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ABSTRACT GSCD and CG algorithms are studied and

In this paper, we consider the implementatio%ompared' For both algorithms, we study their

of two iterative methods: the Gram—Schmid‘fonVergence properties, their computational

. A ; complexity and their fixed-point implemen-
Conjl_Jgate D|rect|on.(GSCD) a_nd Conjugat‘teations. Fixed-point implementation schemes
Gradient (CG) algorithm. We first study th

: d ave some advantages in terms of increased
convergence properties of the algorithms,

. o . Speed, reduced power consumption and
Furthermore, the fixed-point Implementatlonreduced hardware cost over the floating-point
of both CG and GSCD are presented. For thé gp

) . . counter parts. However, as a result of the
simulations purposes, the algorithms a

r T ; o
applied to a multiuser detection scheme in %ed-pomt implementation, quantization error

DS-CDMA system. Finally, for different will occur that will affect the convergence of
tf}e algorithms.

number of users, wordlengths, and number 0

iterations, the MSE resulting from the II. THE ALGORITHMS

guantization is estimated. . )
The two algorithms studied here are both

I.  INTRODUCTION based on the generic method of Conjugate
Directions (CD) [5, 6]. The generic approach
The least mean-squares (LMS) and thg to find a set of orthogonal search directions
recursive least-squares (RLS) algorithms aggg to minimize the error along one search
the most widely used adaptive algorithms. Igjrection every iteration. Then, after at mbist
order to solve finite linear equation systems @feps, the search will converge to the solution
the typeRw=Db, whereR is a known semi- of the equation system.
definite positive symmetric matrixb is & The generic CD method does not specify how
known vector anav is an unknown vector, thethe orthogonal set of search directions should
RLS algorithm can be utilized. However, thge obtained. The different ways of obtaining

RLS implies a high computational complexithe search directions determine the type of a
and heavy matrix manipulations. Thereforeyarticular CD algorithm.

the RLS algorithm has a tendency to be
numerically unstable. In order to avoid matribA. Gram-Schmidt Conjugate Directions
inversions and stability problems othe

adaptive methods should be utilized. In the GscD algorithm, R-conjugate variant

. : the well-known Gram-Schmidt orthogonali-
The Conjugate type algorithms, such as C%fation procedure [5] is used to find tie

method [1], are a family of iterative solvers Oorthogonal search directionsp(n). The

linear equathn systems. Rgcently, they ha¥gsulting algorithm is shown in Table I.
been used in many applications, such

s ceecton i Wiebara~ Coa A9 S5 efelon e e et weon
Division Multiple Access (WCDMA) [2, 3] b

and mobile user tracking systems [4]. combination of the existing directiong(l),

In this paper, the practical implementation of .’ . p(n)}, whose residual errolrg(n). IS
two adaptive Conjugate type algorithms threplnlmal. The next search direction is
" “computed by applying the Gram-Schmidt



orthogonalization step to the residual errdhe function and points to the direction of the
vector. Since théN search direction span thesteepest descent. The new weight veet(n)
whole vector space this algorithm always computed as a linear combination of the
converges at most N steps. previous weight vector and the search
direction. In the CG algorithm, factgB(n)

TABLE | L
ensures that th&-orthogonality is preserved
THE GSCD ALGORITHM between the new search directions. Due to
w(0) =0,9(0) =b,p() = g(0 andn=1 non-linear processing, the Polack-Ribiére
while n< N formula [5], shown in (1), can be utilized in
p(n)"g(n-1) the computation of B(n), for resetting
a(n) = o Rp(n) purposes.
w(n) =w(n-1 +a(np(n Dg(n) - g(n-1)" on) .0
g(n) = g(n-1) —a(NRp(n) B(ﬂ)=maxg o(n—1)" gn-1) ,OD 1)
& g(n)"Rp(k)
p(n+1) =g(n) - » — =5~y P(K)
. kle(k)TRp(k) lIl.  THE CONVERGENCEPROBLEMS
n=n+
end Despite the fact that theoretically the CG
algorithms must converge in at mdststeps,
B. Conjugate Gradients in practice, due to the round-off errors

sometimes this may not be the case. Based on
In the CG algorithm, the new search directiothe numerical results in this section, we will
is still selected to be R-conjugate to thgemonstrate that for largéthe CG algorithm
previous search directions. The generation ghes not always converge aftéd steps.
the new SeaI’Ch direCtion haS hOWeVer a |0Wﬁ["'thermore' depending on how close the
complexity when compared to the Grampmitial conditions are from the solution of the
Schmidt orthogonalization step in the GSCRnear equation system the same situation may

algorithm. ~ Table Il illustrates the CGhappen and the algorithm will not converge in
algorithm [6]. N steps.
TABLE Il ]

