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Abstract:  In this paper, we present a novel method for
designing polynomial-predictive FIR differentiators for
fixed-point environments. Our method yields filters that
exactly fulfill the given constraints even with short coeffi-
cient word lengths. Under ordinary quantization, either by
rounding or truncation, these filters in most cases loose
their predictive and/or differentiating properties, making
their fixed-point implementations useless. With the
method proposed in this paper, the filters are designed so
that the desired properties are exactly preserved in fixed-
point implementations. The presented filter design method
is based on integer programming (IP) and can be directly
applied to any fixed-point FIR design specifications which
can be stated in a form of linear constraints on filter coef-
ficients.

I. I NTRODUCTION

By their nature, digital devices handle numbers using a
finite number of bits per digit [1]. On the other hand,
digital filters are typically designed using general-purpose
computers. When the target application has the same
computation precision as the filter design environment,
there are usually no implementation problems if the filter
itself was appropriately designed. Many times this is not
the case, however, but the filters are operating within in-
expensive, fixed-point processors, or in embedded appli-
cations using highly optimized, small and less power con-
suming application specific integrated circuit (ASIC) de-
signs. In these cases, there might be a great difference
between the calculation precisions of the filter design en-
vironment and the final operation platform. This obvi-
ously results in filter quality degradation and possibly
even in a totally unintended kind of filtering operation. In
this paper, we present a novel method for designing poly-
nomial-predictive FIR differentiators [2] whose quantized
coefficients exactly fulfill the set constraints.

In many engineering disciplines, accurate control of
processes is absolutely necessary. In turn many of the real
world physical process parameters exhibit more or less
smooth transitions. Noisy measurements of these pa-
rameters are then used for process control after a delay.
Our examples of closed loop control include motion con-
trol of an elevator car [2], and mobile phone power con-
trol [3]. In the latter, the inherent closed loop control de-
lays make it a lucrative environment to apply polynomial
predictive techniques since the received power fluctua-
tions can in many cases be modeled as Rayleigh distrib-
uted signals which in turn can be accurately modeled as
piece-wise low degree polynomials. Accurate control of
an elevator car can effectively utilize, not only predicted
position, but also predicted velocity and acceleration in-
formation. This information can be made available to the
controller by a predictive differentiator. Here again, the
position and velocity of the elevator car can be accurately
modeled as piece-wise polynomial. Should these control-
lers be implemented in a fixed-point environment, which
is definitely desirable in a mobile handset, the actual prop-
erties of the quantized-coefficient filters are crucial, thus
making most of the filters inapplicable. As the method
presented in this paper yields quantized-coefficient filters
that exactly fulfill the given constraints, these filters are
naturally safe for even critical applications in short word
length fixed point environments.

In Section II, predictive FIR differentiators are shortly
reviewed along with the constraints that are to be exactly
fulfilled by the coefficients to provide for the desired filter
properties. Also the coefficient quantization effects are
shortly discussed in Section II. Integer programming in-
terpretation of fixed-point polynomial-predictive FIR dif-
ferentiator design and the proposed design method are
given in Section III. Characteristics of the quantized-coef-
ficient and ideally quantized-coefficient filter are illus-
trated in Section IV. Further research topics are discussed
in Section V, and Section VI concludes the paper.
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II. PREDICTIVE FIR DIFFERENTIATOR IN FIXED -POINT

ENVIRONMENTS

A. Predictive FIR Differentiators

Predictive filtering theory has been well established
[2,3,4,5]. Here we concentrate on polynomial-predictive
FIR differentiators, whose applicability has suffered from
practical constraint of finite coefficient precision. Poly-
nomial-predictive FIR differentiators, derived in [2], as-
sume a low-degree polynomial input signal contaminated
by white Gaussian noise. Filter output is defined to be a p-
step-ahead predicted time derivative of the input,
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where h(k) are filter coefficients, x(n) are input samples, N
is filter length, p is a prediction step, and the dot denotes
time derivative. After providing for exact prediction and
differentiation, the rest of the degrees of freedom are used
to minimize the white noise gain, given by
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In [2], a feedback extension to FIR differentiators is given
to provide considerable noise attenuation while maintain-
ing the prediction and differentiation properties set forth
by the underlying predictive FIR differentiator. In order
for the feedback extension to function properly, it is nec-
essary that the underlying FIR basis filters are imple-
mented exactly. Until now, this has been rarely possible in
short word length fixed-point environments.

