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Abstract � In this paper, estimation of signal power is consid-
ered. Methods of designing optimized and partially-optimized
power estimators, based on the Wiener model, for complex-
valued signals are presented. Our application is predictive re-
ceived power level estimation in closed loop transmitter power
control of mobile CDMA communications systems. The pro-
posed estimators have the benefits of guaranteed positive out-
put, high computational efficiency as compared to quadratic
filters, and providing for a predescribed prediction step, all the
aspects being of great interest when applying the estimators in
delay sensitive closed control loops. User capacity of a CDMA
communications system is generally found to be greatly inter-
ference limited, and thus proper power control system func-
tioning is of paramount interest. The partially-optimized power
estimators are simulated along with Heinonen-Neuvo polyno-
mial predictors in single- and multiuser CDMA uplink closed
power control loop simulators.

I. INTRODUCTION

It has been recognized that power control is crucial to the
performances of mobile radio communication systems, espe-
cially of the mobile CDMA systems >1][2@. In this paper, the
objective of the power control is to maintain the powers re-
ceived from individual users at an equal and constant level in
order to maximize the user capacity of the communications
system. The powers of the received noisy baseband signals are
measured, filtered and compared with a preset power level
threshold, so that power control can be realized by a closed
control loop, and mutual interference between different users
can be reduced. A lot of efforts have been made to improve
power control efficiency [1][2][4][5@. Replacing power meas-
urement with a predictive power estimator in the power control
loop has been suggested [6][7] to combat background noise and
interference corrupting the received power level estimates, and
to compensate for control loop delays. In other words, the
function of the predictive power estimator is threefold: to re-
duce additive noise and corrupting interference (i.e., filtering
function), to calculate the received signal power level which is
affected by channel fading and the distance between the mobile
handset and the base station (i.e., measuring function), and to
predict future values of the received signal power. Predictive
power estimator reduces to power measurement if its filter-
ing/prediction function is removed.

Power estimator is also called an energy estimator or energy
detector >8][9@, since power is actually instantaneous energy.
Power estimator is doomed to be a nonlinear system because
power is defined as the square of the signal magnitude. The
available power estimators were developed for real-valued sig-

nals >1][2][3@. The standard energy detector consists of a linear
time invariant (LTI) filter followed by a magnitude-square op-
eration >1@. It has a simple structure and is thus computationally
every efficient. However, the estimation bias at its output is not
avoidable. A more general power estimator is called a quadratic
filter (QF) or quadratic detector >1][2@. It can provide better
trade-off between different desired features >2@. However, large
processing delay and heavy computational requirements of
quadratic filtering preclude its real-time use. Moreover, the re-
sulting power estimate is not guaranteed to be positive.

In this paper, we propose an optimum power estimator (PE)
for complex-valued signals, with application in closed power
control loops of mobile communication systems. PE has a
structure based on the Wiener model (WM) >1][2][8][9 @, and it
is thus computationally very efficient. In this paper, PEs are de-
signed to be one-step-ahead predictive. Also, their output is
guaranteed to be positive as natural for power estimation appli-
cations. In Section II, the PE structure is presented, and two
methods for optimum design are derived. Also, in Section II,
the other simulated predictors are shortly reviewed, and the
predictor parameter selection method used is described. The
simulators are described, and simulation results given in Sec-
tion III. Finally, Section IV summarizes the paper.

II. POWER ESTIMATOR IN BASEBAND

A. Structure and Analysis

For complex baseband signals, we construct a PE with two
WMs and an adder, as shown in the dashed box in Fig. 1. The
output of the system is estimated power of the input signal,
rather than an estimate of the input signal itself. The filters in
both WMs are of FIR type. They are usually chosen to be equal
according to the assumptions on the input which will be ad-
dressed later. Their real impulse response h(n) is designed due
to the characteristics of the input. WM can be viewed as a spe-
cial case of QF, or of the Wiener system used for nonlinear
system recognition [1][2][8][9]. It has been called the standard
energy detector for real-valued signals because its structure re-
flects the function of removing noise and then calculating signal
power. Similarly, we call the PE in Fig. 1 standard PE for com-
plex-valued signals. Its simple structure ensures computational
efficiency.

