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Abstract

In power control, convergence rate is one of the most important criteria

that can determine the practical applicability of a given algorithm. The

convergence rate of power control is especially important when propaga-

tion and tra�c conditions are changing rapidly. To track these changes,

the power control algorithm must converge quickly. The purpose of this

paper is to provide a new theoretic framework such that we can utilize

partially known link gain information in improving the convergence speed.

For the purpose, block power control (BPC) is suggested with its conver-

gence properties. BPC is centralized within each block in the sense that

it exchanges link gain information within the same block. However, it is

distributed in a block-wise manner and no information is exchanged be-

tween di�erent blocks. Depending on availability of link gain information,

a block can be any set of users, and can even consist of a single user.

Computational experiments are carried out on a DS-CDMA system, illus-

trating how BPC utilizes available link gain information in increasing the

convergence speed of the power control.

Keywords: Cellular radio system, block power control, convergence, link

gain matrix.
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1 Introduction

The scarce radio spectrum has been imposing hard limitations on the design of

cellular radio systems. Providing wireless communication services with higher

capacity as well as better quality necessitates powerful and robust methods for

sharing the radio spectrum in the most e�cient way. All sharing methods in

practice introduce interference of one sort or another that is proportional to

transmitter powers. In particular, when it comes to DS-CDMA systems [1], [2],

handling the interference is a critical factor. The transmitter power control is a

key technique to better balance between received signal and interference (SIR),

which in turn enables more e�cient resource sharing.

During recent decades, many researchers have investigated power control

from di�erent perspectives (see [3], [4] for some of the latest reviews on power

control). Especially, power control in cellular radio systems has drawn much

attention since Zander's works on centralized [5] and distributed [6] SIR balanc-

ing. SIR balancing was further investigated by Grandhi et al. [7], [8]. Foschini

and Miljanic [9] considered a more general and realistic model, in which a pos-

itive receiver noise and a respective target SIR were taken into account. The

Foschini and Miljanic's distributed algorithm was shown to converge either syn-

chronously [9] or asynchronously [10] to a �xed point of a feasible system. Based

on the Foschini and Miljanic algorithm, Grandhi et al. [11] suggested distributed

constrained power control (DCPC), in which a transmission upper limit was con-

sidered. DCPC has become one of the most widely accepted algorithms by the

academic community. Meanwhile, a framework on convergence of the gener-

alized uplink power control was provided by Yates [12] and has been recently

extended by Huang and Yates [13]. The results in [12] and [13] have become a

breakthrough, providing guidelines for designing and analyzing new algorithms.

Along with distributiveness, the convergence rate is one of the most impor-

tant criteria by which we can determine the practical applicability of a given

power control algorithm. A good algorithm should quickly and distributively

converge to the state where the system supports as many users as possible. The

convergence rate of power control is especially important when propagation and

tra�c conditions are changing rapidly. It is expected that future wireless traf-

�c will become much more bursty than today's voice dominated tra�c. With

bursty tra�c, slow algorithms will perhaps not even be able to converge before

the data burst ends. To track these changes, the power control algorithm must

converge quickly. Huang and Yates have reported that DCPC converges to a

�xed point at a geometric rate [13]. It was, however, pointed out that the con-

vergence of DCPC becomes slow as it approaches the �xed point [14]. In some

cases, it takes a long time to reach this �xed point, which makes the transmitter

removal di�cult [15], [16]. To cope with such drawbacks, a second-order power

control algorithm (SOPC) has been recently suggested by J�antti and Kim [14].

SOPC is di�erent from the existing �rst-order power control [6], [8]-[13] in a way

that, for power update, it requires power levels of both current and previous

iterations. Gain from SOPC is in faster convergence and thus in increasing the

radio network capacity.
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The purpose of this paper is in the line of SOPC; designing a power con-

trol algorithm with fast convergence. However, we approach the problem from

another perspective. If the link conditions (link gain matrix [5]) were partially

known, how could we incorporate this additional information into the power

control in a way that the convergence speed increases? In this paper, we will

provide a theoretic framework on power control as an e�ort to answer this ques-

tion.

