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Abstract

In this paper, we present a novel method for designing
polynomial FIR predictors for fixed-point environments.
Our method yields filters that perform exact prediction of
polynomial signals even with short coefficient word
lengths. Under ordinary coefficient truncation or
rounding, prediction capability degrades, or may be to-
tally lost. With the proposed method, the filters are de-
signed so that the predictive properties are exactly pre-
served in fixed-point implementations. The proposed filter
design method is based on integer programming (IP) and
can be directly applied to any fixed-point FIR design
specifications which can be formulated in a form of linear
constraints on the filter coefficients.

1. Introduction

By their nature, digital devices handle numbers using a
finite number of bits per digit [1]. In many embedded
applications using highly optimized, small and less power
consuming application specific integrated circuits
(ASICs) it would be desirable to get by with low preci-
sion fixed-point arithmetic but having only a very limited
number of bits available for presenting filter coefficients
results in filter quality degradation and possibly even in a
totally unintended kind of filtering operation. In this pa-
per, we present a novel method for designing polynomial
FIR predictors [2] whose quantized coefficients exactly
fulfill the set constraints and provide for exact prediction
even with coefficient precision of 6 bits (4 in some cases).

Our application examples include motion control of an
elevator car [3], and mobile phone power control [4]. In
these and many other practical applications, measured
signals can be accurately modeled as piecewise polyno-
mials buried in noise. Also the closed control loops em-
ployed in these applications are inherently delay limited.
Hence, polynomial-predictive noise filtering is a naturally
lucrative approach. Our main goal in this paper is to
preserve the exact prediction step and dc-gain with
quantized coefficient polynomial FIR predictors. As the
method presented in this paper does yield quantized-
coefficient filters that exactly preserve the prediction step
and dc-gain, and as they are FIR filters, the designed
filters are naturally safe for even critical applications in
short word length fixed point environments.

2. Polynomial FIR predictors in fixed-point
environments

2.1 Polynomial FIR predictors

Polynomial predictive filtering theory has been well
established [2,3,4,5] but applicability of polynomial FIR
predictors has suffered from the practical constraint of
finite coefficient precision. Polynomial FIR predictors,
derived in [2], assume a low-degree polynomial input
signal contaminated by white noise. Filter output is de-
fined to be a p-step-ahead predicted input,
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where h(k) are filter coefficients, x(n) are input samples,
N is filter length, and p is prediction step. After providing
for exact prediction, the rest of the degrees of freedom are
used to minimize the white noise gain,
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A set of constraints can be derived from the definition
of the filter output (1) [2]:
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The constraints (3)-(6) yield prediction of the polynomial
degrees 0, …, M, and from them can closed form solu-
tions for the FIR coefficients for low-degree polynomial
input signals be calculated by the method of Lagrange
multipliers [6]. The closed form solutions for FIR coef-
ficients for the first, second, and third degree polynomial
input signals are given in [2]. Since prediction of a first
degree polynomial signal is, in a way, trivial from an ap-
plication point of view, in this paper we consider a case
with the highest polynomial input signal component de-
gree of two, M = 2, as an example. In this case we have to
fulfill the constraints (3), (4) and (5), and use the re-
maining degrees of freedom to minimize the noise gain
(2). The exact, i.e., infinite precision, coefficients for the
one-step-ahead predictive p = 1 second degree polyno-
mial M = 2 FIR predictors are given by [2]
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In [5], a feedback extension to FIR differentiators is
given to provide considerable noise attenuation while
maintaining the prediction property set forth by the un-
derlying FIR predictor. In order for the feedback exten-
sion to function properly, it is necessary that the under-
lying FIR basis filters are implemented exactly. Until
now, this has been rarely possible in short word length
fixed-point environments.

2.2. Coefficient quantization effects

For fixed-point presentation of filter coefficients, two’s
complement presentation is used, and as the conventional
quantization method for the filter coefficients (7),
magnitude truncation is applied. In our calculations,
‘infinite precision’ means the computational precision of
Matlab.
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Fig. 1. Frequency response (a) and group delay (b) of
the second degree polynomial FIR predictor of length
N = 16 with coefficients truncated (dash-dot) and
ideally quantized (solid) to 6 bits, along with the same
filter with infinite precision coefficients (dotted).

The quantization effects can be seen in Fig. 1. In
Fig. 1, frequency response and group delay of a second
degree polynomial M = 2 one-step-ahead p = 1 predictor
of length N = 16 is shown with infinite, and
conventionally and ideally quantized 6-bit coefficients.
From Fig. 1 it seen that the exact one-step-ahead pre-
diction at zero frequency is lost, and also that the dc-gain
is deviated from unity. The one-step-ahead prediction
property can be seen as the negative unity group delay at
zero frequency, Fig. 1b. Let us note that the coefficients
(7) for the p = 1, M = 2, polynomial FIR predictor of
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length N = 3 are still exact if quantized to six bits but the
frequency response of that filter is not practical for usual
applications, and longer filters are needed to provide for
better noise attenuation.