A set of constraints can be derived from the definition
of the filter output (1) [2]:
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The constraints (3)-(6) give the prediction and differen-
tiation for the polynomial degrees 0, …, M, and from
them can closed form solutions for the FIR coefficients
for low-degree polynomial input signals be found by the
method of Lagrange multipliers [6]. The closed form so-
lution for FIR coefficients for the first degree polynomial

input signals is given in [5], and for the second degree in
[2]. Since differentiation of a first degree polynomial in-
put signal is, in a way, trivial from an application point of
view, in this paper we use the case with the highest poly-
nomial input signal component degree of two, M = 2, as
an example. In this case we have to fulfill the constraints
(3), (4) and (5), and use the remaining degrees of freedom
to minimize the noise gain (2). The exact, i.e., infinite
precision, coefficients for the second degree polynomial-
predictive one-step-ahead, p = 1, FIR differentiators are
given by [2]
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B. Coefficient Quantization Effects

For fixed-point presentation of filter coefficients, two’s
complement presentation is used, and in the direct fixed-
point implementations of the filter coefficients (7), mag-
nitude truncation is applied. Location of the fixed point is
set so that maximum accuracy is achieved given the range
of the filter coefficient values. In our calculations, ‘infi-
nite precision’ means the computational precision of
Matlab.

Quantization effects can be seen in section IV, in Figs.
3 through 5. It is clearly seen that as the coefficients are
truncated, the prediction an/or differentiation properties of
the filters are lost. As also seen comparing Figs. 4 and 5,
the differentiation property is generally more robust to the
coefficient quantization than the prediction property
which can be lost already with the coefficient word length
of 16 bits. Differentiation of an input signal consisting of
polynomial signal components of 0th, 1st and 2nd degree, is
set by zero magnitude response at zero frequency along
with a ramp-shaped response within a desired differentia-
tion band which are also given by the constraints (3)-(5),
Figs. 1 a), 3 a), 4 a) and 5 a). The one-step-ahead predic-
tion property can be seen as the negative unity group de-
lay within a desired prediction band, c.f. Figs. 1 b), 3 b), 4
b) and 5 b).

It is worth noting that the coefficients (7) for the filter
length N = 3 are still exact if quantized to eight bits. The
frequency response and group delay of this filter are
shown in Figs. 1 a) and b), respectively. If the responses
shown in Fig. 1 are adequate for the fixed-point applica-
tion at hand, this is the filter to apply, otherwise the filter
functioning has to be verified, or the method described in
this paper is to be used to obtain exactly correctly func-
tioning fixed-point coefficients filters.
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FIG. 1. a) Frequency response (solid) and b) group delay of the second
degree one-step-ahead predictive differentiator of length N = 3. In a)
also the ideal differentiator frequency response is shown (dotted).

III. P OLYNOMIAL -PREDICTIVE FIR DIFFERENTIATOR

DESIGN BY L INEAR DIOPHANTINE EQUATION BASED

SOLUTION

The optimization problem that has to be solved can be
reformulated as an integer programming problem. Sup-
pose that all the coefficients of the filter, h(k) , are multi-
plied by 2n . Then the optimization task can be defined as
follows:

Input: Function (2)
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with variables, i.e., filter coefficients, h(k) . The constraint
conditions (3)-(6) for the variables can be formulated as
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respectively.

Output: An integer vector, h = (h*(0), h*(1), …, h*(N-1))
that satisfies exactly the constrains (9)-(12) given above
and minimizes NG (8).

