
Computing Discrete Hartley Transform Using Algebraic Integers

Vassil Dimtrov and Ramin Baghaie

Helsinki University of Technology
Department of Electrical and Communications Engineering

P.O. BOX 3000, 02015 HUT, Finland
E-mail: vdimitro@wooster.hut.fi, ramin.baghaie@hut.fi

Abstract

An algorithm for computing the discrete Hartley
transform is presented that is based on the algebraic
integers encoding scheme. With the aid of this scheme, an
error-free representation of the cas function becomes
possible. In addition, for further complexity reduction an
approximation scheme is proposed. Finally, for the
implementation of the algorithm a fully pipelined systolic
architecture with O(N) throughput is proposed.

1. Introduction

The discrete Hartley transform (DHT) is an attractive
alternative to the discrete Fourier transform (DFT)
because of its real-valued computation and properties
similar to those of the DFT [1]. Another interesting
property of the DHT is that the same kernel is used for
both the transform and its inverse transform.
Consequently, since its introduction the DHT has found
its way to many digital signal processing applications [2].
The 1-D DHT of a N-point sequence {xn, n = 0, …, N - 1,
and N = 2m} is defined as:

�
�

�

�

1

0

)2(cas
N

n
nk N

kn
xX � , 0� k � N - 1 (1)

where cas� = cos� + sin�.
Since the introduction of the DHT, a number of

systolic architectures have been proposed, many of which
are based on the direct implementation of algorithm [3,4].
In these implementations for the calculation of the cas
function, different types of approximations have been
introduced. Processing with algebraic integers, in which
the signal sample is represented by a set of small integers,
was introduced in [5].

Algebraic integers are roots of monic polynomials that
have integer coefficients with leading coefficient equal to
unity. The motivation for introducing this new mapping of
real numbers is to drastically reduce the dynamic range of
each of the independent computations.

In this paper, we illustrate how with the aid of the
algebraic integers scheme, an efficient error-free systolic
implementation of DHT can be obtained. This paper is
organized as follows. In Section 2 algebraic integers
interpretation of the discrete Hartley transform is
presented. In Section 3, for the implementation of the
proposed algorithm, a novel systolic array is presented. In
Section 4, for further complexity reduction an
approximation scheme is proposed. Certain hardware and
throughput issues are discussed in Section 5. Concluding
remarks are provided in Section 6.

2. Algebraic-Integer Interpretation of DHT

In [5], Cozzens and Finkelstein introduced a new
approach for computing the DFT that uses the residue
number system (RNS) in a ring of algebraic integers.
Algebraic integers combine with RNS processing to add a
second level of parallelism to integer RNS processing
generalizing the quadratic residue number system (QRNS)
concept. Algebraic integers are roots of monic
polynomials that have integer coefficients with the leading
coefficient equal to unity.

Consider the 16-point DHT. The kernel of this
transformation is)162(cas �kn where 0� k, n� N-1. The

classical method for calculating the cas function is to
approximate the function in binary number system, which
leads to rounding off errors. In this paper, we adopt the
algebraic integers encoding scheme. Consider the first
nonzero angle of the cas function that is 162� . We can

represent the cos and sin functions of this angle as:

2

22
)162(cos

�

�� (2)

2

22
)162sin(

�
�� (3)

Now without compromising the calculations, we omit
the “2” from the denominator of Eqs. (2) and (3). Let us

denote z as 22)162cos(2 ��� �z , where z is a root

of Eq. (4).

024 24
��� xx (4)

Consider now the polynomial of Eq. (5):

�
�

�

3

0

)(
i

i
i zazf (5)

where ai are integers.
By assigning (0, 1, 0, 0) to ai, we have an exact code

for z. Similarly, by assigning (0, –3, 0, 1) to ai we have an
exact code for)162sin(2 � . Consequently, (0, –2, 0, 1) is

an exact representation of)162cas(2 � . Proceeding in

the same manner as in [6], we can obtain an error-free
representation of the cas function necessary to evaluate
the 16-point DHT. Tables 1, 2, and 3 present the
corresponding coefficients of the cos, sin and cas
functions for every required angle, correspondingly. Other
remaining angles can be obtained by changing the signs of
the given coefficients.

In order to demonstrate how Table 3 can be employed
in the computation of the DHT, consider the following
example. Assume that integer number x is needed to be
multiplied by)164(cas2 �� . Since (–4, 0, 2, 0) is an

error-free representation of)164(cas2 �� , this means that

)164(cas2 ���x can be replaced by the following

operation)0,2,0,4(xx �� .

