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Abstract

The distributed constrained power control (DCPC) [5] is one of the most widely accepted algorithms

by the academic community. It provides guidelines in designing power control algorithms for practical

cellular systems and also constitutes a building block for other radio resource management algorithms.

DCPC has a property that the power reaches the maximum level when a user is experiencing degra-

dation of channel quality. Unfortunately, this high power consumption may not lead to suÆcient

improvement on channel quality and may even generate severe interference, hitting other users. This

undesirable phenomenon happens more often when the system is congested. In this paper, we revisit

and generalize DCPC in order not to necessarily use the maximum power when the channel quality is

poor. We propose the concept of temporarily removing users with low channel quality. We show how

the energy consumption can be reduced through our generalized algorithm. Convergence properties of

the generalized algorithm are given in this paper. Also, computational experiments are provided.
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1 Introduction

Designing cellular radio systems has become problematical, as the available radio spectrum is now scarce

and the use of wireless communications is growing. To provide wireless communication services with

higher capacity as well as better quality necessitates powerful and robust methods for sharing the radio

spectrum in the most eÆcient way. All sharing methods in practice introduce interference of one sort or

another which is proportional to transmitter powers. The transmitter power control is a key technique

to better balance between received signal and interference (SIR), which in turn enables more eÆcient

resource sharing.

During recent decades, many researchers have investigated power control from di�erent perspectives.

Especially, power control in cellular radio systems has drawn much attention since Zander's work on SIR

balancing [1], [2]. Foschini and Miljanic [3] considered a realistic model in which a positive receiver noise

and a respective target SIR were taken into account. The Foschini and Miljanic's distributed algorithm

was shown to converge either synchronously [3] or asynchronously [4] to a �xed point of a feasible system.

Based on the Foschini and Miljanic algorithm, Grandhi et al. [5] suggested distributed constrained power

control (DCPC), in which the upper bound on transmission power was considered. DCPC converges to

a �xed point in both feasible and infeasible systems; the �xed point supports every active transmitter

in the feasible case. DCPC has become one of the most widely accepted algorithms by the academic

community. It provides guidelines in designing power control algorithms for practical cellular systems.

DCPC is also used as a building block for connection removal [6], admission control [7], combined power

control and base station assignment [8], [9] and radio network simulators.

With respect to energy eÆciency, DCPC has a drawback that the power may reach the maximum

level when a user is experiencing low channel quality. Unfortunately, even if the maximum power is used,

this may not necessarily lead to suÆcient improvement on channel quality. The impact will be high power

consumption and severe interference, hitting other users. With this in mind, in this paper, we revisit

and generalize DCPC in order not to necessarily use the maximum power when the channel quality is

poor. Under poor conditions, the power may even be lowered to the minimum level, which we will call
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temporary removal. In that case the user stays on the same channel and transmission will be resumed

if the interference situation becomes favourable. In power control, if the power consumption level of a

given algorithm were relatively low, then it would be a great advantage, especially to the mobiles that

could expect a prolonged operational time. In Section 3, we explain how the generalized algorithm can

improve the energy eÆciency. We show that, for the feasible system, the generalized algorithm converges

to the �xed point that supports every active transmitter, as DCPC does. Based on the generalization,

we suggest two power control algorithms and compare them with DCPC.

When the system is infeasible so that all the active transmitters cannot be supported some sort of

permanent removal of users, e.g. handing over to another channel or dropping of users, is necessary

to maximize the network capacity. For the infeasible system, we evaluate the suggested algorithms

by combining them with the so called gradual removal [6] and compare the combined algorithms with

GRR-DCPC [6].

Computational experiments on a DS-CDMA system indicate that the suggested algorithms consume

less energy while supporting more transmitters than DCPC.

2 System Model

Without loss of generality, let us consider the uplink of a cellular radio system, in which q mobiles share

the same channel at a given instance. As in many other papers, we focus on the so called snapshot

situation. A snapshot means an instant of time where the system is frozen while the power control

algorithm is evaluated. We let ai denote the base station assigned to mobile i and assume that the

signal of mobile i will be received correctly if the SIR at base ai is not less than a given target value ti .

