratic cost function will be used as the minimisation
both for a gradient and especially for a CG based methodC't€ron qf interference and noise compondii]. In
ur tracking system, computationally complex Gram-

/staér; i?\at%tlevzt;mPtl)engtaélogétvgesgr:(;ﬁ;gs]?yf;igf hrggthocgchmidt orthonormalisation step can be eliminated, which
P-Dy-SIep up is needed in the ordinary adaptive eigensubspace

been implemented to update the signal subspace with :
. ) . ; algorithms.
every new incoming sample by using the given cross-

correlation information. 1§4], we have utilised a gradient In our system derivation, initially unknown antenna

like method with an adaptive step size for the USET . chonse vector(d) will be replaced with a weight
tracking. The adaptive step size method was based on the P P g

block processing formN samples were gathered for vector estimate/v(n). T he weight ve_ctow(n) converges
better performance and one update iteration wasto the desired _steerlng vector, which correlate_s best the
performed. For two reasons this tumns out to be desired user signal. The sample agtocorrelatlon matrix
disadvantageous. First, althoughood convergence R(n) and the sampl_e cross-corr_elatlon veagm) are
properties could be achieved but in the practical systemg"’m.k one updat_e with a forgettmg fac@f- They are

we favour step-by-step update mode rather thane§t|mated by.usmg exponentially decaymg data windows
instantaneous  block update. Secondly, the non-With a forgetting factori; as expressed in Eq. (8) where
stationarity in the collected samples will result in A(n) is the reference signal. The forgetting factomill
inaccurate estimates. Therefore, we implement the c@eflect the amount of signal non-stationarity in the
algorithm in the step-by-step update mode although withCOrrelation matrix estimate.



R(n) = 2,R(n—1) +x(n)x" (n) ®) DOA Unit
b(n) = A,;b(n)+ d(n)x(n)

The weight vector of the tracking unit converges toward a

tsteering vector, which maximises the signal power for the

gesired user. The DOA extraction unit updates the

estimates for the tracking anglégn) due to the spatial

movements of users by using linear regression on the
_ _ _ samples from the array manifold. The DOAs are to be

g(n) ==V, J = =R(mw(n) ~b(n) © extracted from the steering vector representation of Eq

) ) .. . (2. As an extraction method, Least Square (LS)

In the algorithm, we choose the step size that mlnlmlsesperformance criterion will be employed. The LS criterion

the cost functionJ through the line search procedure jqy)aqeq on the linear model, which can be expressed as
along the search directiqr{n-1). As a result, the step size

can be expressed as

Residual vector points to the direction of the steepes
descent, i.e., the negative gradient of the cost function an
can be expressed as

X=H6, +n (15)
H
a(n) =7 Hp (n=Dg(n—1) (10) where, is the parameter of interest to be estimatteds
p"(n-DR(np(n-1) the Mx1 observation vector and is the model noise

vector. The LS estimator can be expressed as
where 77 is an auxiliary step size parameter. The new

weight vector is computed as a sum of previous weight oS Ty iy
T n=H'H) H'z(n 16
vector and the scaled direction veqgbgin-1). () ( ) 2 (16)

w(n) =w(n-1) +a(np(n-1 (11) Wher'fefé(n) consists ofM samples of¢ from the array
manifold.

The key point in the sample-by-sample processing is tha
we update the residual vector of Eq (9) by incorporating
the estimates of the correlation matrix and cross-
correlation vector in Eq (8) into the residual ved¢&]r

tI'he observation vectdd contains the known quantities
from the steering vector. In the general case, these values
depend on the array structure. For the linear array
configuration they can be defined asdgm-1)sin(G)f/c,
wherem (m=1, ...,M) is an index of the antenna element.
Therefore, for the ULA antenna the observation vektor
can be expressed as

9(n) = 4;9(n-1) —a(nNR(n)p(n-1)

+x(n)(d(m) —x(n)"* w(n-1)) (12)
In the conventional CG, the residuals will be used as H=[0z 2z ..(M-Dz]" 17
search directions. Therefore, in the conventional Block

Conjugate Gradient (BCG) algorithm the convergenceThe parameterd inside the exponent in the steering
could be achieved iM steps. The new search directions vector representation is extracted through the log-
are forced to b&-orthogonalto all the previous search operation. Because of the linear estimation of the
directions. The factop(n) will be used for ensuring that parameterg, from sin@) some error will emerge. This
this R-orthogonality is preserved. In the sample-by- error is tolerable when the small changes in the estimated
sample processing the direction vectors lose orthogonalityyarameters, can be assumed. The LS estimation is done
and periodic resetting will be eventually needed. Due togn the array manifold difference of the CG estimated

this non-linear sample-by-sample processing, P0|ak‘weight vector w(n) and a(é(n-1)) estimated in the

A(n) factor will be used for providing faster convergence.
z,(n) = Im(log(w(n) + a8, (n—1)))) (18)

where + is defined to be elementwise vector division.
This kind of difference computation is applied because
otherwise, sudden changes in the parameter value can not
accurately be tracked through the linear model. The new
p(n) =g(n) + A(N)p(n-1) (14) DOA 64(n) for thekth user is based on the presented LS
estimation and can be expressed as

) = max{ (g(n) -g(n-1)" g(n) ,0} 19)

g" (n-g(n-1)