To demonstrate the above mentioned
problems, we have used random symmetric
positive-definite matrices and element-wise

w(0)=0,9(0)=b,p()=g(0" «0,
p(1) =g(0) andn=1

while n< N p(n) independent random vectows,y, with zero
a(n) =—-——"—— mean and variance var{y), where woy
p(n) Rp(n) approximates the exact solution &w=b.
w(n) =w(n-3)+a(np(n Since the random vector,,; has a zero mean,
9(n) = g(n=1) —a(MRp(n) the mean-squared length of the vector is
p(n+1) =g(n)"g(n Nvar(w,p). Thus, the distance of the,y from
B(n) = p(n+1) the origin can be controlled through the
p(n) variance ofwgy. In Fig. 1, is it shown that
p(n+1 =g(n) +B(Np(nN when the optimal solutiony,,;, is close to the
n=n+1 initial value ofw, w(0), in other words when
end the variance is rather small, the CG algorithm

h lqorith is th ) hi hconverges. As the variance wf,, increases,
In these algorithmsy(n) is the step size which e jterations are required to achieve an

minimizes the cost function along the Searc@cceptable mean squared error (MSE).
directionp(n) and it is used in the update of\q 5 resylt, in such cases, for an acceptable
the weight vectow(n), g(n) is the residual of \,sE more iteration steps are needed as can be



seen from Fig. 3. Of course, using initialectorp(n) in the GSCD requires the existing
conditions close to the optimal value is onsearch directions pg{(1), ..., p(n)}, the
solution to this convergence problem. In manyependence with the number of iteratidnis
applications, however, this may not bdarger thaninthe CG method.
practical. On the other hand, the GSCD

method always converges i steps, as *

observed in Fig. 2. : T Vetaeos

10" ¢ - — - Varianceof 10| §
Variance of 50

IV. COMPUTATIONAL COMPLEXITY

In this Section the computational complexitie *
of the CG and GSCD are studied angwl
compared. In these calculations, one divisic
has the same complexity as one multiplicatiol

Note that for estimating the complexities, wi ¢
have only considered the number ¢
multiplications. This is due to the fact tha
multiplications are more complex thar *% E fr is % %

Number of iterations

additions [7]. As compared to the CG Fig. 1. MSE versus the vav,) for the CG
algorithm, in the GSCD, computations of the
new search directiop(n) are more complex

107F

and require a higher number of vector inne | o Vo | |
products. The results are shown in Table Ill. Variance of 50
TABLE Il
COMPARISON OF COMPUTATIONAL r

COMPLEXITIES OF THE ALGORITHMS G0t

Algorithm Number of multiplications
CG | (N*+5N+2)-2N-1
GSCD [(N?+2N+ (2N+1))-N
I: Number of iterations. 0’ : ™ = » p

Number of iterations.

When calculating the  computationaFig. 2. MSE versus the vav{,) for the GSCD
complexities of both algorithms, one should
note that in the last iteration for updating th
fiter coefficients the only computation *|
required is the calculation of the step size *f
These complexities are calculated supposit wuf
that the initial guesw(0) is equal to zero. In ;|
both algorithms, if the initial weight vector isy |
nonzero, in other words, if we have an initig- .
guess, the residue will be calculated as (2) a
the computational cost will increase N
multiplications. o

9(0) = b—Rw(0) )

- - N=100

ST e
50 100 150
Number of iterations

The computational complexity depends on the=jy 3 Convergence of the CG algorithm for
number of iterations in both methods. Thus, longer iteration steps

as the calculation of the new search direction

0

0



V. HXED-POINT IMPLEMENTATION

b; bits b; bits
Integer part Fractional part

In this section, we discuss the fixed-poin
implementation of the algorithms and evaluat
the resultant quantization error. A fixed-poin Decimal point
number can be represented withbits for the
integer part andb bits for the fractional part
as it is shown in Fig. 4. The parametgr wordlength of 16 bits we may not reach the
determines the dynamic range while theame MSE as with the floating-point
parameterb; determines the precision of thearithmetic and more bits should be utilized.
problem. In the following section, throughout

extensive simulations we estimate the VI. CONCLUSION

optimum the wordlengthb,+b;, for both the
CG and the GSCD algorithms, when using
multiuser detection scheme.