However, since the ideal situation is to make connection with the minimal transmission power, we have

the following SIR constraint on mobile i:

gaiipiPq

j=1;j 6=i gaijpj + �ai

= 
t
i (1)

In the above, pi denotes the transmission power of mobile i, gaij is the link gain from mobile j to base

ai, and �ai is the receiver noise at base ai. We assume that all link gain values are positive.
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Let us de�ne a q � q matrix H = [hij ] such that hij = 
t
igaij=gaii for i 6= j and hij = 0 for i = j. In

addition, let us de�ne a vector � = [�i] of length q, where �i = 
t
i�ai=gaii. Then, converting (1) into a

matrix from, we have the following power control problem:

AP = �; (2)

where A = I �H and P = [p1; p2; : : : ; pq]
T is the power vector. Since the transmission power of a mobile

is limited, we will consider the following constraint on the power vector:

0 � P � �P ; (3)

where �P = [�p1; �p2; : : : ; �pq]
T denotes the maximum transmission power of each mobile.

De�nition 1. If there exists a power vector P
�
that solves the problem (2) within the range of (3) at a

given instant, we say that the system is feasible at the instant.

3 Generalized DCPC

Let us consider an iterative power control algorithm and denote the power vector at the iteration n by

P (n). Further, we de�ne the received SIR of mobile i at iteration n as,

i(n) �
gaiipi(n)Pq

j=1;j 6=i gaijpj(n) + �ai

=

t
ipi(n)Pq

j=1 hijpj(n) + �i
(4)

DCPC suggested by Grandhi et al. [5] has the form:

(DCPC)

pi(n+ 1) = �Ti(P (n)) � minfTi(P (n)); �pig; n = 0; 1; : : : ; (5)

where the mapping Ti(P (n)) �
t
i

i(n)
pi(n) =

Pq
j=1 hijpj(n) + �i.

Now consider the following generalized algorithm for constrained power control:

(GDCPC)

pi(n+ 1) = ~Ti(P (n)) �

�
Ti(P (n)) if Ti(P (n)) � �pi;

~pi(n) if Ti(P (n)) > �pi;
n = 0; 1; : : : ; (6)
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where the power value ~pi(n) is taken within the range of (3). If we choose ~pi(n) = �pi, GDCPC is reduced

to DCPC. When setting ~pi(n) = 0, it can be interpreted as a temporary connection removal, allowing

the removed user to stay on the channel and power up again if the interference has decreased. By setting

the transmit power to zero, the user will not waste energy mitigating bad channel conditions and other

users will bene�t from lower interference. When ~pi(n) 6= �pi, GDCPC violates the monotonicity property,

and thus it is not a standard interference function [8] that guarantees convergence. However, we can

prove the convergence of GDCPC to P
� in the feasible case, which will be given later in this section. To

motivate the readers, we will �rst describe the energy saving property of GDCPC.

3.1 Energy Saving

Let �T n
i (P ) and

~T n
i (P ) respectively denote the power level of mobile i of DCPC and GDCPC at iteration

n, starting with a power vector P . Then we have the following properties on GDCPC:

Proposition 1. ~T n
i (P ) �

�T n
i (P ) for all i and n.

Proof. From the de�nition of GDCPC, we have ~Ti(P ) � �Ti(P ) for any nonnegative power vector P .

Also, from the de�nition of �Ti(P ), we �nd that if 0 � P1 � P2 then �Ti(P1) � �Ti(P2). Therefore, if

0 � P1 � P2, then ~Ti(P1) � �Ti(P1) � �Ti(P2). Using these relations, we have:

~Ti(P ) � �Ti(P )

~Ti( ~Ti(P )) � �Ti(Ti(P ))

...

~T n
i (P ) � �T n

i (P ) (7)

�

Proposition 2. Let us assume that there exists an iteration n0 such that T
n0
i (P ) > �pi and that ~pi(n) < �pi

for all i and n. Then,
Pq

i=1
~T n
i (P ) <

Pq
i=1

�T n
i (P ) for all n � n0.