The power control algorithm suggested in this paper, called block power con-

trol (BPC) is centralized within each block in the sense that it exchanges link gain

information within the same block. However, it is distributed in a block-wise

manner and no information is exchanged between di�erent blocks. A block can

be any set of users, and can even consist of a single user. BPC is \parameterized"

so that the reliability of available link gain information and the dynamic range

of transmitters can be taken into account. We provide convergence properties of

BPC and illustrate by numerical examples how BPC improves the convergence

speed. As a reference algorithm, we use DCPC [11] that is fully distributed and

does not require any prior knowledge about link gains.

One possible application of our work is the bunched radio resource manage-

ment scheme [17]. The basic assumption of the scheme is that the link gains

within a bunch are, at least partially, known. A bunch is generally equivalent

to a block of this paper. It may be argued that the bunch concept requires a

lot of signaling and is rather impractical. However, we can imagine an example

of \natural" bunches where the signaling can be done locally within one base

station controller. In the Wideband CDMA system [2], dedicated pilot bits are

associated with each tra�c channel in both up- and downlinks, supporting the

adaptive antennas. This property may enable the e�cient estimation of link

gains, required in the bunch concept.

In the next section, we provide our system model that will be used through-

out this paper. To present BPC in Section 3, we start with an algorithm for

the relaxed problem that has no constraint on maximum power levels. Next,

we develop it to a constrained algorithm. Numerical comparison between BPC

and DCPC is contained in Section 4. Finally, Section 5 concludes the paper.

2 System Model

Suppose a cellular radio system, in which M transmitters are accessing a com-

mon frequency channel. Each transmitter communicates with exactly one re-

ceiver. For the uplink case, the transmitters are the mobiles and the receivers

are their corresponding base stations; and for the downlink case, their roles

are reversed. We consider a time instant in which the link gain between every

receiver i and every transmitter j is stationary and is given by gij . Without

loss of generality, we will assume that transmitter i is communicating with re-

ceiver i. In a DS-CDMA system, many mobiles will communicate with the

same base station through the same frequency channel. Thus, in our notation

below, receivers i and j in the uplink may denote the same physical one if the
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transmitters (mobiles) i and j are assigned to the same base station. We will

denote the power of transmitter i by pi. In the uplink case, the value pi means

the transmission power of mobile i. However, in the downlink, it denotes the

transmission power dedicated to mobile i by the base station to which mobile i

belongs.

We assume that the signal of transmitter i will be received correctly if the

carrier-to-interference-plus-noise ratio (CIR) at the receiver i is not less than a

given target value 
ti . However, since the ideal situation is to make connection

with the minimal transmission power, we have the following CIR constraint on

transmitter i:
giipiPM

j=1

j 6=i
gij�ijpj + �i

= 
ti ; i = 1; 2; : : : ;M (1)

In the above �i is the thermal noise at receiver i. The quantity �ij is the

normalized cross-correlation between pi and pj at receiver i. For instance, �ij =

1 for both up- and downlinks in an F/TDMA system. In a DS-CDMA system,

we assume �ij = 1 for the uplink case whereas, in the downlink, �ij 2 [0; 1] if

mobiles i and j are assigned to the same base station; otherwise �ij = 1.

Let us de�ne an M �M matrix H = [hij ] such that hij = 
tigij�ij=gii for

i 6= j and hij = 0 for i = j. In addition, let us de�ne a vector � = (�i) such that

�i = 
ti�i=gii. Then, converting (1) into a matrix from, we have the following

power control problem:

Ap = �; (2)

where A = I �H and p = (pi) denotes the power vector. Since the power of

a transmitter is limited, we will consider the following constraint on the power

vector:

0 � p � �p; (3)

where �p = (�pi) denotes the maximum transmission power. Throughout this

paper, unless otherwise noted, we assume that the system is feasible at the

given instant. That is, there exists a unique power vector p� that solves the

problem (2) within the range of (3).

