
VLSI Implementation of Conjugate Gradient Based
Mobile User Tracking System

Ramin Baghaie and Petri Karttunen
Laboratory of Telecommunications Technology

Helsinki University of Technology
P.O. BOX 3000, FIN-02015 HUT, Finland

e-mail: {ramin.baghaie, petri.karttunen}@hut.fi

Abstract- This paper considers the implementation of a signal
subspace based mobile user tracking system that utilizes an
efficient Conjugate Gradient (CG) based step-by-step adaptation
scheme. First, we estimate the computational complexity of
different units of the tracking system. Based on these
estimations, we partition the implementation task into two parts:
software and hardware. Finally, for the hardware
implementation of the tracking unit a systolic architecture is
proposed. With the aid of the proposed systolic array the time
complexity of the tracking unit is reduced to O(M).

I. INTRODUCTION

The channel parameter tracking problem arises in numerous
situations. One example is mobile user tracking in which the
spatial beamforming procedure must be carried out
continuously for each user. In [1], for the mobile user
tracking system, a step-by-step update scheme of the CG
method was implemented. It was shown that the proposed CG
based tracking system has a better tracking performance in
terms of faster and smoother convergence and smaller
misadjustment.

In this paper, we consider the VLSI implementation of the
tracking system of [1], and focus on developing efficient
systolic architectures that are suitable for real-time
applications. This paper is organized as follows. Section II
briefly presents the structure of the CG based tracking system.
In Section III, the computational complexity of the system is
evaluated. In Section IV, implementation issues of the
tracking system are discussed. Furthermore, for the tracking
unit a novel systolic architecture is designed that reduces the
required computational time by an order of magnitude.
Finally, concluding remarks are provided in Section V.

II. SYSTEM MODEL

Figure 1 illustrates the overall system model of our tracking
system [1]. In this section, we briefly describe the function of
each unit.

This work is part of a research project of the Institute of Radio
Communication (IRC) funded by the National Technology Agency
(TEKES), NOKIA Research Center, Sonera Ltd., and the Helsinki
Telephone Company.

�k(n)
x(n)

yk(n)

w(n)

Beamforming
unit

Tracking
unit

DOA
unit

Fig. 1. The overall system for the signal subspace based user tracking [1]

A. Tracking Unit

The signal subspace tracking problem is formulated as the
quadratic cost function for which a step-by-step update
scheme has been implemented [1].

For the step-by-step update scheme the modified CG
(MCG) algorithm has been utilized [2]. In the MCG
algorithm of Table I, �(n) is the step size that minimizes the
cost function through the line search procedure along the
search direction pn-1. The residual vector g(n) points to the
direction of the steepest descent. �f is the forgetting factor and
� should be ff ��� ���)5.0([2]. Factor �(n) ensures that

the R-orthogonality is preserved between search directions.

TABLE I
SAMPLE-BY-SAMPLE CG (MCG) ALGORITHM

Set initial conditions: 0w �(0) , (0)(0) bg � , (0)(0) gp �

for n = 1, 2, …

1)()1(1)(

1)()1(
)(H

H

���

��
�

nnn

nn
n

pRp
gp

��

)1()()1()(���� nnnn pww �

1))()()(()(

1)()1()(1)()(
H ��

������

nnndn

nnnnn f

wxx

pRgg ��

� �

�
�
�

�
	

��

��
� 0,

)1()1(

)()1()(
max)(

H

H

nn

nnn
n

gg
ggg

�

1)-()(+)()(nnnn pgp ��
end

In our system derivation, for the sake of simplicity initially
unknown antenna response vector a(�k) has been replaced
with a weight vector estimate w(n). The weight vector w(n) as

provided by the tracking unit converges to the desired
steering vector which correlates best the desired user signal.

B. DOA Extraction Unit

In the Direction-of-Arrival (DOA) extraction unit, the new
tracking angle estimates �k(n), (k=1,…,N) are computed
through the Least Square (LS) fitting criterion that are based
on the small deviations in the array manifold [1].

The LS criterion is based on the linear model and can be
expressed as:

� �)()(ˆ T1T(LS) nn kk zHHH
�

��� (1)

where zk(n) consists of array samples of �k, and H is the M�1
observation vector.

C. Beamforming Unit

In this unit, the following conventional beamforming
method has been utilized [1].

� �)()()()()(H1H nnnnnyk xwww
�

� (2)

III. COMPLEXITY OF THE SYSTEM

In this section, the computational complexity of different
units are estimated and compared. In the tracking, DOA, and
beamforming units, the most computationally intensive
operations are the calculation of step size �, Eq. (1), and Eq.
(2), respectively. In Table II for N sources, the order of
computational complexity for different units of the tracking
system is calculated.