Proof. Since ~T n
i (P ) �

�T n
i (P ) from Proposition 1, it is suÆcient to show that there exists at least a

mobile j 2 J for any iteration n � n0 where J = fj : ~T n
j (P ) <

�T n
j (P )g. At iteration n0, mobile i 2 J
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because ~T n0
i (P ) = ~pi(n0) < �pi = �T n0

i (P ). At iteration n0 + 1, from the de�nition of Ti(P ), we can �nd

that ~T n0+1
j (P ) < �T n0+1

j (P ) for any j 6= i. In the same manner, we can see that there is a mobile j such

that ~T n
j (P ) <

�T n
j (P ) for all n > n0 + 1. �

Note that Proposition 1 and 2 are general and hold for both feasible and infeasible systems. Proposition

1 says that when starting from the same initial power vector, the power value from GDCPC is not greater

than that of DCPC. Further, if there is an event that the required power is greater than the maximum

allowed level, then from Proposition 2, we can expect a certain amount of energy saving from GDCPC,

compared with DCPC. For ~pi(n) of GDCPC, we can use any nonnegative value less than or equal to

�pi. However, from the proof of Proposition 2, the setting ~pi(n) = 0 will lead to the most energy-saving

results. For simplicity, we will denote this version of GDCPC by GDCPC(I) throughout the paper.

3.2 Convergence in Feasible Systems

As was mentioned before, GDCPC is not a standard interference function but convergence is still guar-

anteed for a feasible system by the following property.

Proposition 3. Starting with any power vector within the range of (3), GDCPC converges to P
�
of a

feasible system.

Proof. From the de�nition of GDCPC, we have ~Ti(P ) � Ti(P ) for any nonnegative power vector P .

Also, from the de�nition of Ti(P ), we �nd that if 0 � P1 � P2 then Ti(P1) � Ti(P2). Therefore, if

0 � P1 � P2, then ~Ti(P1) � Ti(P1) � Ti(P2). Using these relations, we have:

~Ti(P ) � Ti(P )

~Ti( ~Ti(P )) � Ti(Ti(P ))

...

~T n
i (P ) � T

n
i (P ) (8)

Let us de�ne the dominant eigenvalue of H by �(H). Then, it is known that 0 < �(H) < 1 for a

feasible system (Perron-Frobenius Theorem and Theorem 3.11 in [10]). Further, let us now consider the

weighted maximum norm of a vector x, which is de�ned as jjxjjw1 � maxi j
xi

wi
j for a positive vector w.
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If we choose the eigenvector corresponding to the dominant eigenvalue of H for w, then the convergent

mapping T = (Ti) ful�lls kT
n(P ) � P

�kw1 � �(H)nkP � P
�kw1 (Proposition 3.1 [4]). Therefore, there

exits an integer n1 such that

T
n(P ) < �P for all n > n1 (9)

By denoting ~T = ( ~Ti), it follows from Equation (8) that ~T n(P ) � T n(P ), thus for n > n1 we can write:

~T n+1(P ) = T ( ~T n(P )) � T
n+1(P ) < �P

...

~T n+m+1(P ) = T
m( ~T n(p)) � T

n+m+1(P ) < �P (10)

Therefore, limm!1
~T n+m+1(P ) = P

�, due to the convergent mapping T . �

Remark 1. So far we have focused on generalizing DCPC but Propositions 1-3 still hold even if we

choose other standard interference functions [8], [9] for T in (5).

From Proposition 2, we may have that
Pq

i=1
~T n
i (P ) <

Pq
i=1

�T n
i (P ) for all n � n0. However, Propo-

sition 3 says that limn!1

Pq
i=1

~T n
i (P ) = limn!1

Pq
i=1

�T n
i (P ) =

Pq
j=1 p

�
i , in the feasible case. Besides

the energy consumption, we are very interested in how fast the power value will converge. It has been

reported that DCPC converges to P � at a geometric rate [5], [9]. So far the convergence rate of GDCPC

is an open issue. However, if we choose

~pi(n) = max f2�pi � Ti(P (n)); 0g (11)

and denote this by GDCPC(II), then we have the following:

Proposition 4. GDCPC(II) converges to P
�
of a feasible system with a same geometric rate as DCPC.