3. Polynomial FIR predictor design by
linear diophantine equation based solution

The optimization problem that has to be solved, i.e.,
solving (3)-(6) exactly for truncated coefficients h(k) and
thereafter minimizing the noise gain (2), can be refor-
mulated as an integer programming problem. Suppose
that all the coefficients of the filter, h(k) , are multiplied
by 2n , where n is the number of bits available, and trun-
cated to yield integer coefficients )(*

0 kh  where the

asterisk denotes an integer quantity.

The optimization task can now be defined as follows:

Input: Function (2)
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with integer variables )(* kh . The constraint conditions

(3)-(6) for the coefficients can be formulated as:
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Output: An integer vector, h* = (h*(1), h*(2), …, h*(N))
that minimizes NG (8) and satisfies exactly the constrains
(9)-(12), and thus also (3)-(6).

The solution we offer is based on the following con-
siderations:
1. The task in hand is a quadratic integer programming

problem, which is well-known to be an NP-complete
problem [7,8,9]; therefore it is unrealistic to find the
best solution in a reasonable amount of time, espe-
cially for long filters. This state of affairs is in sharp
contrast to the quadratic real programming problem
[8], which is solvable in polynomial time.

2. Without restricting the variables to be integers, we
have a closed form solution of the problem, which is
given by (7) for the case p = 1, M = 2. Although the
values computed by this formula are not integers, this
expression gives us a very good initial approximation.
Though it is at best difficult to prove, it is reasonable
to assume that a solution of (9)-(12) would lie in a
vicinity of the infinite precision solution (7).

3. To make sure that the conditions (9)-(12) are met ex-
actly, one has to solve the above system in integers.
This problem has been a subject of very deep investi-
gations in number theory and the theory of Dio-
phantine equations. By eliminating the variables, one
can reduce the problem to a single linear equation of
the form:

A1x1 � A2x2 ��� Al xl  B (13)

where lAAA ,,, 21 � and B are integers.

The solutions of (13) are usually obtained by multidi-
mensional continued fraction algorithms [10,11], and the
reader can find a large variety of methods aimed at solv-
ing this class Diophantine equations. Here our approach is
based on Clausen-Fortenbacher algorithm [12]. The
reasons why we chose this particular technique are: firstly,
the algorithm succeeds in finding very fast the solutions of
(9)-(12), from which the optimal one, that is, the one that
minimizes the noise gain NG (8), can be quickly found;
secondly, the program provided in [12] can be easily gen-
eralized to more than 16 variables (the largest case ana-
lyzed by Clausen and Fortenbacher); thirdly, we have a
good initial approximation that significantly speeds us the
algorithm.

Since the filters shown in this paper are not very long,
the algorithm is applied as a exhaustive search for the
ideally quantized coefficients that fulfill (9)-(11) over a
search band of r2 from the normally quantized
coefficients presented in integer form. This search band is
illustrated in Fig. 2 in real number form for the filter
length N = 16 with coefficient precision of 6 bits along
with the conventionally and ideally quantized 6-bit
coefficients for the p = 1, M = 2, N = 16 filter. It is worth
noting that in our experiments, truncating or rounding the
infinite precision coefficients has never but once produced
a solution of the system of the Diophantine equations (9)-
(12); the filter of the length N = 3 is an exception. This
demonstrates the necessity of special techniques aimed at
solving the integer optimization problem.

In Table 1, the p = 1, M = 2, N = 16, FIR predictor
coefficients h(k) (7) are shown in real number form
(infinite precision, multiplied by 2n and truncated to 6
decimals) along with the best 6-bit ideal integer solution
obtained within the band shown in Fig. 2. In the example
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in Table 1 it can be seen that for 8 out of 16 coefficients
one had to approximate the real coefficient with an
integer that is not the closest one. Also, 10 out of the 16
ideally quantized coefficients differ from the
corresponding magnitude truncated real number form
coefficients in Table 1.
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Fig. 2. Ideal quantization search band  (between solid
lines) for the filter length N = 8 with the coefficient
precisions of 6 bits. Circles ‘o’ denote the truncated,
and plusses ‘+’ the ideally quantized coefficients.

Table 1. The infinite precision presentation (real
number form, truncated to 6 decimals) of the digital
filter coefficients computed by (7) for the filter length
N = 16 and their best integer solutions within the
search band that guarantees the exact solution of (9)-
(11) while also minimizing the noise gain (8) with the
coefficient precision of 6 bits.

Coeff. Real number
form

Best int.
solut.

Coeff. Real num-
ber form

Best int.
solut.

