
IMPLEMENTATION OF MOBILE USER TRACKING SYSTEM

Ramin Baghaie and Petri Karttunen
Laboratory of Telecommunications Technology

Helsinki University of Technology
P.O. BOX 3000, FIN-02015 HUT, Finland

e-mail: {ramin.baghaie, petri.karttunen}@hut.fi

Abstract

This paper considers the implementation of two mobile
user tracking systems that are based on different step-by-
step adaptation schemes. We first estimate the
computational complexities of different units of the
tracking systems. Based on these estimations, we partition
the implementation task into two parts: software and
hardware. For the hardware implementation of the tracking
unit a systolic architecture is proposed. With the aid of the
proposed systolic array the time complexity of the tracking
unit is reduced to O(M).

1 Introduction

Currently, in many applications such as beamforming
based communication for mobile users, there is a large
demand for tracking the location of the mobile user.
Mobile users can be located when Direction-of-Arrival
(DOA) estimates are established at the base stations. The
user tracking problem can be solved by the methods of the
trigonometric geometry from the intersection of the two or
more Lines-of-Bearing (LOB).

There are numerous techniques that can be applied for
such tracking problems. In the signal subspace based user
tracking system of [1], for a step-by-step update an
efficient conjugate gradient based algorithm was
developed. In [2], an adaptive high-resolution noise
subspace approach was presented.

In this paper, we consider implementation of the
tracking systems in [1,2], and focus on developing efficient
VLSI architectures that are suitable for real-time
applications. This paper is organized as follows. Section 2
briefly presents the structure of the mobile user tracking
systems in [1,2]. In Section 3, computational complexities
of these systems are evaluated. In Section 4,
implementation issues of the tracking systems are
discussed. Furthermore, for the tracking unit of the signal
subspace method a novel systolic architecture is designed
that reduces the required computational time by an order of
magnitude. Concluding remarks are provided in Section 5.

2 Mobile User Tracking System

Generally, tracking systems can be classified into two
different groups depending on whether spatial structure or
eigenstructure of the correlation matrix has been utilized.
In the case of the spatially structured method, we establish
a structured basis for the signal subspace that is spanned
by the steering vectors of mobile users. However, in the
case of the eigenstructure based method the M orthogonal
eigenvectors and eigenvalues are computed. The
eigenvectors corresponding to the N largest eigenvalues
establish the orthogonal basis for the signal subspace. In
the similar way, M-N eigenvectors corresponding to noise
eigenvalues establish the noise subspace, which is the
complement of the signal subspace.

In the user tracking system of [1], for directly updating
the signal subspace related array response vector, a step-
by-step update scheme of the conjugate gradient based
algorithm was developed. In [2], for tracking an
eigenvector corresponding to the minimum eigenvalue of
the sample correlation matrix, an adaptive high-resolution
noise subspace approach was presented. Figure 1 illustrates
the overall system model of the tracking systems in [1,2].
In the following subsections, we briefly describe the
function of each unit.

2.1 Tracking Unit

The signal subspace tracking problem is formulated as the
quadratic cost function for which a step-by-step update
scheme has been implemented [1]. For the step-by-step
update scheme the modified CG (MCG) algorithm has
been utilized [3].

In the MCG algorithm of Table I, �(n) is the step size
that minimizes the cost function through the line search
procedure along the search direction pn-1. The residual
vector g(n) points to the direction of the steepest descent.
�f is the forgetting factor and the auxiliary step size
parameter � should be ff ��� ���)5.0([3]. Factor �(n)

ensures that the R-orthogonality is preserved between
search directions.

TABLE I
SAMPLE-BY-SAMPLE CG (MCG) ALGORITHM

Set initial conditions: 0w �(0) , (0)(0) bg � , (0)(0) gp �
for n = 1, 2, …

1)()1(1)(

1)()1(
)(

H

H

���

��
�

nnn

nn
n

pRp
gp

��

)1()()1()(���� nnnn pww �

1))()()(()(

1)()1()(1)()(
H ��

������

nnndn

nnnnn f

wxx

pRgg ��

� �

�
�
�

�
	

��

��
� 0,

)1()1(

)()1()(
max)(

H

H

nn

nnn
n

gg
ggg

�

1)-()(+)()(nnnn pgp ��
end

In the system derivation, for the sake of simplicity
initially unknown antenna response vector a(�k) has been
replaced with the weight vector notation w(n). Vector w(n)
as provided by the tracking unit converges to a steering
vector which correlates best the desired user signal d(n).

