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ABSTRACT

In this paper, we consider the implementation
of two iterative methods: the Gram-Schmidt
Conjugate Direction (GSCD) and Conjugate
Gradient (CG) algorithm. We first study the
convergence properties of the algorithms.
Furthermore, the fixed-point implementation
of both CG and GSCD are presented. For the
simulations purposes, the algorithms are
applied to a multiuser detection scheme in a
DS-CDMA system. Finally, for different
number of users, wordlengths, and number of
iterations, the MSE resulting from the
quantization is estimated.

I.    INTRODUCTION

The least mean-squares (LMS) and the
recursive least-squares (RLS) algorithms are
the most widely used adaptive algorithms. In
order to solve finite linear equation systems of
the type Rw=b, where R is a known semi-
definite positive symmetric matrix, b is a
known vector and w is an unknown vector, the
RLS algorithm can be utilized. However, the
RLS implies a high computational complexity
and heavy matrix manipulations. Therefore,
the RLS algorithm has a tendency to be
numerically unstable. In order to avoid matrix
inversions and stability problems other
adaptive methods should be utilized.
The Conjugate type algorithms, such as CG
method [1], are a family of iterative solvers of
linear equation systems. Recently, they have
been used in many applications, such as
multiuser detection in Wideband Code
Division Multiple Access (WCDMA) [2, 3]
and mobile user tracking systems [4].
In this paper, the practical implementation of
two adaptive Conjugate type algorithms, the

GSCD and CG algorithms are studied and
compared. For both algorithms, we study their
convergence properties, their computational
complexity and their fixed-point implemen-
tations. Fixed-point implementation schemes
have some advantages in terms of increased
speed, reduced power consumption and
reduced hardware cost over the floating-point
counter parts. However, as a result of the
fixed-point implementation, quantization error
will occur that will affect the convergence of
the algorithms.

II.    THE ALGORITHMS

The two algorithms studied here are both
based on the generic method of Conjugate
Directions (CD) [5, 6]. The generic approach
is to find a set of orthogonal search directions
and to minimize the error along one search
direction every iteration. Then, after at most N
steps, the search will converge to the solution
of the equation system.
The generic CD method does not specify how
the orthogonal set of search directions should
be obtained. The different ways of obtaining
the search directions determine the type of a
particular CD algorithm.

A.    Gram-Schmidt Conjugate Directions

In the GSCD algorithm, a R-conjugate variant
of the well-known Gram-Schmidt orthogonali-
zation procedure [5] is used to find the R-
orthogonal search directions p(n). The
resulting algorithm is shown in Table I.
During each iteration step n, the new weight
vector estimate w(n) is computed as the linear
combination of the existing directions {p(1),
…, p(n)}, whose residual error g(n) is
minimal. The next search direction is
computed by applying the Gram-Schmidt



orthogonalization step to the residual error
vector. Since the N search direction span the
whole vector space this algorithm always
converges at most in N steps.

TABLE I
THE GSCD ALGORITHM
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B. Conjugate Gradients

In the CG algorithm, the new search direction
is still selected to be R-conjugate to the
previous search directions. The generation of
the new search direction has however a lower
complexity when compared to the Gram-
Schmidt orthogonalization step in the GSCD
algorithm. Table II illustrates the CG
algorithm [6].

TABLE II
THE CG ALGORITHM
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In these algorithms, α(n) is the step size which
minimizes the cost function along the search
direction p(n) and it is used in the update of
the weight vector w(n), g(n) is the residual of

the function and points to the direction of the
steepest descent. The new weight vector w(n)
is computed as a linear combination of the
previous weight vector and the search
direction. In the CG algorithm, factor β(n)
ensures that the R-orthogonality is preserved
between the new search directions. Due to
non-linear processing, the Polack-Ribière
formula [5], shown in (1), can be utilized in
the computation of β(n), for resetting
purposes.

β( ) max
( ( ) ( )) ( )

( ) ( )
,n

n n n

n n
= − −

− −








g g g
g g

1

1 1
0

T

T (1)

III.    THE CONVERGENCE PROBLEMS

Despite the fact that theoretically the CG
algorithms must converge in at most N steps,
in practice, due to the round-off errors
sometimes this may not be the case. Based on
the numerical results in this section, we will
demonstrate that for large N the CG algorithm
does not always converge after N steps.
Furthermore, depending on how close the
initial conditions are from the solution of the
linear equation system the same situation may
happen and the algorithm will not converge in
N steps.