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITIES

Unit Order of complexity for N sources

Tracking)(2NMO

DOA)(NMO

Beamforming)(NMO
M: Number of antennas
N: Number of sources

As can be seen from Table II, the tracking unit has the
highest order of complexity. The core of this unit is the
sample-by-sample CG algorithm. As compared to the
conventional CG algorithm also referred to as Block
Conjugate Gradient (BCG), in the MCG algorithm, the
computation of the residual vector g(n) and the factor �(n) are
more complex and require a higher number of vector inner
products. Next, we study and compare the computational
complexities of the sample-by-sample CG and the BCG
algorithms. The results are shown in Table III.

It is clear that the computational complexity of the BCG
depends on the number of iterations I and for a large M, the
BCG is I times more complex than the sample-by-sample CG
algorithm.

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF TWO CG ALGORITHMS

Algorithm Number of complex multiplications

BCG 12)25(2
���� MMMI

MCG 3102
�� MM

I: Maximum number of iterations for a block
M: Number of antennas

IV. IMPLEMENTATION OF THE SYSTEM

For real-time applications, in order to meet the demand of
high sampling rates the conventional DSP-based
implementation methods are not sufficient. Consequently, for
the implementation of units with high computational
complexity, application-specific integrated circuits (ASIC)
should be utilized.

As can be seen from Table II, in our system the most
computationally intensive block is the tracking unit. In this
unit, the order of complexity for N sources is O(NM2). In
Figure 2, the hardware (HW)/software (SW) partitioning of
our system is illustrated.

In this section, we discuss the implementation of the HW
partition that is needed for the MCG algorithm and focus on
developing an efficient VLSI array processor that is suitable
for real time applications. For this purpose, we design a
systolic array that targets the most computationally intensive
block of the MCG algorithm.

A. Review of the Implementation Techniques

As can be seen from Table I, in our tracking unit the most
computationally intensive operations are the matrix
computations. Furthermore, in order to meet the demand for
high sampling rates and to achieve acceptable execution
speed the conventional serial implementation methods are not
sufficient. Thus, parallel architectures should be utilized.

For the matrix-vector computations needed in the MCG
algorithm of Table I, several classes of parallel architectures
such as multiprocessors, systolic-type arrays, vector
computers and array computers have been proposed [3].

Beamforming
unit

DSP

ASIC

DOA
unit

Tracking
unit

Fig. 2. Partitioning of the overall system into HW/SW

Although many of these parallel architectures have
demonstrated their effectiveness for executing matrix-vector
computations, due to their broadcasting or complex
interconnection network they may not be suitable for VLSI
implementation. These drawbacks led to the introduction of
application-specific architectures and in particular systolic
arrays, which are natural for matrix operations. They match
the fine granularity of parallelism available in the
computations and have very low overhead in communication
and synchronization. In addition, the regular nature of
systolic-type arrays meets the requirements for effective use
of VLSI [3,4].

Although, for the matrix operations needed in the MCG
algorithm, a variety of systolic architectures exists, the main
problem is to map the entire algorithm onto a suitable and
practical VLSI architecture. In the MCG however, due to the
serial nature of the algorithm, there is a very low degree of
parallelism and therefore, parallelization of the algorithm is
not trivial. Similarly, this is the case when implementation of
the Block conjugate Gradient algorithm is of interest [5],[6].

B. Systolic implementation

In this section, we design a systolic architecture that
reduces the time complexity of the MCG algorithm to O(M).
As discussed in the previous section, due to the serial nature
of the algorithm, there is a very low degree of parallelism in
the algorithm. Furthermore, due to the iterative nature of the
algorithm and the requirement for different resetting schemes
for � [2], direct mapping of the MCG algorithm to ASIC is
not practical. Therefore, our systolic architecture targets the
matrix-vector and vector-vector products needed in the
calculation of the step size � and the factor �.

Consider the calculation of the step size �:

1)()1(1)(

1)()1(
)(

H

H

���

��
�

nnn

nn
n

pRp
gp

�� (3)

For simplicity, we introduce the new variable v(n) as
follows:

)()()(nnn pRv � (4)

Due to the sample-by-sample update scheme in the MCG
algorithm, the correlation matrix R(n) varies in every sample.
However, when calculating the weight vectors for N
individual sources, R(n) remains the same and therefore, for
N iterations the same R(n) is used. As a result, for the systolic
architecture a 2D array implementation is adopted. The
elements of the R(n)= rij(n) (i,j = 1, …, M) are preloaded into
this array processor and remain constant for N iterations.
Now, consider the following vector-vector multiplications
that are needed in the MCG algorithm.

1)()1()1(H
���� nnn gppg (5)

)(1)()(H nnn vppv �� (6)

0
0
0

0 00 0 0 00 0

g3

g4

g1

g2

0
0
0

0
0

0

p1

p2

p3

0

0 0

p40 0 0

(a)

vin p2ingin

voutp2outgout

p1in p1outPE1

ijininout rpvv �� 1

inout gg

inout pp 11

jiifpp inout � 22

jiifpp inout � 12

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

PE2

inininout vppvpv ��
*

inininout gppgpg ��
*

inininout gggggg ��
*

(b)

Fig. 3. a) Systolic architecture when M=4
b) Input-output ports and cell functions

For the realization of Eq. (5) and Eq. (6), a linear array is
selected. For synchronization purposes, the linear array is
placed below the 2D array.