Therefore, (–4x, 0, 2x, 0) is an error-free representation
of)164(cos2 ���x . However, for the implementation of

operations such as –4x and 2x only one shift operation is
required. In other words, multiplication by the integers in
Table 3 can be replaced by only one shift operation.

Up to this point, for the computation of the DHT, we
have utilized an error-free format. However, the accuracy
of the final reconstruction depends on the precision used
to represent z. Therefore, one can estimate the precision
that is needed to insure the required accuracy. As an
example, if the word-length of data stream is 8-bit, then

84765625.12222ˆ 853
�����

���z is a very good
approximation of �847759065.1�z with accuracy of 12
bits.

Table 1. Representation of the cos function
needed for the 16-point DHT

 a0 a1 a2 a3 Error

)160(cos2 �� 2 0 0 0 0

)162(cos2 �� 0 1 0 0 0

)164(cos2 �� -2 0 1 0 0

)166(cos2 �� 0 -1 0 1 0

Table 2. Representation of the sin function
needed for the 16-point DHT

 a0 a1 a2 a3 Error

)160(sin2 �� 0 0 0 0 0

)162(sin2 �� 0 -3 0 1 0

)164(sin2 �� -2 0 1 0 0

)166(sin2 �� 0 -1 0 0 0

Table 3. Representation of the cas function for
16-point DHT

 a0 a1 a2 a3 Error
)160(cas2 �� 2 0 0 0 0

)162(cas2 �� 0 -2 0 1 0

)164(cas2 �� -4 0 2 0 0

)166(cas2 �� 0 -2 0 1 0

For the final reconstruction, in order to reduce the
computation complexity of the polynomial of Eq. (5)
Horner’s rule is applied. As a result, Eq. (5) can be
rewritten as:

0123))(()(azazazazf ���� (6)

There are however alternative methods to the Horner’s
rule. The interested reader may refer to [7] for more
information on this topic. We have applied the Horner’s
rule due to its simplicity and straightforward applicability
to systolic array [8].

3. Systolic Implementation

In general, there are two main approaches for the
implementation of the DHT algorithm. The first method is
to employ butterfly structures that lead to fast
implementation of the algorithms. Although, fast
transformations such as fast Hartley transform (FHT)
require less computation as compared to the DHT, we are
faced with some common problems.

Generally, the support of perfect shuffling between
different stages requires global communication. This is
considered as a drawback when very large scale
integration (VLSI) implementation of such transformation
is of interest. The second method is the direct
implementation that utilizes architectures such as systolic
arrays [8]. The systolic implementation of transforms such
as the DHT enjoys simple communication and thus it is
much more suitable for the VLSI implementation.

In this section, for the implementation of the proposed
algorithm, a systolic architecture is presented. The
proposed systolic architecture has the advantages of
simplicity, modularity, and regularity [8].

Let us now consider the 16-point DHT that is based on
the integers in Table 3. Figure 1 illustrates the case where
N = 16. In Figure 2, the cell function of each Processor
Element (PE) is presented. This systolic array is fully
pipelined and its PEs only communicate with the
neighboring cells, thus it is very suitable for the VLSI
implementation.

Parameter t
ija { i = I, …, 0 and j, t = 0, …, (N – 1)}

corresponds to the integers in Table 3 and they are stored
in the local registers of PE1. Thus, each PE1 requires N
local registers. In t

ija , indices j and i reflect the position of

PE1 in the array. Note that (i, j) = (I, 0) corresponds to the
top left PE1, where I is the degree of the polynomial of
Eq. (5). Index t denotes time.

In Figure 1, the input data is first pipelined into the
array of PE1s through an output-buffered N-way
demultiplexer. The pipelined data xin should then be
multiplied by the integers in Table 3. However, it is easy
to see that the required multiplication can be replaced
with only one shift operation as discussed in Section 2. In
PE1, the)(ina

xshift t
ij

operation means that xin is shifted

once and the type of shift is determined by the
t
ija coefficients. The shift operation can be implemented

with a shifter such as a barrel shifter.
Finally, for the implementation of Eq. (6), a linear

array consisting of PE2 and PE3 processors is utilized.
It is important to note that in the proposed method, we

only require multiplications in PE2s. Furthermore, in
these multiplications one of the multiplicands is z, which
is constant. Thus, based on the word-length of the input
data, one can estimate the precision that is needed to
insure the required accuracy. Consequently, for the
required multiplications, simple special-purpose
multipliers can be designed.