Let us assume that transmitters are grouped into N blocks, B1;B2; : : : ;BN .
A block can be any set of transmitters, and can even consist of a single trans-

mitter. Detailed discussion about designing the block is contained in Section

3. For notational simplicity, we assume that the �rst jB1j transmitters belong

to B1 and the next jB2j transmitters belong to B2, and so forth. Then, we can

represent H as the following block matrix:

H =

2
6664

H11 H12 � � � H1N

H21 H22 � � � H2N

...
...

. . .
...

HN1 HN2 � � � HNN

3
7775 (4)

The submatrix Hij has the size of jBij � jBj j. As the same manner, we can

decompose:

� = (�1;�2; � � � ;�N )0 (5)
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p = (p1;p2; � � � ;pN )0 (6)

3 Block Power Control

3.1 Unconstrained Case

Let us consider the following iterative method for solving the power control

problem (2):

p(n+ 1) =M�1(Np(n) + �); (7)

where M and N are matrixes satisfying A =M�N. The vector p(n) denotes

the power level at iteration n. Let �1; �2; : : : be the eigenvalues of a given square

matrix B = [bij ], and de�ne �(B) = maxk j�kj. The constant �(B) is called the

spectral radius of B. It is well known that p(n) converges into p� of a feasible

system if and only if the spectral radius �(M�1N) is less than one (Theorem

3.7 in [19]).

Let us consider matrixes M and N satisfying A = M �N, M�1 � 0 and

N � 0. Matrixes M and N that ful�ll this condition are said to form a regular

splitting of matrix A.

Proposition 1 (Theorem 3.13 in [19]) If the matrixesM and N form a regular

splitting of A of a feasible system, then �(M�1N) < 1 and thus the iterative

method (7) converges to p�, starting from an arbitrary initial vector p(0).

Proposition 2 (Theorem 3.15 in [19]) Let A =M1 �N1 =M2 �N2 be two

regular splittings of A of a feasible system. If N2 � N1 � 0 (equality excluded),

then �(M�1
1 N1) < �(M�1

2 N2) < 1.

The asymptotic average rate of convergence (Theorem 3.2 in [19]) of the

convergent iterative method (7) is de�ned as

R1 = lim
n!1

� 1

n
ln
�
jj(M�1N)njj2

�
= � ln �

�
M�1N

�
(8)

where jj � jj2 denotes the Euclidean norm. Proposition 2 gives us a hint about

how to choose the matrixesM andN to obtain fast convergence; the smaller the

spectral radius is, the higher (faster) the asymptotic average rate of convergence

is.

Let us choose M = 
�1(I�	
H) and N = 
�1 � I+ (1�
�1	)
H,

where 
 denotes element-wise multiplication and 1 is a matrix of an appropriate

size, consisted of ones. The matrix 
 has the form


 =

2
66664


11 0 � � � 0

0 
22

. . . 0
...

. . .
. . .

...

0 0 � � � 
NN

3
77775

(9)
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where 
ii is a jBij � jBij matrix ful�lling

0 � 
ii � I (10)

Similarly, 	 has the form

	 =

2
66664

	11 0 � � � 0

0 	22

. . . 0
...

. . .
. . .

...

0 0 � � � 	NN

3
77775

(11)

where 	ii is a jBij � jBij matrix ful�lling

0 � 	ii � 
ii1 (12)

Then, using these M and N, we can construct the following iterative power

control algorithm, which we will call unconstrained block power control (UBPC).

p(n+ 1) = I
�
p(n)

�

, (I�	
H)�1

��

�1 � I+ (1�


�1
	)
H

�
p(n) + �

�
(13)

And, by showing that the matrixes M and N form a regular splitting of A, we

have:

Proposition 3 UBPC converges to p� of a feasible system, starting from an

arbitrary initial vector p(0).

Proof. The feasibility condition implies that �(H) < 1 (Theorem 3.9 in [19]).