In the noise subspace method [2], for the step-by-step
update scheme the following equations have been applied:

)()(

)()()(
)(

H

H

nn

nnn
n

ww
wRw

�� (1)

)()()()()(nnnnn wwRg ���� (2)

)()()(

)()(
)(

H

H

nnn

nn
n

gRg
gg

�� (3)

)1()()1()(���� nnnn gww � (4)

2.2 DOA Extraction Unit

In the DOA unit of the signal subspace approach, the new
tracking angle estimates �k(n), (k=1, …, N) are computed
through the Least Square (LS) fitting criterion which is
based on the small deviations in the array manifold [1].
Thus, the LS criterion can be expressed as:

� �)()(ˆ T1T(LS) nn kk zHHH
�

��� (5)

where zk(n) consists of array samples of �k(n), and H is the
M�1 observation vector.

On the other hand, the DOA unit needed in the noise
subspace method is indeed more complex [2]. In this
approach, the following zero-tracking method is utilized:

)(

))((
)()()1(T

nz

nz
nnznz

k

k
kk

�

�
���

W
w (6)

where)()()(nnn gw �� and �W(zk(n))/�zk(n) can be

expressed as:

�k(n)
x(n)

yk(n)

w(n)

Beamforming
unit

Tracking
unit

DOA
unit

Figure 1: Overall mobile user tracking system for M users [1,2]

T

1

1

0

2
1

)1(
1

1)()(

1

)(

))((

�
�
�
�

�

�

�
�
�
�

�

�

��

�
�

�

��
�

��

��

M

m
Mm

M
M

m
m

M

k

k

zz

z

zz

z

wnz

nz
�

W
(7)

Thus, the angle estimate �k(n) can be calculated as:

)/))))((log(imagarcsin()(�� nzn kk �� (8)

2.3 Beamforming Unit

In this unit, for both methods the following conventional
beamforming method was utilized [1].

� �)()()()()(H1H nnnnnyk xwww
�

� (9)

3 Complexity of the System

In Table II for both signal and noise subspace methods, the
order of computational complexity of different units of the
tracking systems are estimated and compared.

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITIES

Order of complexity
Unit Signal Subspace Method Noise Subspace Method

 Tracking)(2NMO)2(2MO
 DOA)(NMO)(2NMO
 Beamforming)(NMO)(NMO
M: Number of antennas
N: Number of sources

When estimating the computational complexity of the
DOA unit, complexity of elementary functions such as
log(x), exp(x), or sin(x) was not considered. This is due to
the fact that for the implementation of such functions
different techniques such as table oriented methods,
iterative methods, and polynomial approximations can be
utilized. In fact in [4] it was shown that the aforementioned
functions can be evaluated to n significant bits in
O(Mu(n)log(n)) steps, where Mu(n) is units of time
required to multiply n-bit numbers.

Although the performance of the noise subspace method
is slightly better in a stationary signal scenario as compared
to the signal subspace method, however, in a non-stationary
channel it has a similar tracking performance [2].

Nevertheless, tracking mobile users in a non-stationary
channel is much more demanding as compared to the
parameter estimation schemes in a stationary channel.

From the implementation point of view, the complexity
of the DOA unit in the noise subspace method is an order
of magnitude larger than the equivalent unit in the signal
subspace method. Furthermore, in the noise subspace
method, orthogonalization procedures such as the Gram-
Schmidt method may be needed. Therefore, by comparing
both the performances and complexities of the proposed
tracking systems in [1,2], we conclude that the signal
subspace method is a more attractive scheme.
Consequently, in Section 4 we will concentrate on the
implementation of the tracking system in [1].

As can be seen from Table II, in the signal subspace
method the tracking unit has the highest order of
complexity. The core of this unit is the sample-by-sample
CG algorithm of Table I. As compared to the conventional
CG algorithm also referred to as Block Conjugate Gradient
(BCG), in the MCG algorithm the computation of the
residual vector g(n) and the factor �(n) are more complex
and require a higher number of vector inner products.
Thus, we study and compare the computational
complexities of the sample-by-sample CG and the BCG
algorithms. The results are shown in Table III.

It is clear that the computational complexity of the BCG
depends on the number of iterations I and for a large M, the
BCG is I times more complex than the sample-by-sample
CG algorithm.

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF TWO CG

ALGORITHMS

Algorithm Number of complex multiplications

BCG 12)25(2
���� MMMI

MCG 3102
�� MM

I: Maximum number of iterations for a block

4 Implementation of the System

For real-time applications, in order to meet the demand
of high sampling rates the conventional DSP-based
implementation methods are not sufficient. Consequently,
for the implementation of units with high computational
complexity, application-specific integrated circuits (ASIC)
should be utilized.

As can be seen from Table II, in the signal subspace
method the most computationally intensive block is the
tracking unit. In this unit, the order of complexity for N
sources is O(NM2). In Figure 2, the hardware
(HW)/software (SW) partitioning of this system is
illustrated.