A.    Numerical Results

To demonstrate the above mentioned
problems, we have used random symmetric
positive-definite matrices and element-wise
independent random vectors wopt with zero
mean and variance var(wopt), where wopt

approximates the exact solution of Rw=b.
Since the random vector wopt has a zero mean,
the mean-squared length of the vector is
Nvar(wopt). Thus, the distance of the wopt from
the origin can be controlled through the
variance of wopt. In Fig. 1, is it shown that
when the optimal solution, wopt, is close to the
initial value of w, w(0), in other words when
the variance is rather small, the CG algorithm
converges. As the variance of wopt increases,
more iterations are required to achieve an
acceptable mean squared error (MSE).
As a result, in such cases, for an acceptable
MSE more iteration steps are needed as can be



seen from Fig. 3. Of course, using initial
conditions close to the optimal value is one
solution to this convergence problem. In many
applications, however, this may not be
practical. On the other hand, the GSCD
method always converges in N steps, as
observed in Fig. 2.

IV.    COMPUTATIONAL COMPLEXITY

In this Section the computational complexities
of the CG and GSCD are studied and
compared. In these calculations, one division
has the same complexity as one multiplication.
Note that for estimating the complexities, we
have only considered the number of
multiplications. This is due to the fact that
multiplications are more complex than
additions [7]. As compared to the CG
algorithm, in the GSCD, computations of the
new search direction p(n) are more complex
and require a higher number of vector inner
products. The results are shown in Table III.

TABLE III
COMPARISON OF COMPUTATIONAL

COMPLEXITIES OF THE ALGORITHMS

Algorithm Number of multiplications

CG I(N2+5N+2)-2N-1

GSCD I(N2+2N+I(2N+1))-N

I: Number of iterations.

When calculating the computational
complexities of both algorithms, one should
note that in the last iteration for updating the
filter coefficients the only computation
required is the calculation of the step size α.
These complexities are calculated supposing
that the initial guess w(0) is equal to zero. In
both algorithms, if the initial weight vector is
nonzero, in other words, if we have an initial
guess, the residue will be calculated as (2) and
the computational cost will increase in  N2

multiplications.

g b Rw( ) ( )0 0= − (2)

The computational complexity depends on the
number of iterations I in both methods. Thus,
as the calculation of the new search direction

vector p(n) in the GSCD requires the existing
search directions {p(1), …, p(n)}, the
dependence with the number of iterations I is
larger than in the CG method.
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Fig. 1. MSE versus the var(wopt) for the CG

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of iterations

M
S

E

Variance of 1
Variance of 5
Variance of 10
Variance of 50

Fig. 2. MSE versus the var(wopt) for the GSCD
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V.    FIXED-POINT IMPLEMENTATION

In this section, we discuss the fixed-point
implementation of the algorithms and evaluate
the resultant quantization error. A fixed-point
number can be represented with bi bits for the
integer part and bf bits for the fractional part
as it is shown in Fig. 4. The parameter bi

determines the dynamic range while the
parameter bf determines the precision of the
problem. In the following section, throughout
extensive simulations we estimate the
optimum the wordlength, bi+bf, for both the
CG and the GSCD algorithms, when using a
multiuser detection scheme.

A. Numerical Results

The simulator is written in Matlab and it is
assumed that all the arithmetic operations have
the same input and output wordlength. For
more realistic results, the algorithm was
applied to a multiuser detection scheme in a
DS-CDMA system [2].
In these simulations, a fix number of 10 bits
plus a sign bit, were assigned to the integer
part of the parameters, the fractional part
varied between 3 to 21 bits, varying the
wordlength between 14 to 32. The number of
users K, was 33 and 65, the signal-to-noise
ratio was 8 dB, the data block length, Nb, was
1, the number of chips per symbol Nc are 31
and 63, respectively. The number of samples
per chip, Nsc, was set to be 2 in order to assure
K<Ns, where Ns is the number of samples per
symbol and is defined as Ns=NcNsc.
Fig. 5 and Fig. 6 illustrate the results of these
simulations after four iterations when initial
guess is zero or it is the output of the matched
filter, respectively. Fig. 7 represents the same
results as in Fig. 6, but after six iterations. As
can be observed from Fig. 5 and Fig. 6, by
utilizing the initial guess in the simulations,
the MSE will reduce. However longer
wordlengths are required to reach the same
MSE level as when using floating point
arithmetic.
In Fig. 8, for different number of iterations,
the fixed-point performance of the algorithms
is demonstrated. In these simulations bi and bf

were 10 and 6, respectively. As can be
observed from this figure, simply with the

wordlength of 16 bits we may not reach the
same MSE as with the floating-point
arithmetic and more bits should be utilized.

VI.    CONCLUSION

In this paper, practical implementations of the
Gram-Schmidt Conjugate Direction and
Conjugate Gradient algorithms were studied
and compared. We illustrated that although
theoretically the CG algorithm must converge
in at most N steps, in practice for large R it
may not happen. As a result, due to round-off
errors different resetting schemes and more
iterations were required. On the other hand,
we demonstrated that the GSCD method
always converges at most in N steps.
The fixed-point implementation of the above
mentioned algorithms were also studied and
presented. For more realistic results, the
algorithms were applied to a multiuser
detection scheme in a DS-CDMA system. In
these simulations, for different number of
users, different number of iterations and
different wordlengths the MSE errors were
calculated.
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