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Abstract - Adaptive antennas enable the increase in the
system capacity through spatial interference suppression
in the beamforming mode. All the spatial domain channel
estimators must react fast to abrupt changes in the channel
parameters. Additionally, they have to provide accurate
enough tracking capabilities. In this paper, we construct
the user tracking system by employing an efficient
Conjugate Gradient (CG) method based on a step-by-step
adaptation scheme. Furthermore, the paper investigates
the tracking capability and the computational complexity
issues of the proposed system. The simulation results
confirm that the proposed CG method achieves better
tracking performance than gradient methods both in the
stationary and non-stationary signal scenario.

I INTRODUCTION

Adaptive array processing techniques can provide more
system capacity by reducing co-channel interference. For
this aim the channel information must be accurately
acquired both in the stationary and non-stationary signal
scenario. The channel parameter-tracking problem arises
in the numerous situations, e.g., in the mobile user
tracking where the spatial beamforming procedure must
be carried out continuously for each user in order to
maximise the signal powers of the desired users. In our
paper a training signal based CG method and the gradient
algorithm are implemented that adaptively in the sample-
by-sample manner update the signal eigensubspace
containing the relevant tracking parameters.

The paper is organised as follows: in Section 2, the signal
model is formulated for the user tracking system. Section
3 presents the overall system model partitioning the user-
tracking problem to the tracking, DOA extraction and the
beamforming units. Section 4 discusses the computational
complexity of the components of the tracking system. In
Section 5, the numerical results comparing the gradient
and the proposed CG methods are presented. Section 6
draws appropriate conclusions about the tracking
performance of our adaptation schemes.

II SIGNAL MODEL

The observation vector x(t) of a one-tap channel model at
the antenna receiver can be expressed as
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where M-sized column vectors a(�k) and n(t) are the array
response vector for the kth user (k=1, ..., K) and the
Additive White Gaussian Noise (AWGN) vector,
respectively. The number of co-channel users is K. The
array response vector is parameterised by �k which
represents Direction-of-Arrival (DOA) on the azimuth
plane. As a result, the user tracking problem becomes that
of continuously updating the parameter �k. The
transmitted signal bk(t) is modelled as a zero-mean
Gaussian distributed process with the variance Pk.
Similarly, n(t) is also drawn from a Gaussian distribution
with the variance �n

2. Signal-to-Noise Ratio (SNR) is
defined to be 10log(Pk/�n

2) �1�.

The quantity a(�k) is the normalised array response
vector. For the Uniform Linear Antenna (ULA) arrays it
can be expressed as
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where the array factor �k is defined to be 2�dsin(�k)f/c.
This factor includes the distance between elements d, the
communication frequency f and the speed of light c.

In the matrix notation, Eq (1) can be expressed more
compactly as
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All the steering vectors are collected into a matrix A,
which can be expressed as
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The model correlation matrix for the antenna array can be
expressed as
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where S=E�s(t)s(t)H� is the signal correlation matrix and
A is a slowly varying antenna response matrix for all the
users. The signal subspace updating schemes rely on the
updating process of the adaptive algorithms to converge
to the dominant signal subspace spanned by the full rank
signal correlation matrix ASAH �2�.

Although this is a crude signal model for a typical radio
communication channel, it is assumed that the multipath
components essentially arrive from the same direction and
thus cannot be resolved by the beamformer. Furthermore,
the possible resolved signal components are coherent and
the coherency removing methods like Spatial Smoothing
(SS) are needed to restore the rank of the rank deficiency
matrix R.

III SYSTEM MODEL

The block diagram of Figure 1 describes the overall
system model for our tracking system. Next, the system
components will be described in detail.

Tracking Unit

The signal subspace tracking unit deals with the
adaptation schemes for updating the signal subspace An.
The parameter estimation problem will be formulated
both for a gradient and especially for a CG based method.
As an adaptive implementation, we propose a CG method
based on the step-by-step update scheme of �3� which has
been implemented to update the signal subspace with
every new incoming sample by using the given cross-
correlation information. In �4�, we have utilised a gradient
like method with an adaptive step size for the user
tracking. The adaptive step size method was based on the
block processing form. N samples were gathered for
better performance and one update iteration was
performed. For two reasons this turns out to be
disadvantageous. First, although good convergence
properties could be achieved but in the practical systems
we favour step-by-step update mode rather than
instantaneous block update. Secondly, the non-
stationarity in the collected samples will result in
inaccurate estimates. Therefore, we implement the CG
algorithm in the step-by-step update mode although with

the computational complexity increase as opposed to the
gradient method.

The general cost function of the gradient method can be
expressed as an unconstrained minimisation problem �5�
as
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This can be interpreted as the projection of the
observation vector x into the noise subspace. As an
adaptive implementation, the gradient based inflation like
update scheme with a step size � can be invoked for
updating the signal subspace A directly. In �4�, we
modified the same cost function with the adaptive step
size control for faster convergence and lower
misadjustment.