The solution we offer is based on the following consid-
erations:
1. The task in hand is a quadratic integer programming

problem, which is well-known to be an NP-complete
problem [7-9]; therefore it is unrealistic to find the
best solution in a reasonable amount of time, espe-
cially for long filters. This state of affairs is in sharp

contrast to the quadratic real programming problem
[8], which is solvable in polynomial time.

2. Without restricting the variables to be integers, we
have a closed form solution of the problem, which is
given by (7) for the case M = 2 and p = 1. Although
the values computed by this formula are not integers,
this expression gives us a very good initial approxi-
mation.

3. To make sure that the conditions (9)-(12) are met ex-
actly, one has to solve the above system in integers.
This problem has been a subject of very deep investi-
gations in number theory and the theory of Dio-
phantine equations. By eliminating the variables, one
can reduce the problem to a single linear equation of
the form

BxAxAxA ll  ��� �2211 (13)

where A1, A2, …, Al and B are integers.

The solutions of (13) are usually obtained by multidi-
mensional continued fraction algorithms [10,11], and the
reader can find a large variety of methods aimed at solv-
ing this class of Diophantine equations. Here our ap-
proach is based on Clausen-Fortenbacher algorithm. The
reasons why we chose this particular technique are: firstly,
the algorithm succeeds in finding very fast the solutions
of (9)-(12), from which the optimal one, that is, the one
that would minimize the noise gain NG (8), can be
quickly found; secondly, the program provided in [12]
can be easily generalized to more than 16 variables (the
largest case analyzed by Clausen and Fortenbacher);
thirdly, we have a good initial approximation that signifi-
cantly speeds up the algorithm.

In the following Tables 1 through 5, we show some re-
sults for the filter length N = 16 with different dynamic
ranges for the variables h(k) along with the real number
form (infinite precision) solutions of (7) and the best inte-
ger solution obtained. It is worth noting that the most
straightforward approximation of the infinite precision
coefficients with the closest integers never produced a
solution of the system of the Diophantine equations (9)-
(11). This demonstrates the necessity of special tech-
niques aimed at solving the integer optimization problem.
Here the search for the ideal quantization has been con-
ducted within r2 from the normally quantized coefficients
presented in integer form. This search band is illustrated
in Fig. 2 for the filter length N = 16, with coefficient pre-
cisions of 8, Fig 2 a) and 16 bits, Fig 2 b), which corre-
spond to Tables 1 and 5, respectively. Table 6 lists the
numbers of solutions that exactly satisfy the constraints
(9)-(11) for coefficient precisions 6, 8, 10, 12, 14, and 16
bits for the filter lengths N = 8 and N = 16. To find the
optimum solution, it is necessary of search all of the solu-
tions and to select the one which minimizes noise gain (8).
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For the filter length N = 8, this takes less than one second
on a 166 MHz Pentium processor using exhaustive search
programmed with C language. For many applications,
also the first-found solution could most probably be ade-
quate, which should be checked by comparing the noise
against the noise gain of the corresponding infinite preci-
sion filter, and the application at hand.

Table 1 shows that with the filter length N = 16 and the
coefficient precision of 8 bits, for five out of sixteen coef-
ficients one has to approximate the real coefficient with an
integer that is not the closest one. The 10, 12, 14 and 16-
bit filter coefficients are shown in Tables 2, 3, 4 and 5, re-
spectively.

TABLE 1. The infinite precision presentation (real number form) of the
digital filter coefficients computed by (7) for the filter length N = 16
and their best integer approximations that guarantee the exact solution
of (9)-(11) while also minimizing the noise gain (2) with the coefficient
precision of 8 bits.
Coefficients Real

number
 form

Best
integer
appr.

Coefficients Real
number

form

Best
integer
appr.

