A new receiver for digital mobile radio channels with large multipath delay

Roberto Cusani¹, Jari Mattila²

¹ INFO-COM Dpt., University of Rome 'La Sapienza', Italy ² Helsinki University of Technology, Commun. Lab., Finland

1,2 supported by Telital Spa, Trieste
 2 supported by IRC (funded by TEKES, NOKIA, Sonera and HTC)

Outline

- Introduction
- Conventional MAP equaliser
- Sparse channel simplification
 - dividing states into substates
 - calculation of transition probability matrix
- Equalisation strategy
- Numerical results
- Conclusions

Introduction

• "sparse" channel:

nonzero taps

CIR taps

zero taps

- motivation for sparse channel simplification
 - complexity reduction, handling high symbol rates
- ⇒ we propose sparse channel algorithm for SBS-MAP equaliser

Known algorithms for SC-equalisation

Using MLSE:

N.C. McGinty, R.A. Kennedy, P. Hoeher, "Parallel Trellis Viterbi Algorithm for Sparse Channels", <u>IEEE Communications Letters</u>, May **1998**.

N. Benvenuto, R. Marchesani, "The Viterbi Algorithm for Sparse channels", <u>IEEE Transactions on Communications</u>, March **1996**.

N. Ishii, R. Kohno, "Tap selectable Viterbi Equalisation Combined with Diversity Antennas", <u>IEICE Transactions on Communications</u>, Nov. **1995**.

J.C.S. Cheung, R. Steele, "Modified Viterbi equaliser for mobile radio channels having large multipath delays", <u>Electronics Letters</u>, Sept. **1989**.

Using DFE:

S. Ariyavisitakul, N.R. Sollenberger, L.J. Greenstein, "Tap-Selectable Decision-Feedback Equalization", <u>IEEE Transactions on Communications</u>, Dec. **1997**.

Conventional MAP equaliser

- F is the channel state transition probability matrix
- p(n/n) is the A Posteriori Probability vector of the actual channel state
- p(n/n-1) is the A Posteriori Probability vector of the predicted channel state

Sparse channel simplification

- equalisation using nonzero taps only
- based on substates:
 p'(n/n) p''(n/n) p'''(n/n)
- F is now time dependent

Dividing states into substates

Calculation of channel state transition probability matrix, F(n)

• needed in the calculation of the one-step prediction of $\underline{p}(n/n)$

$$\underline{p}(n/n-1) = F \cdot \underline{p}(n-1/n-1)$$

For SC-MAP:

• one-step prediction over the *visible channel states* only $\underline{p}'(n/n-1) = F(n) \cdot \underline{p}'(n-1/n-1)$

- however, each prediction over the visible channel states is affected by the symbols that become visible at the next step, i.e., near hidden states
 - → each near hidden channel state requires a different realisation of the transition probability matrix
- F(n) is calculated by averaging the different transition probability matrix realisations weighted by their probabilities at step n

Equalisation strategy

- equalisation strategy:
 - 1 identify the *nonzero* taps from the training sequence
 - 2 re-estimate the selected *nonzero* CIR taps from the training sequence via the data-aided ANKL channel estimator
 - 3 apply SC-MAP equaliser (with the ANKL channel estimator) to process and decode the received data symbols
- locations of the nonzero taps are identified via
 - SC-CC: cross-correlation method
 - SC-KF: data-aided Kalman-like filter
 - SC-ID: true CIR taps at the end of the preamble
 - SC-NA: channel power-delay profile a priori

Numerical results

- modulation BPSK with 270.8Kbps or 500Kbps
- independent timeslots each with
 - 26 preamble bits + 58 data bits for 270.8Kbps
 - 52 preamble bits + 116 data bits for 500 Kbps
- Hilly Terrain (HT) GSM test channel
- Land Mobile fading spectrum with B_dT_s=10⁻⁴

SC-equalisation with 5 nonzero taps

- modulation BPSK @270.8Kbps
- framing (26,58)

SC-equalisation with 2 nonzero taps

- modulation BPSK @270.8Kbps
- framing (26,58)

SC-equalisation with 4 nonzero taps

- modulation BPSK @500Kbps
- framing (52,116)

Example of computing times

CIR power/delay profile	MAP equaliser	SC-MAP equaliser (NNZ=2)
L=2: [1/2 1/2]	1.0	1.0
L=3: [1/2 0 1/2]	2.6	1.1
L=4: [1/2 0 0 1/2]	10.6	1.4
L=5: [1/2 0 0 0 1/2]	44.2	1.7
L=6: [1/2 0 0 0 0 1/2]	198.2	1.8
L=7: [1/2 0 0 0 0 0 1/2]	1018.0	1.8

- complexity of MAP grows exponentially with L
- complexity of SC-MAP with L=7 is less than twice that with L=2

Conclusions

- SC-MAP equaliser + Kalman-like channel estimator with
 - complexity proportional to the number of nonzero CIR taps
 - performance very close to the "full" MAP when the nonzero taps carry most of the energy
- methods for locating the nonzero CIR taps
- ⇒ practical solutions for digital radio-mobile receivers!