0

0
0

0

011 XXX N �
�

011 xxxN ��

0

N-
WAY

D
E
M
U
X

+

Figure 1. Systolic implementation of 16-point
DHT algorithm

sin

sout

xin xout
t
ija

PE1

xin

z

PE2

yin

yout

xin
PE3

yin

yout

inout xx �

)(inainout xshiftss t
ij

��

zyxy ininout ���)(

ininout yxy ��

Figure 2. Input-output ports of the PEs and their cell
functions

4. An Approximation Method

In the previous section, we illustrated that for an error-
free presentation of the cas function that is required in the
computation of the N-point DHT, I the degree of the
polynomial of Eq. (5) is of length (N / 4–1). It is important
to note that in order to further reduce the degree of the
polynomial, the proposed approach can be combined with
any other DHT algorithm.

Table 4. Approximation of cas(2�k/32) for the 32-point DHT

 4-bit dynamic range 5-bit dynamic range 6-bit dynamic range
 k

 a0 a1 a2 a3 Error a0 a1 a2 a3 Error a0 a1 a2 a3 Error

 0, 8 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0

 1, 7 –4 4 –4 2 0.0002810746 3 –12 10 –2 0.0000124810 3 –12 10 2 0.0000124810

 2, 6 0 –2 0 1 0 0 –2 0 1 0 0 –2 0 1 0

 3, 5 –7 3 –8 5 0.0012906956 –1 11 –3 –1 0.0000157223 –20 –18 –15 17 0.0000027199

 4 –4 0 2 0 0 –4 0 2 0 0 –4 0 2 0 0

 9, 15 –1 –6 4 0 0.0010900574 14 –5 12 –7 0.0001309120 5 –8 –17 11 0.0000083340

 10, 14 0 –4 0 1 0 0 –4 0 1 0 0 –4 0 1 0

 11, 13 –7 –7 6 0 0.0008308395 8 –16 12 10 0.0000659494 –25 17 26 –15 0.0000029285

 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 7-bit dynamic range 8-bit dynamic range
 k

 a0 a1 a2 a3 Error a0 a1 a2 a3 Error

 0, 8 2 0 0 0 0 2 0 0 0 0

 1, 7 23 –30 –50 –15 0.0000035242 –115 48 86 –42 0.0000002312

 2, 6 0 –2 0 1 0 0 –2 0 1 0

 3, 5 –18 21 52 –32 0.0000000645 85 10 98 –69 0.0000000539

 4 –4 0 2 0 0 –4 0 2 0 0

 9, 15 47 –28 0 1 0.0000003224 47 –28 0 1 0.0000003224

 10, 14 0 –4 0 1 0 0 –4 0 1 0

 11, 13 –23 –30 50 –15 0.0000002730 –103 –125 122 –13 0.0000000542

 12 0 0 0 0 0 0 0 0 0 0

Nevertheless, for an error-free presentations of the cas
function, the length of ai (0� i � I) and correspondingly,
the size of Table 3 is linearly dependent on N. Therefore,
for a large N, I is relatively large. Thus, direct
implementation of these tables may not be practical in an
application. However, by employing different
approximation techniques tremendous hardware
reductions can be achieved, and yet a very good estimate
of the aforementioned functions can be obtained.

In these approximations, we assign a fixed length to I
that is independent of N. As a result, the degree of the
polynomial only depends on the dynamic range of the
input data that accordingly dictates the accuracy of the
computations.

Let us demonstrate this by means of an example.
Tables 4 illustrates the case for the 32-point DHT, in
which I is fixed and equal to three. Consequently, some
error is introduced. As an example, (3, –12, 10, 2) is a
good approximation of)322(2cas � with an error of

0.0000124810. This means that by having I = 3, and
assigning only 6 bits to the dynamic range of the
coefficients, 15-bit accuracy is achieved.

A better understanding of several issues associated to
the problem analyzed can lead to substantial
improvements and result in more efficient algorithms. To
name a few possible directions for future research:

a) By observing the integers in Table 4, one can see
that in some cases more than two shift operations maybe
required. One of the most attractive ways to obtain
efficient multiplierless structure in the field of DSP is to
design the coefficients used as a sum of very small
number of powers of two. Thus, by applying some
constraints we can reduce the computation cost of each
multiplication to maximum two shifts and one addition.

b) Error analysis especially in the case of multiplierless
architectures is quite essential. The main theoretical
hurdle is the non-uniform distribution of the algebraic
integers in the multidimensional lattice generated by them.
In [9], Cozzens and Finkelstein have posed several
conjectures in order to obtain a realistic picture of the
error distribution and propagation in the case of the FFT.