Fig. 4. Fixed-point representation

In this paper, practical implementations of the
aram—SChmidt Conjugate Direction and
Conjugate Gradient algorithms were studied
A. Numerical Results and compared. We illustrated that although
The simulator is written in Matlab and it istheoreucally the CG. algontr_lm must converge
i ) : in_at mostN steps, in practice for large it
assumed that all the arithmetic operations hayve
. may not happen. As a result, due to round-off
the same input and output wordlength. For . .
o ; errors different resetting schemes and more
more realistic results, the algorithm was[ ; .
i ; . . “Tterations were required. On the other hand,
applied to a multiuser detection scheme in a
we demonstrated that the GSCD method
DS-CDMA system [2]. .
always converges at mosthihsteps.

In these simulations, a fix number of 10 bitsr ; e .
. . . . he fixed-point implementation of the above
plus a sign bit, were assigned to the integer

part of the parameters, the fractional IOarr'?entloned algorithms were also studied and

varied between 3 to 21 bits, varying thgresented. For more realistic results, the

wordlength between 14 to 32. The number g gonthms were 'applled fo a multiuser
) ._detection scheme in a DS-CDMA system. In
usersK, was 33 and 65, the S|gnal—to-n0|s%n . ; .
. ese simulations, for different number of
ratio was 8 dB, the data block lenght,, was . . .
. users, different number of iterations and
1, the number of chips per symlg} are 31 .

. different wordlengths the MSE errors were
and 63, respectively. The number of Sampl%sélculated
per chip,Ns, was set to be 2 in order to assuré '
K<N,, whereNs is the number of samples pe- »
symbol and is defined &&=N.Ns.

Fig. 5 and Fig. 6 illustrate the results of thes
simulations after four iterations when initial | "
guess is zero or it is the output of the match
filter, respectively. Fig. 7 represents the sang.;
results as in Fig. 6, but after six iterations. A
can be observed from Fig. 5 and Fig. 6, t
utilizing the initial guess in the simulations

the MSE will reduce. However longer

wordlengths are required to reach the sar *
MSE level as when using floating point

arithmetic. T o a » m W =

In Fig. 8, for different number of iterations,,:ig. 5. Fixed-point performance of GSCD and
the fixed-point performance of the algorithms CG algorithms without initial guess

is demonstrated. In these simulatidmsnd by (1=4,K=33 and 65SNR=8dB, Ny=1)
were 10 and 6, respectively. As can be
observed from this figure, simply with the

———  Fixed-point CG
- = Fixed—-point GSCD
Floating-point CG & GSCD
o 33 users

65 users
Without initial guess
10 bits for the integer part
After 4 iterations




Fixed-point CG
— — - Fixed-point GSCD
Floating—point CG & GSCD

[¢] 33 users

65 users

With initial guess

10 bits for the integer part

After 4 iterations
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Fig. 6. Fixed-point performance of GSCD and

CG algorithms with initial guess
(I=4,K=33 and 65SNR=8dB, N,=1)

Fixed-point CG
Fixed-point GSCD
Floating-point CG & GSCD
33 users

65 users

With initial guess

10 bits for the integer part
After 6 iterations

. . . . . . . .
14 16 18 20 22 24 26 28 30 32
Wordlength

Fig. 7. Fixed-point performance of GSCD and4]

CG algorithms with initial guess
(I1=6,K=33 and 65SNR=8dB, N,=1)

Floating-point CG & GSCD
Fixed-point CG
- Fixed-point GSCD
Without initial guess
o] With initial guess
33 users
16 bits - 10 bits integer part

o

Mean Squared Error

ok & ® ® L

L L L L L
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Fig. 8. Fixed-point performance of the CG and

GSCD algorithms for different number of
iterations K=33, SNR=8dB, Ny,=1)
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