SinceHii is a principal submatrix of H, by Lemma 2.4 in [19], we have �(Hii) <

�(H) < 1. By de�nition, 	ii � 
ii1 � 1 holds, and Theorem 2.8 in [19]

guarantees that �(	ii 
Hii) � �(Hii). Thus, by Theorem 3.9 in [19], we have

(I�	
H)�1 =2
6664

(I�	11 
H11)
�1 0 � � � 0

0 (I�	22 
H22)
�1 0 0

...
. . .

...
...

0 0 � � � (I�	NN 
HNN)
�1

3
7775 � 0

(14)

From (4), (10), (12) and (14), it is clear that

M�1 = (I�	
H)�1
 � 0 (15)

and

N = 

�1 � I+ (1�


�1
	)
H � 0 (16)

Thus, by Proposition 1, UBPC converges. 2
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To give the notion of \block-wise" power control, let �(n) = diagf 
ti

i(n)

g,
where 
i(n) denotes the received CIR of user i at iteration n (see (1) for the

de�nition of CIR). This allows us to replace Hp(n) + � in (13) by �(n)p(n).

Since � is of the same size as 
 or 	, we can decomposite it into blocks in the

same manner:

�(n) =

2
66664

�11(n) 0 � � � 0

0 �22(n)
. . . 0

...
. . .

. . .
...

0 0 � � � �NN (n)

3
77775

(17)

By noting that 
, 	 and �(n) are block diagonal matrixes, we can rewrite (13)

in a block-wise form as follows:

pi(n+ 1) = Ii
�
p(n)

�
,

�
I+ (I�	ii 
Hii)

�1
ii

�
�ii(n)� I

��
pi(n); (18)

where pi(n) denotes the power levels of the transmitters of the block i at it-

eration n. Equations (13) and (18) are mathematically equivalent. The only

di�erence between them is that the latter utilizes measurable information, Hii

and �ii(n), within block i.

In UBPC given by the equation (18), the elements in 	ii represent avail-

ability and reliability on the corresponding elements in the normalized link gain

matrix, Hii. For example, if the users in block i have a full con�dentiality

on an element in Hii, then the corresponding element in 	ii can be set to its

maximum value given by the bound (12). However, the zero element in 	ii

corresponds to the opposite case, where the information is either not available

or has poor reliability. When 	ii = 0, we can verify through (18) that the

power update within block i becomes fully distributed, requiring only local CIR

measurement. In fact, if we choose 	 = 0, then UBPC will be equivalent to

the Foschini and Miljanic algorithm [9]. By the de�nition of Hii, if every block

is composed of a single user, UBPC will be also reduced to the Foschini and

Miljanic algorithm. The diagonal elements of 
ii constitute a damping factor

of the power control algorithm like the �-parameter in the Foschini and Miljanic

algorithm. The damping factor can be used to increase the robustness of the

power control algorithm by adjusting the step size of power update. For ex-

ample, in case of power control errors, such as CIR measurement error, smaller

fault can be done by decreasing the damping factor. The damping factor can be

also used for taking into account the \sluggishness" of the transmitter, i.e., the

power amount that can be varied in one update. Nevertheless, as will be stated

in Proposition 4, largest 
ii and 	ii will generate the best convergence speed,

provided that the link gains and the CIRs are measured accurately in block i.

Proposition 4 Among those 
ii and 	ii that ful�ll inequalities (10) and (12),

the choice 
ii = I and 	ii = 1 is best with respect to asymptotic average rate

of convergence.
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Proof. For notational convenience, let us denote the iteration matrixM�1N =

(I �	 
H)�1

�


�1 � I + (1�


�1
	) 
H

�
in (13) by Z(
;	). Let �
ii =

I and �	ii = 1. Assume that 
ii 6= �
ii and 	ii 6= �	ii. It follows that


�1�I+(1�
�1	)
H � �

�1�I+(1�
�1	)
H � �


�1�I+(1� �

�1 �	)
H,

where the equality is excluded. Thus, by Proposition 2, we have �
�
Z(
;	)

�
>

�
�
Z( �
; �	)

�
. 2

The sizes and structures of submatrixes 	ii (thus the size and structure of

each block) de�ne the computational complexity and distributiveness of UBPC.