To the best of our knowledge, these conjectures are
still unsolved. For the computation of the DHT, we are
faced with similar problems.

In this paper, in order to give the reader some
impression about the error analysis associated with the
technique proposed Table 4 was presented. This table
realistically demonstrate the relationship between the
dynamic range of the data and the approximation errors.

5. Hardware and Throughput Consideration

The proposed architecture requires N(I + 1) PE1s, I
PE2s and one adder. For evaluation of the throughput, we
first assume that one time step of the global clock
corresponds to one operation in PE2. For the computation
of the first set of 1-D DHT (2N + I) time steps are
required. The successive sets are computed in an interval
of N steps. Therefore, O(N) time complexity is achieved.

In the proposed method, only I multipliers with a
constant multiplicand are required. Furthermore, from
Table 3 it is obvious that 9/16 of operations in PE1s are
actually simple data transfer operations sout � sin.

In Table 5, different systolic implementations of the
1-D DHT are summarized and compared, respectively. As
an alternative to the conventional multipliers, in some of
the implementations such as [3], COordinate Rotation
DIgital Computer (CORDIC) processors [10] have been
employed. In order to further reduce the complexity, the
proposed method can be combined with any other DHT
algorithms.

6. Conclusions

In this paper, we proposed a novel approach that is
aimed at efficient implementation of the DHT algorithm.
One of the advantages of the proposed algorithm is an
error-free implementation of the DHT computation up
until the final reconstruction. The proposed method can be
combined with any DHT algorithms to achieve further
hardware reduction. Furthermore, by introducing an
approximation method hardware complexity was
drastically reduced. For the implementation of the
algorithm, a fully pipelined systolic architecture with
O(N) throughput was proposed.

Acknowledgements

The authors would like to thank Dr. Graham A. Jullien
for his valuable comments. This work is part of a research
project of the Institute of Radio Communication (IRC)
funded by Technology Development Center (TEKES),
NOKIA Research Center, Sonera Ltd. and the Helsinki
Telephone Company.

Table 5. Comparison of various systolic
implementations for 1-D DHT

 Total number of multipliers

 length
 Proposed

exact
 Method

Proposed
approximation

Method

 Chang & Lee

 [3]
 Pan & Park

 [4]

 8 1 1 8 8
 16 3 2 16 16

 32 7 3 32 32

 N (N / 4 – 1) I (fixed) N CORDICs N

References

[1] R. N. Bracewell, "Discrete Hartley transform,"
Journal of Optical Society of America, vol. 73, no.
12, pp. 1832-1835, Dec. 1983.

[2] R. N. Bracewell, "Aspects of Hartley transform,"
Proceedings of the IEEE, vol. 82, no. 3, pp. 381-387,
Mar. 1994.

[3] L. W. Chang and S. W. Lee, "Systolic arrays for the
discrete Hartley transform," IEEE Transactions on
Signal Processing, vol. 39, no. 11, pp. 2411-2418,
Nov. 1991.

[4] S. B. Pan and R. H. Park, "Unified systolic arrays for
computation of DCT/DST/DHT," IEEE Transactions
on Circuits and Systems for Video Technology, vol.
7, no. 2, pp. 413-419, Apr. 1997.

[5] J. H. Cozzens and L. A. Finkelstein, "Computing the
discrete Fourier transform using residue number
systems in a ring of algebraic integers," IEEE
Transactions on Information Theory, vol. IT-31, no.
5, pp. 580-588, Sept. 1985.

[6] V. Dimitrov, G. A. Jullien, and W. C. Miller, "A new
DCT algorithm based on encoding algebraic
integers," in Proceedings IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP'98, Seattle, Washington, USA,
vol. 3, pp. 1377-1380, May 1998.

[7] D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms. Addison-
Wesley Publishing Company, 1981.

[8] S. Y. Kung, VLSI Array Processors. Englewood
Cliffs, New Jersey: Prentice Hall, 1988.

[9] J. H. Cozzens and L. A. Finkelstein, "Range and
error analysis for a fast Fourier transform computed
over Z[�]," IEEE Transactions on Information
Theory, vol. IT-33, no. 4, pp. 582-590, July 1987.

[10] J. E. Volder, "The CORDIC trigonometric
computing technique," IRE Trans. on Electronic
Computers, vol. EC8, no. 3, pp. 330-334, Sept. 1959.