256 h(0) 32.313725 32 256 h(8) -16.376471 -17*

256 h(1) 20.894118 20* 256 h(9) -15.605602 -17**

256 h(2) 10.998319 12** 256 h(10) -13.310924 -13
256 h(3) 2.626331 3 256 h(11) -9.492437 -9
256 h(4) -4.221849 -4 256 h(12) -4.150140 -4
256 h(5) -9.546218 -9* 256 h(13) 2.715966 3
256 h(6) -13.346779 -13 256 h(14) 11.105882 11
256 h(7) -15.623529 -16 256 h(15) 21.019608 21

* The best integer approximation is not the integer closest to the real (in-
finite precision) coefficient value.
**  The best integer approximation is not an integer on either side of the
real (infinite precision) coefficient value.

TABLE 2. The infinite precision presentation (real number form) of the
digital filter coefficients computed by (7) for the filter length N = 16
and their best integer approximations that guarantee the exact solution
of (9)-(11) while also minimizing the noise gain (2) with the coefficient
precision of 10 bits.
Coefficients Real number

form
Best

integer
appr.

Coefficients Real
number

form

Best
integer
appr.

1024 h(0) 129.254902 128* 1024 h(8) -65.505882 -65*

1024 h(1) 83.576471 84 1024 h(9) -62.422409 -64**

1024 h(2) 43.993277 45** 1024 h(10) -53.243679 -53
1024 h(3) 10.505322 11 1024 h(11) -37.969748 -38
1024 h(4) -16.887395 -17 1024 h(12) -16.600560 -17
1024 h(5) -38.184874 -38 1024 h(13) 10.863866 11
1024 h(6) -53.387115 -54* 1024 h(14) 44.423529 45*

1024 h(7) -62.494118 -62 1024 h(15) 84.078431 84
* The best integer approximation is not the integer closest to the real (in-
finite precision) coefficient value.
**  The best integer approximation is not an integer on either side of the
real (infinite precision) coefficient value.

TABLE 3. The infinite precision presentation (real number form) of the
digital filter coefficients computed by (7) for the filter length N = 16
and their best integer approximations that guarantee the exact solution
of (9)-(11) while also minimizing the noise gain (2) with the coefficient
precision of 12 bits.
Coefficients Real

number
form

Best
integer
 appr.

Coefficients Real
number

form

Best
integer
appr.

4096 h(0) 517.019608 516** 4096 h(8) -262.023529 -262
4096 h(1) 334.305882 335* 4096 h(9) -249.689636 -251**

4096 h(2) 175.973109 176 4096 h(10) -212.974790 -213
4096 h(3) 42.021289 42 4096 h(11) -151.878992 -152
4096 h(4) -67.549580 -67* 4096 h(12) -66.402241 -67*

4096 h(5) -152.739496 -153 4096 h(13) 43.455462 43
4096 h(6) -213.548459 -213* 4096 h(14) 177.694118 178
4096 h(7) -249.976471 -249* 4096 h(15) 336.313725 338**

* The best integer approximation is not the integer closest to the real (in-
finite precision) coefficient value.
**  The best integer approximation is not an integer on either side of the
real (infinite precision) coefficient value.

TABLE 4. The infinite precision presentation (real number form) of the
digital filter coefficients computed by (7) for the filter length N = 16
and their best integer approximations that guarantee the exact solution
of (9)-(11) while also minimizing the noise gain (2) with the coefficient
precision of 14 bits.
Coefficients Real

number
form

Best
integer
appr.

Coefficients Real
number

form

Best
integer
appr.

16384 h(0) 2068.078431 2068 16384 h(8) -1048.094118 -1048
16384 h(1) 1337.223529 1337 16384 h(9) -998.758543 -1000**

16384 h(2) 703.892437 704 16384 h(10) -851.899160 -852
16384 h(3) 168.085154 168 16384 h(11) -607.515966 -607*

16384 h(4) -270.198319 -270 16384 h(12) -265.608964 -266
16384 h(5) -610.957983 -611 16384 h(13) 173.821849 174
16384 h(6) -854.193838 -854 16384 h(14) 710.776471 710*

16384 h(7) -999.905882 -999* 16384 h(15) 1345.254902 1346*

* The best integer approximation is not the integer closest to the real (in-
finite precision) coefficient value.
**  The best integer approximation is not an integer on either side of the
real (infinite precision) coefficient value.