Proof. If Ti(P (n)) < �pi for mobile i, then

���� pi(n+1)�p�iwi

���� =
����Ti(P (n))�p�iwi

���� for any positive wi. However, if

Ti(P (n)) > �pi for mobile i, then for any positive wi, we have

����pi(n+ 1)� p
�
i

wi

���� =

����max f2�pi � Ti(P (n)); 0g � p
�
i

wi

���� (12)
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When �pi < Ti(P (n)) < 2�pi, we have

����pi(n+ 1)� p
�
i

wi

���� =
����2(�pi � Ti(P (n))) + Ti(P (n))� p

�
i

wi

���� <
����Ti(P (n)) � p

�
i

wi

���� (13)

and if Ti(P (n)) � 2�pi, it follows that

����pi(n+ 1)� p
�
i

wi

���� =
�����p

�
i

wi

���� �
����Ti(P (n)) � p

�
i

wi

���� (14)

Therefore, we can say that, for any mobile i and any positive wi,

����pi(n+ 1)� p
�
i

wi

���� �
����Ti(P (n))� p

�
i

wi

���� (15)

If we introduce the consistent matrix norm of kHkw1 � maxi

���Pq
j=1

hijwj

wi

��� and choose the eigenvector of

the dominant eigenvalue of H for w, then we have

jjP (n+ 1)� P
�
jj
w
1 � jjT (P (n))� P

�
jj
w
1 (from (15))

= jjH(P (n)� P
�)jjw1

� jjHjj
w
1jjP (n)� P

�
jj
w
1

= �(H)jjP (n)� P
�
jj
w
1 (from Proposition 3:1 [4]) (16)

Thus, we conclude that GDCPC(II) is a pseudo-contraction mapping with a geometric rate �(H)(< 1),

which is same as that of DCPC [5], [9]. �

With respect to Proposition 4, we conclude that within the class of GDCPC, there exits at least one

~pi(n) 6= �pi which gives the same convergence rate as DCPC and possibly increases the energy eÆciency.

In GDCPC(II), if the required power is larger than the maximum power �pi, a power lower than �pi by

the amount of the gap between the required power and �pi is used. If the required power is twice larger

than the maximum power, the transmitter power is set to zero. Note that ~pi(n) < �pi in GDCPC(II), and

Proposition 2 is applicable to GDCPC(II).

3.3 Convergence in Infeasible Systems

Compared to DCPC, which also converges to a �xed point in the infeasible case, the convergence proper-

ties of GDCPC(I) and GDCPC(II) will di�er. In Figure 1, a two-dimensional example of a noise-limited
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Figure 1: Fixed points of DCPC, GDCPC(I) and GDCPC(II).

infeasible system (�(H) < 1) with the maximum power of each mobile set to one, illustrates the possible

�xed points. The dashed lines represent Equation (11) that could be interpreted as virtual targets. In

this example no more than one user can be supported. Hence the optimal �xed point would be p4 where

user 2 is supported with the minimum power. The �xed point of DCPC will in this case be p5 due to

the power constraints. Clearly this point is the worst, considering no user is supported while the power

usage is maximized. GDCPC(I) will, depending on the starting point, oscillate between p0 and p1 or

converge to p3 or p4. In GDCPC(II), the �xed point may be the intersection between the virtual targets,

p2. However, GDCPC(II) does not always converge to a �xed point, which is exempli�ed in Appendix.

As illustrated in Figure 1, GDCPC(I) and GDCPC(II) may converge to a �xed point but the dynamics

are more unpredictable. Due to the possibility of oscillating powers, each user may generally expect a

more varying SIR and its impact on the bit error rate is not clear. Depending on power control interval,

coding and interleaving strategies, the oscillation of SIR may or may not cause problems.