The new search directions can be evaluated as



0,(n) =6, (n—1) + 6 (n) (19) Computational Complexity of the CG
algorithm

It should be noted that as the weight vector estimate of
the tracking unit has converged the DOA extraction unitAs compared to the conventional CG algorithm, the

does not provide any further estimation errors. computation of the residual vectgfn) and the factor
p(n) of the sample-by-sample CG algorithm are more
Beamforming Unit complex and require a higher number of vector inner

products. Therefore, in this section the computational
complexities of the sample-by-sample Conjugate Gradient

In the beamforming unit the normalisation procedure is . . . .
9 P algorithm and the conventional Conjugate Gradient also

carried out by replacing the weight vector estima(a) referred to as Block Conjugate Gradient (BCG)

by the normalised antenna response veatd(n)). This algorithms are studied and compared. In these

_upda_ted vector is fed back to the tra_c_klng unit for the_ neXtcomparisons all the parameters are complex and one
iteration cycle. In our system, we utilise the conventional

b formi th f tina the b formi division has the same complexity as one multiplication.
eamiorming me of2] for computing the beamforming Note that for estimating the complexities, we have only
signalyi(n) that can be expressed as

considered the number of multiplications. This is due to
the fact that multiplications are more complex than

Y (n) = (WH(n)W(n))&WH(n)X(n) (20) additions. The results are shown in Table 2.
IV COMPLEXITY OF THE SYSTEM T_able ZComparlspn of computational complexities of
different CG algorithms
In this section, the order of complexity of different units Algorithm Numtl)tgzrlpf (t:pmplex
are estimated and compared. In the tracking, DOA, and Zmu Iphications
beamforming units, the most computationally intensive BCC I[((M”+5M +2)-2M -1
operations are Eq (10), Eq (16) and Eq (20), respectively. Sample-by-sample CG M?2+10M +3

When estimating the computational complexity of the |: Maximum number of iterations for a block

DOA unit, the log function of Eq (18) was not

considered. This was due to the fact that for thewhen calculating the computational complexity of the
implementation of the log function, different techniques BCG, one should note that in the last iteration for
such as table oriented methods, iterative methods, an@pdating the filter coefficients the only necessary
polynomial approximations can be utilized. In fact in [7], computation required is the calculation of the step gize
it was shown that logj, can be evaluated tosignificant |t js clear that the computational complexity of the BCG
bits in OM(n)log(n))) steps, wherél,(n) is units of time gepends on the number of iteratidnghus, for large
required to multiplyn-bit numbers. In Table 1, we have the computational complexity of the BCGliimes of the
calculated the order of complexity for different units of complexity of the sample-by-sample CG algorithm.
Figure 1. In many caseK<<M, therefore, the

complexities in Table 1 can still be reduced by a factor of |y the CG algorithm, the dominating operation is the

K. matrix-vector product of Eq (10). Furthermore, for every
_ ) N new sample in the tracking unit one should estimate the

Table 1Comparison of computational complexities correlation matrix according to Eq (8). Therefore, by
Unit Equation Order of considering the practical aspects of the system, for the
Number complexity tracking unit adequate hardware should be developed. In

Tracking (20) O(KM ?) our future. work, we will discuss the implementation'of

DOA (16) O(KM) our tracking system, and will focus on developing

) efficient VLSI array processors that are suitable for real
Beamforming (20) O(KM) time applications.

As can be seen from Table 1, the tracking unit has the,y NUMERICAL RESULTS
highest order of complexity. It is clear that the core of this

unit is the sample-by-sample CG algorithm. Therefore, in
the following section, we will discuss the complexity of
the algorithm in more details.

The simulation system setting assumes the base station or
similar configuration whereM=8 linearly arranged



antenna elements witk/2 spacing is applied. The users
introduced into the cell area have moderate SNR=20 dB
and their initial location estimates possess thpdinting
errors. As the performance measure, the mean DOA error
criterion has been utilised and the results have been
averaged over 2000 independent realisations. In the case
of a stationary signal scenario, the users are at the fixed
locations whereas in the non-stationary signal scenario the
users are moving with the constant angular speed of 0.025
samples/deg. In this kind of the simulation setting both
adaptive algorithms can cope with the specified angular
speed without divergence by using only one update step
for the signal subspace on every incoming sample.

Figure 2 illustrates the simulation results. Figure 2a)
presents a tracking realisation of the CG based method
with the maximum allowableM=8 users that can still
reliably be tracked. In Figure 2b) and c) the performance
comparison of the tracking capability of the gradient and
the CG based methods has been carried out. The CG
based method provides faster convergence and smaller
misadjustment. When the number of users increases and
especially when they are closely located the CG method
can more steadily track them as compared to the gradient
method. Furthermore, the location estimates provided by
the CG method behave smoother. The performance of the
gradient method is greatly sensitive to the proper choice
of the step size parameter Therefore, the fixed step
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Figure 2 a) Sample tracking trajectory for the CG based

sizes selected were a trade-off between the convergencgignal subspace method with M=8 usérsMean DOA error

speed and the final misadjustment.

for the gradient method with parameters0.004 (stationary)

and 4=0.005 (non-stationary). ¢) Mean DOA error for CG

VI CONCLUSIONS

based method with parameteis=1, 7=0.4 (stationary) and

24=0.8, n=0.6 (non-stationary).

The step-by-step update scheme of the CG method was

implemented for the user tracking system. The paperREFERENCES

compared the tracking performance of the gradient and
CG method in the stationary and non-stationary signal(®)
scenario. For the proposed CG method the simulatiory,
results indicated the better tracking performance in terms
of the faster and smoother convergence and the smalleg)
misadjustment. As for further research, we will discuss
the implementation of our tracking system in the noise
subspace and also focus on developing efficient VLSI 4
array processors for real time applications.
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