In this section, we discuss the implementation of the
HW partition that is needed for the MCG algorithm and
focus on developing an efficient VLSI array processor that
is suitable for real time applications. For this purpose, we
design a systolic array that targets the most
computationally intensive block of the MCG algorithm.

4.1 Review of the Implementation Techniques

As can be seen from Table I, in the tracking unit of [1] the
most computationally intensive operations are the matrix
computations. Furthermore, in order to meet the demand
for high sampling rates and to achieve acceptable execution
speed the conventional serial implementation methods are
not sufficient. Thus, parallel architectures should be
utilized.

For the matrix-vector computations needed in the MCG
algorithm of Table I, several classes of parallel
architectures such as multiprocessors, systolic-type arrays,
vector computers and array computers have been proposed
[5].

Although many of these parallel architectures have
demonstrated their effectiveness for executing matrix-
vector computations, due to their broadcasting or complex
interconnection network they may not be suitable for VLSI
implementation. These drawbacks led to the introduction of
application-specific architectures and in particular systolic
arrays, which are natural for matrix operations. They match
the fine granularity of parallelism available in the
computations and have very low overhead in
communication and synchronization. In addition, the
regular nature of systolic-type arrays meets the
requirements for effective use of VLSI [5,6].

Although, for the matrix operations needed in the MCG
algorithm, a variety of systolic architectures exists, the
main problem is to map the entire algorithm onto a suitable
and practical VLSI architecture. In the MCG algorithm,
due to the serial nature of the algorithm, there is a very low
degree of parallelism and therefore, parallelization of the
algorithm is not trivial. Similarly, this is the case when
implementation of the BCG algorithm is of interest [7,8].

4.2 Systolic Implementation

In this section, we design a systolic architecture that
reduces the time complexity of the MCG algorithm to
O(M). As discussed in the previous section, due to the
serial nature of the algorithm, there is a very low degree of
parallelism in the algorithm.

Furthermore, due to the iterative nature of the algorithm
and the requirement for different resetting schemes for �

[3], direct mapping of the MCG algorithm to ASIC is not
practical.

Beamforming
unit

DSP

ASIC

DOA
unit

Tracking
unit

Figure 2: Partitioning of the overall system into HW/SW

Therefore, our systolic architecture targets the matrix-
vector and vector-vector products needed in the calculation
of the step size � and the factor � of Table I.

Consider the calculation of the step size �:

1)()1(1)(

1)()1(
)(H

H

���

��
�

nnn

nn
n

pRp
gp

�� (10)

For simplicity, we introduce the new variable v(n) as
follows:

)()()(nnn pRv � (11)

Due to the sample-by-sample update scheme in the
MCG algorithm, the correlation matrix R(n) varies in every
sample. However, when calculating the weight vectors for
N individual sources, R(n) remains the same and therefore,
for N iterations the same R(n) is used. As a result, for the
systolic architecture a 2D array implementation is adopted.
The elements of the R(n)=rij(n) (i,j = 1, …, M) are
preloaded into this array processor and remain constant for
N iterations.

Now, consider the following vector-vector
multiplications that are needed in the MCG algorithm.

 1)()1()1(H
���� nnn gppg (12)

)(1)()(H nnn vppv �� (13)

For the realization of (12) and (13), a linear array is
selected. For synchronization purposes, the linear array is
placed below the 2D array. Figure 3 illustrates the
proposed systolic array when M=4. In Figure 3b, the cell
function of each Processor Element (PE) is illustrated.

Furthermore, this architecture utilizes the availability of
the residual vector g(n) and performs the following vector
inner product needed in the calculation of �.

)1()1()1(H
���� nnn gggg (14)

As can be seen from Table I, for the calculation of the
residual vector g(n), matrix-vector multiplication of (11),
i.e. vector v(n), is required. For utilizing v(n) two methods
can be exercised. One method is to keep the elements of
v(n) by allocating a local memory to each PE2 and then
sequentially transfer them to the host from the last PE2 of
the linear array. The second method is to slightly modify
the PE2s. This can be achieved by adding an extra output

port to the PE2s as it is illustrated in Fig. 4. The total
number of PEs required in this systolic architecture is
M2+M.

For the implementation of the complex multipliers
needed in the PEs, Strength Reduction (SR) transformation
technique has been utilized [9]. By utilizing the SR
transformation the total number of real multiplications
needed in a complex multiplier is reduced to only three.