The quadratic cost function of our CG problem for the kth
user can be formulated as follows:
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where R and b are the model correlation matrix and the
model cross-correlation vector, respectively. This
quadratic cost function will be used as the minimisation
criterion of interference and noise components �5,6�. In
our tracking system, computationally complex Gram-
Schmidt orthonormalisation step can be eliminated, which
is needed in the ordinary adaptive eigensubspace
algorithms.

In our system derivation, initially unknown antenna
response vector a(�k) will be replaced with a weight
vector estimate w(n). The weight vector w(n) converges
to the desired steering vector, which correlates best the
desired user signal. The sample autocorrelation matrix
R(n) and the sample cross-correlation vector bk(n) are
rank one update with a forgetting factor �f. They are
estimated by using exponentially decaying data windows
with a forgetting factor �f as expressed in Eq. (8) where
d(n) is the reference signal. The forgetting factor �f will
reflect the amount of signal non-stationarity in the
correlation matrix estimate.
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Figure 1 Overall system block diagram for the signal subspace user
tracking (adaptation update step  n).
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Residual vector points to the direction of the steepest
descent, i.e., the negative gradient of the cost function and
can be expressed as
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In the algorithm, we choose the step size that minimises
the cost function J through the line search procedure
along the search direction p(n-1). As a result, the step size
can be expressed as
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where � is an auxiliary step size parameter. The new
weight vector is computed as a sum of previous weight
vector and the scaled direction vector p(n-1).
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The key point in the sample-by-sample processing is that
we update the residual vector of Eq (9) by incorporating
the estimates of the correlation matrix and cross-
correlation vector in Eq (8) into the residual vector �3�.
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In the conventional CG, the residuals will be used as
search directions. Therefore, in the conventional Block
Conjugate Gradient (BCG) algorithm the convergence
could be achieved in M steps. The new search directions
are forced to be R-orthogonal to all the previous search
directions. The factor �(n) will be used for ensuring that
this R-orthogonality is preserved. In the sample-by-
sample processing the direction vectors lose orthogonality
and periodic resetting will be eventually needed. Due to
this non-linear sample-by-sample processing, Polak-
Ribiere method with resetting in the computation of the
�(n) factor will be used for providing faster convergence.
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The new search directions can be evaluated as
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DOA Unit

The weight vector of the tracking unit converges toward a
steering vector, which maximises the signal power for the
desired user. The DOA extraction unit updates the
estimates for the tracking angles �k(n) due to the spatial
movements of users by using linear regression on the
samples from the array manifold. The DOAs are to be
extracted from the steering vector representation of Eq
(2). As an extraction method, Least Square (LS)
performance criterion will be employed. The LS criterion
is based on the linear model, which can be expressed as

nHx �� k� (15)

where �k is the parameter of interest to be estimated, H is
the M�1 observation vector and n is the model noise
vector. The LS estimator can be expressed as
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where zk(n) consists of M samples of �k from the array
manifold.

The observation vector H contains the known quantities
from the steering vector. In the general case, these values
depend on the array structure. For the linear array
configuration they can be defined as 2�d(m-1)sin(�k)f/c,
where m (m=1, ..., M) is an index of the antenna element.
Therefore, for the ULA antenna the observation vector H
can be expressed as
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The parameter �k inside the exponent in the steering
vector representation is extracted through the log-
operation. Because of the linear estimation of the
parameter �k from sin(�k) some error will emerge. This
error is tolerable when the small changes in the estimated
parameter �k can be assumed. The LS estimation is done
on the array manifold difference of the CG estimated
weight vector w(n) and a(�k(n-1)) estimated in the
previous iteration round that can be specified as
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where � is defined to be elementwise vector division.
This kind of difference computation is applied because
otherwise, sudden changes in the parameter value can not
accurately be tracked through the linear model. The new
DOA �k(n) for the kth user is based on the presented LS
estimation and can be expressed as
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It should be noted that as the weight vector estimate of
the tracking unit has converged the DOA extraction unit
does not provide any further estimation errors.

Beamforming Unit

In the beamforming unit the normalisation procedure is
carried out by replacing the weight vector estimate w(n)
by the normalised antenna response vector a(�k(n)). This
updated vector is fed back to the tracking unit for the next
iteration cycle. In our system, we utilise the conventional
beamforming method �2� for computing the beamforming
signal yk(n) that can be expressed as
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IV COMPLEXITY OF THE SYSTEM

In this section, the order of complexity of different units
are estimated and compared.  In the tracking, DOA, and
beamforming units, the most computationally intensive
operations are Eq (10), Eq (16) and Eq (20), respectively.
When estimating the computational complexity of the
DOA unit, the log function of Eq (18) was not
considered. This was due to the fact that for the
implementation of the log function, different techniques
such as table oriented methods, iterative methods, and
polynomial approximations can be utilized. In fact in [7],
it was shown that log(x), can be evaluated to n significant
bits in O(Mu(n)log(n))) steps, where Mu(n) is units of time
required to multiply n-bit numbers. In Table 1, we have
calculated the order of complexity for different units of
Figure 1. In many cases K<<M, therefore, the
complexities in Table 1 can still be reduced by a factor of
K.