They also give a paramount e�ect on the convergence speed. If the block sizes are

large and the elements in the corresponding	ii-matrixes are also large, then the

convergence speed is going to be fast. Actually, the best possible performance

with respect to the convergence speed, assuming that the link gains could be

measured accurately, is achieved by including all the users into one block. In

this special case, UBPC becomes fully centralized. One drawback of using large

block sizes with dense 	ii is that the computational complexity is high, since

we need to invert large (I � 	ii 
Hii) at each iteration. Another drawback

is that the degree of signaling is high, since a large amount of measurement

information must be collected. To reduce the complexity, we can use sparse

	ii or reduce the block size. However, this is done at the cost of reducing

the convergence speed. In practice, the sizes and structures of 	ii are upper

limited by the amount of signaling, the availability of the link gain estimates

and the computational complexity of the matrix inversion operation. However,

it is generally di�cult to compare between utilizing small blocks with reliable

information and utilizing larger blocks with information of inferior quality. In

Example 1, we will illustrate a practical way of choosing blocks such that the

computational complexity is kept low.

Example 1. Consider a DS-CDMA system, where all the mobiles assigned to

a particular base station constitute one block. The link gains between mobiles

and the base station within the same block are assumed to be known. Further,

in the downlink case, we assume that the normalized cross-correlation between

di�erent channels in the block k is uniform, i.e., �ij = � if i; j 2 Bk. If we choose

kk = I and 	kk = 1, k = 1; : : : ; N ; then UBPC becomes, in up- and downlink

cases,

pi(n+ 1) =

ti�

1 + 
ti
��
1�Pj2Bk


t
j

1+
t
j

�
Ii(n)

gii
; i 2 Bk (19)

and

pi(n+ 1) =

ti

1 + �
ti

��Pj2Bk


tj
1+�
t

j

Ij(n)

gjj

1� �
P

j2Bk


t
j

1+�
t
j

+
Ii(n)

gii

�
; i 2 Bk (20)

respectively. For user i, the external interference from the outside of block k, is
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given by

Ii(n) =
giipi(n)


i(n)
�
X
j2Bk
j 6=i

gjjpj(n); i 2 Bk (21)

and

Ii(n) =
giipi(n)


i(n)
� �gii

X
j2Bk
j 6=i

pj(n); i 2 Bk (22)

in up- and downlink cases, respectively. Note that, from our de�nition in Section

2, the link gains gjj in (21) and gii in (22) can be replaced by gij (see Appendix

A for the derivation of above results). Also, we can easily verify that if Bk = fig
and � = 1, then both (19) and (20) will be reduced to the fully distributive form,

pi(n+ 1) =

ti


i(n)
pi(n).

3.2 Constrained Case

Let us consider a more realistic case, where we have an upper limit for trans-

mission powers as given in (3). The constrained block power control (CBPC)

algorithm is given by

p(n+ 1) = T
�
p(n)

�
, min

n
�p; I

�
p(n)

�o
(23)

For block i, the update rule can be expressed as

pi(n+ 1) = Ti
�
p(n)

�
, min

n
�pi; Ii

�
p(n)

�o
(24)

Proposition 5 CBPC converges to p� of a feasible system, starting from any

power vector p(0) that is in the range of (3).