For an infeasible system, permanent connection removal has been utilized to increase system capacity.

In GDCPC(I) and GDCPC(II), the powers may oscillate, and thus certain removal algorithms relying
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Figure 2: DS-CDMA cellular system with 19 omni-bases and 190 mobiles.

on convergence to some �xed points may not be utilized. For the purpose of permanent removal, we

extend the previously suggested GRR-DCPC [6], which is an \on-the-y" gradual removal combined

with DCPC. Instead of DCPC, we combine the gradual removal with GDCPC(I) and GDCPC(II). That

is, our modi�ed gradual removal algorithm, which incorporates both temporary- and permanent removal

GRR-GDCPC identi�es user i as a candidate for permanent removal if Ti(P (n0)) > �pi and sets pi(n) = 0,

with a given probability Æ > 0 for all n > n0. Otherwise, pi(n0 + 1) = ~Ti(P (n0)) and the power control

proceeds with the next power iteration. In order to maximize system capacity, the removal probability

Æ, should be taken so that in each iteration, single removal is more probable than multiple removals. It

has been shown that GRR-DCPC converges to a stationary power vector [6]. Since GRR-GDCPC uses

the same decision procedure as GRR-DCPC, it is clear that GRR-GDCPC will also converge.

4 Computational Experiments

The main purpose of the experiments is to draw insight on how GDCPC(I) and GDCPC(II) perform in

terms of energy saving, convergence and system capacity. To compare the performance of our proposed
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Figure 3: Outage probability in feasible systems.

algorithms, we use DCPC as a reference algorithm. A DS-CDMA system with 19 omni-bases located in

the centers of 19 hexagonal cells is used as a test system (Figure 2). We consider an IS-95 example, where

the processing gain is 21 dB. For a given instance, a total of 190 mobiles are generated, the locations of

which are uniformly distributed over the 19 cells. The link gain gij is modeled as gij = sij �d
�4
ij , where sij

is the shadow fading factor and dij is the distance between base i and mobile j. The shadow fading factor

is generated from a log-normal distribution with E(sij) = 0 dB, and �(sij) = 8 dB. The base receiver

noise is taken to be �ai = 10�12 and the relative maximum mobile power is set to one. The initial power

for each mobile is randomly chosen from the interval [0,1]. Each mobile is assigned to the base station

that gives the lowest signal attenuation. The received Eb=I0 from mobile i at the corresponding base is

calculated by adding the processing gain to the received SIR (in dB). The target Eb=I0 is set to 8 dB

and 12 dB for each mobile when analyzing a feasible and an infeasible system, respectively.

We have considered 500 independent feasible and infeasible instances of mobile locations and shadow

fadings. To check the impact on the system capacity, the outage probability is used as a performance

measure. The outage probability at each iteration is computed over the 500 instances by counting the
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Figure 4: Mean transmission power per mobile.
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Figure 5: Convergence rate in feasible systems (kP (n)� P
�k=kP (0) � P

�k).
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portion of the number of non-supported mobiles at the iteration. A connection is considered to be

supported if Eb=I0 is above 7.5 dB and 11.5 dB, respectively.

In Figure 3, we see that the outage probability is lower over the whole range of iterations considered

(except for the initial iterations) for both GDCPC(I) and GDCPC(II), compared to DCPC. It means

that GDCPC(I) and GDCPC(II) support more users in average than DCPC during the iterations. It

is hard to say which of GDCPC(I) and GDCPC(II) is superior in terms of outage performance. The

energy saving property is shown in Figure 4, where obviously GDCPC(I) gives the best performance in

both feasible and infeasible systems. The curves of GDCPC(I) and GDCPC(II) indicate that there are

many mobiles in which the required power at iteration 1 is greater than the maximum and the rest of the

iterations follows Proposition 2. It can also be veri�ed that the absolute gap among the three algorithms

is decreasing with increasing iteration number for the feasible system, while it tends to be constant for the

infeasible system. In Figure 5, the convergence rate, measured as kP (n)� P
�k=kP (0) � P

�k, where k � k

denotes the Euclidean norm, empirically shows that GDCPC(I) is faster than GDCPC(II) and DCPC,

both of which are proved to converge with a geometric rate. In conclusion, GDCPC(I) shows the best

performance in terms of system capacity, energy saving and convergence speed, in the feasible systems.