Table 1 Comparison of computational complexities

Unit Equation
Number

Order of
complexity

Tracking (10) )( 2KMO

DOA (16) )(KMO

Beamforming (20) )(KMO

As can be seen from Table 1, the tracking unit has the
highest order of complexity. It is clear that the core of this
unit is the sample-by-sample CG algorithm. Therefore, in
the following section, we will discuss the complexity of
the algorithm in more details.

Computational Complexity of the CG
algorithm

As compared to the conventional CG algorithm, the
computation of the residual vector g(n) and the factor
�(n) of the sample-by-sample CG algorithm are more
complex and require a higher number of vector inner
products. Therefore, in this section the computational
complexities of the sample-by-sample Conjugate Gradient
algorithm and the conventional Conjugate Gradient also
referred to as Block Conjugate Gradient (BCG)
algorithms are studied and compared. In these
comparisons all the parameters are complex and one
division has the same complexity as one multiplication.
Note that for estimating the complexities, we have only
considered the number of multiplications. This is due to
the fact that multiplications are more complex than
additions. The results are shown in Table 2.

Table 2 Comparison of computational complexities of
different CG algorithms

Algorithm Number of complex
multiplications

BCG 12)25( 2
���� MMMI

Sample-by-sample CG 3102
�� MM

I: Maximum number of iterations for a block

When calculating the computational complexity of the
BCG, one should note that in the last iteration for
updating the filter coefficients the only necessary
computation required is the calculation of the step size �.
It is clear that the computational complexity of the BCG
depends on the number of iterations I. Thus, for large M
the computational complexity of the BCG is I times of the
complexity of the sample-by-sample CG algorithm.

In the CG algorithm, the dominating operation is the
matrix-vector product of Eq (10). Furthermore, for every
new sample in the tracking unit one should estimate the
correlation matrix according to Eq (8). Therefore, by
considering the practical aspects of the system, for the
tracking unit adequate hardware should be developed. In
our future work, we will discuss the implementation of
our tracking system, and will focus on developing
efficient VLSI array processors that are suitable for real
time applications.

V NUMERICAL RESULTS

The simulation system setting assumes the base station or
similar configuration where M=8 linearly arranged



antenna elements with �/2 spacing is applied. The users
introduced into the cell area have moderate SNR=20 dB
and their initial location estimates possess the 5� pointing
errors. As the performance measure, the mean DOA error
criterion has been utilised and the results have been
averaged over 2000 independent realisations. In the case
of a stationary signal scenario, the users are at the fixed
locations whereas in the non-stationary signal scenario the
users are moving with the constant angular speed of 0.025
samples/deg. In this kind of the simulation setting both
adaptive algorithms can cope with the specified angular
speed without divergence by using only one update step
for the signal subspace on every incoming sample.

Figure 2 illustrates the simulation results. Figure 2a)
presents a tracking realisation of the CG based method
with the maximum allowable M=8 users that can still
reliably be tracked. In Figure 2b) and c) the performance
comparison of the tracking capability of the gradient and
the CG based methods has been carried out. The CG
based method provides faster convergence and smaller
misadjustment. When the number of users increases and
especially when they are closely located the CG method
can more steadily track them as compared to the gradient
method. Furthermore, the location estimates provided by
the CG method behave smoother. The performance of the
gradient method is greatly sensitive to the proper choice
of the step size parameter �. Therefore, the fixed step
sizes selected were a trade-off between the convergence
speed and the final misadjustment.

VI CONCLUSIONS

The step-by-step update scheme of the CG method was
implemented for the user tracking system. The paper
compared the tracking performance of the gradient and
CG method in the stationary and non-stationary signal
scenario. For the proposed CG method the simulation
results indicated the better tracking performance in terms
of the faster and smoother convergence and the smaller
misadjustment. As for further research, we will discuss
the implementation of our tracking system in the noise
subspace and also focus on developing efficient VLSI
array processors for real time applications.
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Figure 2 a) Sample tracking trajectory for the CG based
signal subspace method with M=8 users. b) Mean DOA error
for the gradient method with parameters �=0.004 (stationary)
and �=0.005 (non-stationary). c) Mean DOA error for CG
based method with parameters �f=1, �=0.4 (stationary) and
�f=0.8, �=0.6 (non-stationary).