Proof. First, for a given vector x and a nonsingular matrix W with an appro-

priate size, de�ne the weighted maximum norm as

jjxjjW
1

= jjWxjj1 = max
i
j
X
j

wijxj j (25)

and for a matrix B, the consistent matrix norm as

jjBjjW
1

= jjWBW
�1jj1 (26)

If the weight matrix W is diagonal then the above can be written as

jjBjjW
1

= max
i
j
X
j

bij
wii

wjj

j (27)

By Lemma 1 (see Appendix B), there exists a positive de�nite diagonal

matrix W such that jjZ(
;	)jjW
1

< 1, and by Proposition 3, Z(
;	) � 0.
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Therefore, we have

jjT (p)� p�jjW
1

� jjZ(
;	)(p� p�)jjW
1

(28)

� jjZ(
;	)jjW
1
jjp� p�jjW

1
(29)

< jjp� p�jjW
1

(30)

Thus, we can conclude that T (p) is a pseudo-contraction mapping with respect

to the weighted maximum norm, and thus CBPC converges geometrically with

the rate jjZ(
;	)jjW
1
. 2

Remark 1 It is also possible to prove the convergence of CBPC by verifying

that T (p) is a standard interference function (Theorem 2 in [12]).

Remark 2 Proposition 5 also provides a convergence proof for the constrained

version of the Foschini and Miljanic algorithm. Note that if 
 = I and 	 = 0

then the corresponding constrained Foschini and Miljanic algorithm is equivalent

to DCPC [11].

Corollary 1 Proposition 4 also holds for CBPC.

Proof. By Proposition 5, CBPC is a pseudo-contraction mapping. Thus, there

exits 0 < K < 1 such that T (p(n)) < �p, for all n > K and for all 
, 	

ful�lling (10) and (12). So for n > K, the dynamics are described by UBPC

and thus Proposition 4 applies. 2

Corollary 2 If 
ii(n) and 	ii(n) ful�ll (10) and (12) at every iteration, then

the non-stationary CBPC converges to p� of a feasible system, starting from

any power vector p(0) that is in the range of (3).

Proof. By Lemma 1 (see Appendix B), there exists a positive de�nite diagonal

matrixW such that jjZ(
;	)jjW
1

< 1 for all 
 and 	 that ful�ll (10) and (12).

Therefore jjZ(
(n);	(n))jjW
1

< 1 for all n and the equations (28)-(30) hold.

Thus T (p) is a pseudo-contraction mapping even in the non-stationary case.2

Corollary 2 states that the damping factor and the amount of link gain infor-

mation utilized by the power control can vary from iteration to another without

causing any problem to the convergence. In addition, we have the following

property that the algorithm converges even if the power updates are done in the

asynchronous fashion.

Remark 3 The asynchronous CBPC converges to p� of a feasible system, start-

ing from any power vector p(0) that is in the range of (3).

This property can be easily proved by following the steps taken in the proof of

Proposition 3.1 in [10].

As mentioned in Section 2, we have been focusing on the feasible system

throughout the paper. However, it is noticeable that UBPC and CBPC may
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result in nonpositive power values when the system becomes infeasible; we can-

not support every transmitter. In this case, the inequality (14) may no longer

hold because �
�
	iiHii

�
� 1 (see also Theorem 3.9 in [19]). This means that

the block i, and therefore the whole system, is overloaded and some of the users

must be removed. Unfortunately, this condition alone is not enough to detect

infeasibility since it may happen that the block i is feasible but the interference

coming from other cells is too high (�
�
Hii

�
� �

�
H
�
< 1 but p� is not in the

range of (3) or �
�
Hii

�
< 1 but �

�
H
�
� 1) or it may even happen that 	ii

is chosen such a way that the inverse matrix is positive although the block is

overloaded (�
�
Hii

�
� 1 but �

�
	iiHii

�
< 1). In case of negative powers, we

could, if all the link gains in Hii are known, utilize some advanced removal

strategy like removing the worst interferer (the user that has the smallest link

gain) �rst. Another approach that could be useful, especially if the link gain

information has poor reliability, is to force the inverse of I �	ii 
Hii matrix

to become positive by decreasing some of the elements in 	ii. This e�ect can

also be achieved by dividing the block into several smaller ones although this

may require more signaling e�ort. After the inverse is made positive, the overall

system can still be infeasible. If this is the case, the power vector will converge

to a �xed point where some (or all) of the users are using the maximum power

but are not supported. To cope with this situation, standard removal schemes

like gradual removal [16] should be applied.