TABLE 5. The infinite precision presentation (real number form) of the
digital filter coefficients computed by (7) for the filter length N = 16
and their best integer approximations that guarantee the exact solution
of (9)-(11) while also minimizing the noise gain (2) with the coefficient
precision of 16 bits.
Coefficients Real

number
form

Best
integer
appr.

Coefficients Real
number

form

Best
integer
appr.

65536 h(0) 8272.313725 8272 65536 h(8) -4192.376471 -4193*

65536 h(1) 5348.894118 5348* 65536 h(9) -3995.034174 -3997**

65536 h(2) 2815.569418 2816 65536 h(10) -3407.596639 -3408
65536 h(3) 672.340616 673* 65536 h(11) -2430.063866 -2430
65536 h(4) -1080.793277 -1080* 65536 h(12) -1062.435854 -1062
65536 h(5) -2443.831933 -2444 65536 h(13) 695.287395 696*

65536 h(6) -3416.775350 -3416* 65536 h(14) 2843.105882 2843
65536 h(7) -3999.623529 -3999* 65536 h(15) 5381.019608 5381

* The best integer approximation is not the integer closest to the real (in-
finite precision) coefficient value.
**  The best integer approximation is not an integer on either side of the
real (infinite precision) coefficient value.
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TABLE 6. The number of ideally quantized solutions NIQS that exactly
satisfy constraints (3)-(5) for the filter lengths N = 8 and N = 16 as a
function of coefficient precision (6, 8, 10, 12, 14 and 16 bits).

Coeff. prec. (bits) 6 8 10 12 14 16

NIQS , N = 8 21 14 14 21 14 14

NIQS , N = 16 56326 53633 58791 55027 58287 57341
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FIG. 2. Ideal quantization search bands (between solid lines) for the
filters of length N = 16 with the coefficient precisions of a) 8 bits and b)
16 bits. Circles ‘o’ denote the quantized, and plusses ‘+’ the ideally
quantized coefficients.

IV. CHARACTERISTICS OF THE QUANTIZED AND

IDEALLY QUANTIZED COEFFICIENT FILTERS

In this section, frequency response and group delay
properties of the infinite precision, quantized-coefficient,
and ideally quantized-coefficient filters are illustrated. In
Fig. 3, second degree polynomial-predictive FIR differen-
tiator of length N = 8 is shown for the three cases men-
tioned above with the coefficient precision of 8 bits. Same
plots are given in Figs. 4 and 5 for the filter length N = 16
and coefficient precisions of 8 and 16 bits, respectively. If
the ideal quantization yields several filters that exactly
satisfy the constraints (3)-(5), the one which minimizes
the noise gain (2) is shown in Figs. 3 through 5.

From the Figs. 3, 4 and 5 it can be seen that the filters
with quantized coefficients are practically useless consid-
ering their prediction and/or differentiation properties
whereas the filters with the ideally quantized coefficients
behave like the filters with infinite precision coefficients,
as they should, since they satisfy the constraints  (3)-(5)
exactly. The filters shown in Fig. 4 correspond to the co-
efficients listed in Table 1, and Fig. 5 to those listed in
Table 5.