Now let us consider the outage probability for infeasible systems. As can be seen in Figure 6, where

we compare GDCPC(I), GDCPC(II) and DCPC, both GDCPC(I) and GDCPC(II) support more mobiles

in average than DCPC. However, the oscillating behavior is still seen after averaging 500 snapshots in

GDCPC(I) while GDCPC(II) gives smoother outage. Compared with Figure 6, the outage from DCPC

and GDCPC(II) is decreasing when combined with gradual removal, while no signi�cant di�erence is seen

for GRR-GDCPC(I), according to Figure 7. Thus GDCPC(I) alone seems to identify a proper number

of mobiles for temporary removal at an early stage. Although the outage was not improved, combining

GDCPC(I) with gradual removal will guarantee convergence and therefore eliminate the oscillations in

SIR. Also, note that both GRR-GDCPC(I) and GRR-GDCPC(II) are superior to GRR-DCPC that was

known to be the best distributed removal algorithm [6].
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Figure 6: Outage probability for infeasible systems without permanent removal.
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Figure 7: Outage probability for infeasible systems with permanent removal (Æ = 0:01).
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5 Concluding Remarks

In this paper, we have proposed algorithms that are consuming less power and supporting more users

than DCPC. The proposed algorithms are based on our general framework. The idea is that, when a

user requires more power than the available, the power will be decreased to bene�t other users under

favorable situations. It was shown that our algorithms converge to the �xed point of a feasible system,

supporting every active user. For an infeasible system, convergence to a �xed point was exempli�ed not

to necessarily occur. For that case, it was seen that power oscillations may cause a rapidly varying SIR.

However, this may not be a major obstacle, since the power control can be combined with a permanent

removal algorithm. The diÆculty with the proposed algorithms is that infeasibility may not be detected

as for DCPC. This raises the question of how to combine a permanent removal algorithm with the

proposed algorithms. We propose one possible approach by modifying a gradual removal algorithm that

was originally designed for use with DCPC.

The practical applicability of the concept of temporary removals, which GDCPC(I) and GDCC(II)

bene�t from, could for example be non-real time traÆc where the exibility of handling the transmission

attempts is larger. Finding necessary and suÆcient conditions for convergence for infeasible systems is

still an open issue. Also, there is a possibility of designing more sophisticated removal algorithms suitable

for our algorithms.

Finally, we would like to mention energy management, which was emphasized in [11]. It is expected

that the need for low-power design principles will increase along with the more services available. Im-

proving energy eÆciency is of interest for both the operators (downlink) as well as for the customers

(uplink). Therefore such design principles include all levels of the system, e.g., network architecture,

circuit design, protocols and resource management algorithms. Our work can be considered as an e�ort

to provide an energy eÆcient resource management.
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Appendix

Let w be the eigenvector corresponding to �(H). Assume that there exists a P0 such that ~T (P0) = P0

and T (P0) > �P . Clearly point p2 in Figure 1 is the only such point. If we choose P0 + �e � �P where

e is the Perron-Frobenius eigenvector satisfying He = �(H)e and � > 0 is a constant. Then we have

k ~T (P0 + �e) � ~T (P0)k
w
1 = k2 �P �H(P0 + �e) � � � 2 �P +HP0 + �kw1 = k �H�ekw1 = k�(H)�ekw1. If

�(H) > 1 we can write k ~T (P0 + �e) � ~T (P0)k
w
1 > kP0 + �e � P0k

w
1, i.e., a diverging sequence. The

characteristics of P0 could be described as a non-attractive �xed point to which convergence is guaranteed

if and only if the starting point is the point itself, P0.
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