4 Simulation

We investigate how quickly CBPC converges to p� of a feasible system. DCPC

is used as a reference algorithm. The DS-CDMA system with 19 omni-bases

located in the centers of 19 cells is used as a test system (Figure 1). The

distance between two nearest base stations is 2 km. We consider both up- and

downlink cases of an IS-95 example, where the processing gain is 21dB [1]. For a

given instance, a total of 190 mobiles are generated in the uplink case, whereas

380 mobiles are considered in the downlink case. The reason for the di�erence

in the number of users is to keep the relative load approximately the same for

both up- and downlinks.

The locations of mobiles are uniformly distributed over the 19 cells. The link

gain gij is modeled as gij = sij � d�4ij , where sij is the shadow fading factor and

dij is the distance between base i and mobile j. The log-normally distributed

sij is generated according to the model in [18] (pp. 185-186, E(sij) = 0 dB, andp
E(sijskl) = 8 dB if i = k;

p
E(sijskl) = 4

p
2 dB if i 6= k).

The receiver noise at both mobiles and base stations is taken to be 10�12.

The relative maximum power of a mobile, and in the downlink case the relative

maximum power of a tra�c channel assigned to a mobile is set to one. The base

that gives the lowest attenuation is assigned to each mobile. The received Eb=I0
is calculated by adding the processing gain to the corresponding CIR value (in

dB). The target Eb=I0 is set to 8 dB for both up- and downlinks of each mobile.

When applying CBPC, we have used the same assumption as in Example

11
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Figure 1: DS-CDMA cellular system with 19 omni-bases.

1. That is, all the mobiles assigned to a particular base station constitute one

block. The link gains between mobiles and the base station within the same

block are assumed to be known. We choose 
ii = I and 	ii = 1 and apply (19)

and (20), considering the maximum power constraint. In the downlink case, we

use the normalized cross-correlation �ij = 0:4 if mobiles i and j belong to the

same base station.

The outage probability is used as a performance measure. To evaluate this,

we have taken 1000 independent \feasible" instances of mobile locations and

shadow fadings. In each instance, we have performed thirty power control steps.

The initial power for each mobile is randomly chosen from the interval [0,1]. The

outage probability at each iteration is computed over 1000 instances by counting

the portion of the number of non-supported mobiles at the iteration. Figures

2 and 3 show the outage probabilities of CBPC and DCPC as a function of

iteration. In the uplink case (Figure 2), CBPC takes about 7 iterations on

average to reach the state with the outage probability of 10�4. However, we

can see that DCPC requires more than 30 iterations on average to reach that

point. In the downlink (Figure 3), CBPC requires 8 iterations, whereas DCPC

does 20 iterations. The reason for the performance di�erence in CBPC between

up- and downlinks is that the uplink interference within a cell is much larger

than that in the downlink and that main contribution of CBPC is to e�ciently

mitigate the interference within the cell (block).

Figures 4 and 5 show the Euclidean distance between the current power vec-

12
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Figure 2: Uplink outage probability as a function of iteration.

tor and p�. The distance is computed by averaging over 1000 instances. It is

clear that CBPC also converges faster in terms of the Euclidean distance. Fig-

ures 2-5 indicate that a signi�cant improvement in the convergence speed has

been obtained through utilizing link gain information. The speed di�erence be-

comes bigger as both algorithms approach p�. This coincides with the theoretic

results of Corollary 1 on the asymptotic average rate of convergence.

5 Concluding Remarks

In this paper, we proposed a power control algorithm, which can incorporate

available link gain information in a way that the convergence speed increases.

Acceleration of convergence speed is based on the accurate measurement of link

gains and received CIRs in each block. However, if those measurements were

too erroneous, this would a�ect the power control negatively. To cope with the

situation, we have introduced parameters 
 and 	 into our algorithm. As was

discussed in Section 3.1, those parameters will determine the algorithm's key

properties such as distributiveness, robustness and convergence speed.