In Fig. 6, the noise gains of the second degree polyno-
mial-predictive FIR differentiator of length N = 16 with
coefficients optimally quantized to 8, 10, 12, 14 and 16
bits are plotted along with the noise gain of the corre-
sponding infinite precision filter.  From Fig. 6 it is seen
that as the coefficient precision increases, the noise gain
loss nicely diminishes. Should the noise gain of a quan-
tized coefficient filter be less than that of the infinite coef-
ficient counterpart, the constraints (3)-(6) were not exactly
preserved since the infinite precision filters by definition
satisfy (3)-(6) and minimize the noise gain (2).
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FIG. 3. Magnitude responses a) and group delays b) of the infinite pre-
cision (dashed), quantized coefficient (dotted) and optimally quantized
coefficient (dash-dot) second degree polynomial-predictive FIR differ-
entiators of length N = 8 with the coefficient accuracy of 8 bits.
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FIG. 4. Magnitude responses a) and group delays b) of the infinite pre-
cision (dashed), quantized coefficient (dotted), optimally quantized co-
efficient (dash-dot) second degree polynomial-predictive FIR differ-
entiators of length N = 16 with the coefficient accuracy of 8 bits.
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FIG. 5. Magnitude responses a) and group delays b) of the infinite pre-
cision (dashed), quantized coefficient (dotted), optimally quantized co-
efficient (dash-dot) second degree polynomial-predictive FIR differ-
entiators of length N = 16 with the coefficient accuracy of 16 bits.
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FIG. 6. Noise gains of the ideally quantized coefficient second degree
polynomial-predictive FIR differentiator of length N = 16 as a function
of the coefficient precision in bits (circles) along with the noise gain of
the same filter with infinite precision coefficients.

V. FURTHER RESEARCH TOPICS

There is ample room for improvements of the method
proposed. First of all, the idea is applicable to FIR and IIR
filters if one aims at removing the influence of the round-
off errors. Secondly, the problem gets more complicated
for long filters, as it should. The NP-completeness of the
optimization problem [6-9,13-16] involved, forces us to
use heuristic solutions; the new one, proposed in this pa-
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per, is based on number-theoretic methods. Summarizing,
we could point out four directions for future research that
seem particularly important:
1. The extension of the method for very long filters

(length several hundred coefficients) would require
more powerful technique for solution of the main
Diophantine equation than Clausen-Fortenbacher al-
gorithm. The precise comparison between their
method and multidimensional continued fraction al-
gorithm [10,11], to the best of our knowledge, has not
yet been done.

2. It would be particularly beneficial to design a multi-
plierless architecture for this class of filters. In the
language of number systems this means that one
should look for a solution which consists of fairly
small number of nonzero digits in a canonic signed-
digit binary number system. That is coefficients h(k)
should be of the form r2

a
r2

b
 or r2

a
r2

b
r 2

c
,

where a, b and c are integers. Such a restriction nor-
mally results in extending the length of the filter and
increasing the influence of round-off errors. Whether
or not the method proposed can remove the later, that
is, the influence of the round-off errors, remains to be
seen.

3. Recursive extension [2] will be applied to the quan-
tized-coefficient polynomial-predictive FIR differen-
tiators designed in this paper to extend the concept of
coefficient quantization by integer programming to
IIR design.

4. For being able to utilize our integer programming
solution for coefficient quantization of other filter
types, the filter specifications should be expressed in
a form similar to the constraints for the polynomial-
predictive FIR differentiators, i.e., in the form of a set
of linear equations with filter coefficients as vari-
ables. This concept will be further explored.

VI. CONCLUSIONS

A new technique for perfect digital filter coefficient
quantization has been proposed. Our method uses num-
ber-theoretic tools. As it is demonstrated in the paper, the
given filter design constraints giving the filters their poly-
nomial signal prediction and differentiation properties,
can be exactly satisfied, and thus, the influence of the
round-off errors is eliminated. For the second degree
polynomial-predictive FIR differentiators used in this pa-
per, the conditions can be exactly satisfied with even as
low as 6-bit coefficient precision, with still some degrees
of freedom left to minimize the noise gain of the designed
fixed-point coefficients filter. The proposed integer pro-
gramming method for fixed-point filter design is well
suited at least for all filter design tasks in which the design
criteria can be formulated in a form of linear constraints
on filter coefficients, like those for the polynomial-
predictive FIR differentiators.
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