Figure 3 illustrates the proposed systolic array when M=4.
In Figure 3b, the cell function of each Processor Element
(PE) is illustrated.

Furthermore, this architecture utilizes the availability of the
residual vector g(n) and performs the following vector inner
product needed in the calculation of �.

)1()1()1(H
���� nnn gggg (7)

As can be seen from Table I, for the calculation of the
residual vector g(n), matrix-vector multiplication of (4), i.e.
vector v(n), is required. For utilizing v(n) two methods can be
exercised. One method is to keep the elements of v(n) by
allocating a local memory to each PE2 and then sequentially
transfer them to the host from the last PE2 of the linear array.
The second method is to slightly modify the PE2s. This can
be achieved by adding an extra output port to the PE2s as it is
illustrated in Fig. 4. The total number of PEs required in this
systolic architecture is M2+M.

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

vout

PE2

inininout vppvpv ���
*

inininout gppgpg ��
*

inininout gggggg ��
*

inout vv

Fig. 4. I/O ports and cell functions of the modified PE2

rR

-
+

+

+

+x

x

x

+
-

r I

p1R p1I

prR

prI

Fig. 5. Implementation of a complex multiplier by using the SR technique

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 2M

Fig. 6. Illustration of the data movement for each computation step

For the implementation of the complex multipliers needed
in the PEs, Strength Reduction (SR) transformation technique
has been utilized [7]. By utilizing the SR transformation the
total number of real multiplications needed in a complex
multiplier is reduced to only three. To clarify this further,
consider the complex multiplications required in PE1, i.e.

rpprjprpr IR ���� 1)(. By utilizing the SR technique we

have:

)(1)11(IRRIIRR rrprpppr ���� (8a)

)(1)11(IRIIIRI rrprpppr ���� (8b)

As can be seen from Eq. (8) and Figure 5, by utilizing the
SR transformation the total number of real multiplications
needed in a complex multiplication is reduced to only three.
This is at the expense of having three additional adders.
However, it is well known that multiplications are more
complex than additions and consume much more power as
well. In fact, for a single complex multiplication power
reductions of up to 25% can be achieved [7]. Thus, the SR
transformation can result in remarkable savings in consumed
power and silicon area.

In order to calculate the throughput of the systolic array, we
assume that one time step of the global clock corresponds to
the processing time required for each PE. For the
initialization of PE1s, M time steps are needed. Thus, the total
computation time required by the array is 3M steps. Figure 6
illustrates the flow of data in the proposed systolic
architecture for different time steps.

V. CONCLUSIONS

In this paper, implementation of a signal subspace based
mobile user tracking system was discussed that utilizes an
efficient sample-by-sample CG algorithm. First, the
computational complexity of different units of our mobile
user tracking system was estimated. Based on these
estimations, for a more realistic implementation, the tracking
system was partitioned into two parts: HW and SW. For the
hardware implementation of the tracking unit, a systolic
architecture was proposed. With the aid of this systolic array,
the time complexity of the most computationally intensive
unit was reduced to O(M). Furthermore, for the
implementation of the complex multipliers needed in the PEs,
Strength Reduction transformation technique was utilized. As
a result, remarkable savings in consumed power and silicon
area were achieved. Future research should be directed
towards mapping the system into a fixed number of
processors when the number of antennas M is large.

REFERENCES

[1] P. Karttunen and R. Baghaie, "Conjugate Gradient
Based Signal Subspace Mobile User Tracking," in
Proceedings IEEE Vehicular Technology Conference,
Houston, USA, vol. 2, pp. 1172-1176, May 1999.

[2] S.P. Chang and A.W. Willson, "Adaptive filtering using
modified conjugate gradient," in Proceedings 38th
Midwest Symposium on Circuits and Systems, Rio de
Janeiro, Brazil, pp. 243-246, August 1995.

[3] J.H. Moreno and T. Lang, "Matrix computations on
systolic-type meshes," IEEE Computer, pp. 32-51, April
1993.

[4] S.Y. Kung, VLSI Array Processors. Englewood Cliffs,
New Jersey: Prentice Hall, 1988.

[5] J. Tasic, M. Gusev, and D.J. Evans, "Systolic
implementation of preconditioned conjugate gradient
method in adaptive transversal filters," Parallel
Computing, vol. 18, no. 9, pp. 1053-1065, Sept. 1992.

[6] Y. Saad, "Practical use of polynomial preconditionings
for the conjugate gradient method," SIAM Journal of
Scientific Statistical computing, vol. 6, no. 4, pp. 865-
881, October 1985.

[7] N. Shanbhag and M. Goel, "Low-Power adaptive filter
architectures and their applications to 51.84 Mb/s ATM-
LAN," IEEE Transactions on Signal Processing, vol.
45, no. 5, pp. 1276-1290, May 1997.