Finally, we would like to mention that the proposed algorithm constitutes a

generalized framework and that it contains existing algorithms [9], [11] as special

cases. Also, our work opens possibility to have a power control algorithm that

is between the fully distributed and the centralized ones.
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Figure 3: Downlink outage probability as a function of iteration.
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Appendix A: Derivation of (19) - (22)

Since A =M�N, from (2) and the de�ntion of M and N in UBPC, we get

p =
�
	
H+ I+
(1�


�1
	)
H

�
p+
� (31)

Substituting 
kk = I and 	kk = 1 into the above and writing the equation

system row by row, we get

pi = 
ti
� X

j2Bk
j 6=i

gij

gii
�ijpj +

Ii

gii

�
; i 2 Bk; (32)

where

Ii =
X
j =2Bk

gijpj + �i i 2 Bk (33)

is the total noise plus external interference experienced by user i.

Consider �rst the uplink case. Since in our example a block is equal to a cell,

all the receivers are co-located and thus gij = gjj and Ii = Ij for all i; j 2 Bk.
Therefore, by noting that �ij = 1 for all i; j 2 Bk, we can rewrite (32) as follows:

giipi =

ti

1 + 
ti

� X
j2Bk

gjjpj + Ii
�
; i 2 Bk (34)
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Figure 5: Downlink Euclidean distance between the current power vector and

p�.

Summing (34) over i 2 Bk yields

X
i2Bk

giipi =
X
i2Bk

� 
ti
1 + 
ti

� X
j2Bk

gjjpj + Ii
��

(35)

From the above, we get

X
i2Bk

giipi =

P
i2Bk


ti
1+
t

i

Ii

1�Pi2Bk


t
i

1+
t
i

(36)

Substituting (36) into (34) and dividing the result by gii yields

pi =

ti

(1 + 
ti )(1�
P

j2Bk


t
j

1+
t
j

)

Ii

gii
(37)

In the downlink case, all the intra-block interference is coming from the same

source and therefore we have gij = gii for all i; j 2 Bk. It was assumed that

�ij = � for all i; j 2 Bk. So, the equation (32) becomes

pi = 
ti
�
�
X
j2Bk
j 6=i

pj +
Ii

gii

�
; i 2 Bk (38)
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By following the same steps as in (35)-(37) but keeping in mind that Ii 6= Ij ,

we get

pi =

ti

1 + �
ti

� �
P

j2Bk


tj
1+�
t

j

Ij
gjj

1� �
P

j2Bk


t
j

1+�
t
j

+
Ii

gii

�
; i 2 Bk (39)
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Appendix B

Lemma 1 If the system is feasible, there exists a positive de�nite diagonal ma-

trix W such that jjZ(
;	)jjW
1

< 1 for all 
 and 	 that ful�ll inequalities (10)

and (12).

Proof. The feasibility condition implies that H is a positive irreducible matrix

(Theorem 3.11 in [19]). Therefore, the Perron-Frobenius Theorem (Theorem 2.1

in [19]) guarantees that there exits a positive vector e = (e1e2 � � � eM )0, called

the Perron eigenvector, such that

He = �(H)e (40)

It follows that

Z(
;	)e = (I�	
H)�1

�


�1 � I+H�


�1
	
H

�
e (41)

= (I�	
H)�1
�
I+
(�(H)� 1)�	
H

�
e (42)

=
�
I+ (I�	
H)�1
(�(H)� 1)

�
e (43)

Since the system is feasible, by Theorem 3.9 in [19], we have �
�
H
�
< 1 and by

Proposition 3, we have Z(
;	) � 0, equality excluded. It is also clear that

Z(
;	) has a full rank. Therefore,

0 < Z(
;	)e < e (44)

If we chooseW = diag( 1
ei
), which is clearly a positive de�nite diagonal matrix,

then using (27) we have

jjZ(
;	)jjW
1

< 1 (45)

Thus by constructing a matrix W, we have shown the existence of it. 2
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