To clarify this further, consider the complex
multiplications required in PE1, i.e.

rpprjprpr IR ���� 1)(. By utilizing the SR technique

we have:
)(1)11(IRRIIRR rrprpppr ���� (15a)

)(1)11(IRIIIRI rrprpppr ���� (15b)

As can be seen from (15) and Figure 5, by utilizing the
SR transformation the total number of real multiplications
needed in a complex multiplication is reduced to only
three. This is at the expense of having three additional
adders. However, it is well known that multiplications are
more complex than additions and consume much more
power as well. In fact, for a single complex multiplication
power reductions of up to 25% can be achieved [9]. Thus,
the SR transformation can result in remarkable savings in
consumed power and silicon area.

In order to calculate the throughput of the systolic array,
we assume that one time step of the global clock
corresponds to the processing time required for each PE.
For the initialization of PE1s, M time steps are needed.
Thus, the total computation time required by the array is
3M steps. Figure 6 illustrates the flow of data in the
proposed systolic architecture for different time steps.

5 Conclusions

In this paper, implementation of two different mobile
user tracking systems were discussed. It was shown that
from both performance and complexity point of views, the
signal subspace method is a better choice and its
implementation should be considered. Thus, for a more
realistic implementation, the signal subspace based
tracking system was partitioned into two parts: HW and
SW. For the HW implementation of the tracking unit, a
systolic architecture was proposed. With the aid of this
array, the time complexity of the most computationally
intensive unit was reduced to O(M). Furthermore, for the
implementation of the complex multipliers needed in the
PEs, the SR transformation technique was utilized. As a
result, remarkable savings in consumed power and silicon
area were achieved. Future research should be directed
towards mapping the system into a fixed number of
processors when the number of antennas M is large.

0
0
0

0 00 0 0 00 0

g3

g4

g1

g2

0
0
0

0
0

0

p1

p2

p3

0

0 0

p40 0 0

(a)

vin p2ingin

voutp2outgout

p1in p1outPE1

ijininout rpvv ��� 1

inout gg �

inout pp 11 �

jiifpp inout �� 22

jiifpp inout �� 12

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

PE2

inininout vppvpv ���
*

inininout gppgpg ���
*

inininout gggggg ���
*

(b)

Figure 3: a) Systolic architecture for M=4
b) Input-output ports and cell functions

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

vout

PE2

inininout vppvpv ���
*

inininout gppgpg ���
*

inininout gggggg ���
*

inout vv �

Figure 4: I/O ports and cell functions of the modified PE2

rR

-
+

+

+

+x

x

x

+
-

r I

p1R p1I

prR

prI

Figure 5: Implementation of a complex multiplier using the SR technique

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 2M

Figure 6: Illustration of the data movement for each computation step

Acknowledgment

The authors would like to thank Mr. Kimmo Kettunen for
his valuable comments. This work is part of a research
project of the Institute of Radio Communication (IRC)
funded by the National Technology Agency (TEKES),
NOKIA Research Center, Sonera Ltd., and the Helsinki
Telephone Company.

References

[1] P. Karttunen and R. Baghaie, "Conjugate gradient based
signal subspace mobile user tracking," in Proc. IEEE
Vehicular Tech. Conf., Houston, Texas, USA, vol. 2, pp.
1172-1176, May 1999.

[2] P. Karttunen, "An algorithm for noise subspace based
mobile user tracking," in Proc. Int. Symposium on Personal,
Indoor and Mobile Radio Communications, Osaka, Japan,
September 1999.

[3] S. P. Chang and A. W. Willson, "Adaptive filtering using
modified conjugate gradient," in Proceedings 38th Midwest
Symposium on Circuits and Systems, Rio de Janeiro, Brazil,
pp. 243-246, August 1995.

[4] R. P. Brent, "Fast multiple-precision evaluation of
elementary function," Journal of the Ass. for Comput.
Machinery, vol. 23, pp. 242-251, April 1976.

[5] J. H. Moreno and T. Lang, "Matrix computations on
systolic-type meshes," IEEE Computer, pp. 32-51, April
1993.

[6] S. Y. Kung, VLSI Array Processors. Englewood Cliffs, New
Jersey: Prentice Hall, 1988.

[7] J. Tasic, M. Gusev, and D. J. Evans, "Systolic
implementation of preconditioned conjugate gradient
method in adaptive transversal filters," Parallel Computing,
vol. 18, no. 9, pp. 1053-1065, Sept. 1992.

[8] Y. Saad, "Practical use of polynomial preconditionings for
the conjugate gradient method," SIAM Journal of Scientific
Statistical computing, vol. 6, no. 4, pp. 865-881, Oct. 1985.

[9] N. Shanbhag and M. Goel, "Low-Power adaptive filter
architectures and their applications to 51.84 Mb/s ATM-
LAN," IEEE Trans. on Signal Processing, vol. 45, pp. 1276-
1290, May 1997.