64 h(1) 36.000000 35* 64 h(9) -8.800000 -8*

64 h(2) 26.400000 26 64 h(10) -9.257143 -11**†

64 h(3) 17.942857 19**† 64 h(11) -8.571429 -9†

64 h(4) 10.628571 11† 64 h(12) -6.742857 -7†

64 h(5) 4.457143 5*† 64 h(13) -3.771429 -4†

64 h(6) -0.571429 0* 64 h(14) 0.342857 1*†

64 h(7) -4.457143 -4 64 h(15) 5.600000 6†

64 h(8) -7.200000 -8*† 64 h(16) 12.000000 12
* The best integer solution is not the integer closest to the real
(infinite precision) coefficient value.
**  The best integer solution is not the nearest integer on either
side of the real (infinite precision) coefficient value.
† The best integer solution is not the magnitude truncated real
number form coefficient.

Table 2 lists the numbers of solutions that exactly sat-
isfy the constraints (9)-(11) for coefficient precisions 6, 8,
10, 12, 14, and 16 bits for the filter lengths N = 8 and
N = 16. To find the optimum solution, it is necessary of
search all the solutions and to select the one which
minimizes noise gain (8). Within the search band of r2,
for filter of lengths of N = 8 and N = 16, there are

48 = 65536, and 416 = 4.294967296�109 possible coeffi-
cients vectors to be tested against the constraints (9)-(12),
respectively. For the filter length N = 8, the search and
noise gain minimization takes less than one second on a
166 MHz Pentium processor using exhaustive search
programmed with C language while for N = 16 the time is
around 47 minutes. This clearly demonstrates for the
necessity of applying efficient algorithms to solve the
Diophantine equation (13) when designing longer filters
with N = 50, …, 100. For many applications, also the
first-found solution could most probably be adequate,
which should be checked by comparing the noise gain
against the noise gain of the corresponding infinite
precision filter, and the application at hand. By starting
the search with coefficients initially approximated
towards zero, it is possible to design a search algorithm
whose first found solution is at least not one of the
highest noise gain solutions. Table 2 demonstrates that
there truly are several exact solutions of (9)-(11) within a
close vicinity of the infinite precision coefficients, and
that there are still some degrees of freedom left for
minimizing the noise gain (8) after fulfilling the con-
straints (9)-(11).

Table 2. Numbers NIQS of coefficient vectors h * that
exactly satisfy the constraints (9)-(11) within the band
of rr2 for the filter lengths N = 8 and N = 16 as
functions of coefficient precision, 6, 8, 10, 12, 14, and
16 bits.
Coefficient
precision (bits)

6 8 10 12 14 16

NIQS , N = 8 15 14 15 15 14 15

NIQS , N = 16 55086 54760 49164 54394 54760 49164

4. Characteristics of the truncated and
ideally quantized coefficient filters

In Fig. 1 it can be seen that the predictor with con-
ventionally quantized coefficients does not provide for
exact prediction at zero frequency, and also the dc-gain of
exact unity is lost, whereas the predictor with the ideally
quantized coefficients possesses both quantities exactly,
as it should, since it satisfies the constraints (3)-(5) ex-
actly. It is to be noted that generally the deviation from
the exact prediction step and dc-gain values, due to
conventional coefficient quantization, gets larger as the
filter length increases, but for practical applications
longer filters may be needed to provide for lower noise
gains.

The noise gains of the best ideally quantized
coefficient filters within the search band are listed in
Table 3. From Table 3 it can be seen that as the
coefficient precision is increased, the noise gain of the
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ideally quantized coefficient filter approaches the noise
gain of the corresponding infinite precision coefficient
filter, and that the noise gain loss can be regarded
marginal with any of the ideally quantized coefficient
precisions, 6, 8, …, 16 bits.

Table 3. Noise gains of the ideally quantized
coefficient, p = 1, M = 2, polynomial FIR predictors of
lengths N = 8 and N = 16 as functions of coefficient
precision in bits. Also the noise gains of the same
filters with infinite precision coefficients are
mentioned.

Coefficient
precision (bits)

NG, N = 8 NG, N = 16

6 1.9531250000 0.7324218750
8 1.9472656250 0.7304687500
10 1.9464721679 0.7303638458
12 1.9464287757 0.7303590774
14 1.9464285820 0.7303571626
16 1.9464285718 0.7303571444
Inf. precision 1.9464285714 0.7303571428

5. Conclusions

A new technique for perfect polynomial-predictive
FIR digital filter coefficient quantization has been pro-
posed. As it is demonstrated in this paper, the filter design
constraints giving the filters their polynomial signal
prediction properties can be exactly satisfied with low
fixed-point coefficient precisions, and thus, the influence
of the round-off errors is eliminated. For the second
degree polynomial FIR predictors, used in this paper as an
example, the conditions can be exactly satisfied with even
as low as 6-bit coefficient precision, with still some
degrees of freedom left to minimize the noise gain of the
designed fixed-point coefficients filter. The proposed
integer programming method for fixed-point filter design
is well suited for all filter design tasks in which the design
criteria can be formulated in a form of linear constraints
on the filter coefficients.
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