Input signal consists of a signal component x(n)=xR(n)+
jxI(n) and noise/interference component w(n)=wR(n)+jwI(n).
The real, i.e., in-phase, part xR(n) and imaginary, i.e., quadra-
ture, part xI(n) are assumed uncorrelated, and both are wide-
sense stationary with known and usually equal statistics. The
real part wR(n) and imaginary part wI(n) of noise are assumed to
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be uncorrelated, and both are white Gaussian noise (WGN)
processes with zero mean, equal variance Vw

2 /2 and kurtosis

3Vw
4 /4 [10]. Hence, w(n) is an additive WGN (AWGN) process

with zero mean, variance Vw
2  and kurtosis 2Vw

4  >7@. Input sig-

nal-to-noise ratio (SNR) J is defined as the ratio of average
powers of the input signal and corrupting noise

J V  E x n E w n Rx w{| ( )| } {| ( )| } ( )2 2 20 , (1)

where E{ .} denotes the expectation, Rx(l) is the autocorrelation
function whose value at the origin is the average power Rx(0) of
the signal.

Wiener Model (1)

Wiener Model (2)
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y(n)=|x(n+p)|2+e(n)

Fig. 1 The standard power estimator for baseband signals.

The output y(n)=|x(n+p)|2+e(n) is an estimate of the signal
power |x(n)|2 with a prediction step p. The value of p can be any
integer depending on the underlying application, for instance,
p>0 refers to p-step-ahead power prediction. The output y(n)
can also be expressed in terms of the filtered input r(n) as

y n r n r n r n r n r nR I( ) ( ) ( ) ( ) ( ) *( ) �   
2 2 2

, (2)

where r(n) = rR(n)+jr I(n) = hT(x+w) with the length-N filter im-
pulse response vector h = >h(0) ... h(N-1)@T, the signal vector x
= >x(n) ... x(n-N+1)@T, and the noise vector w = >w(n) ... w(n-
N+1)@T. The superscripts “*” and “T” denote complex conju-
gate and transpose, respectively.

The real-valued power estimation error is defined as the dif-
ference between the actual and the desired outputs,

e n y n x n p( ) ( ) ( ) � �

2 . (3)

This error consists of the second-order terms x2(n) and w2(n), as
well as the cross term of x(n) and w(n), due to the nonlinear op-
eration. That is, this error is both signal-dependent and noise-
dependent. The estimation bias is the mean value of e(n),

^ ` ^ ` � �Bias E e n E y n Rx  �( ) ( ) 0 , (4)

where the second equality holds according to the stationarity of
x(n). This bias is unavoidable because of the existence of the
second-order terms in the expression of e(n). The mean squared
error (MSE) of the estimate y(n) can be expressed as

^ `E e n2( ) ^ ` ^ ` ^ ` � � � �E y n E y n x n p E x n p2 2 4
2( ) ( ) ( ) ( ) . (5)

In the following, in order to minimize or reduce the MSE
(5), we develop two methods to optimize the PE. The bias (4) is
also reduced when the MSE is minimized or reduced.

B. Global Optimization Method

The global optimization is performed to design the FIR fil-
ters to minimize the MSEs E{ e2(n)} at the output of the PEs.
The output can be rewritten as y(n) = hT(x+w)(x+w)*Th = hTSh
since r(n) = hT(x+w) = (x+w)Th and h is real. Here S = S*T =

(x+w)(x+w)*T is a Hermitian matrix. Setting the partial deriva-
tive of (5), with respect to h, to zero yields

� �^ ` � � � �^ `E E x n pG G
TS S h h S S S�  � � �* *

2
, (6)

where the subscript “G” denotes global optimization. Equation
(6) cannot be further simplified due to the existence of the ex-
pectations. It provides an implicit expression for iteratively cal-
culating the optimal filter impulse response hG for a globally-
optimized PE. However, the numerical calculations could be
massive and possess some uncertainty in the obtained hG, and
also convergence is not guaranteed.

C. Partial Optimization Method

Let the filtered input signal in Fig. 1 be expressed as
r(n)=x(n+p)+H(n), where H(n)=HR(n)+jHI(n) is the estimation er-
ror at the output of the FIR filters. The goal now is to minimize
the MSE E{|H(n)|2}=E{ H R

2 (n)}+E{ H I
2 (n)} so that an optimal

estimate of the delayed signal is achieved at the output of the
filters, and the MSE E{ e2(n)} at the PE output is in turn re-
duced. In other words, the overall PE is partially optimized.

The optimal filters minimizing E{ HR
2 (n)} and E{ HI

2 (n)} are

simply the Wiener filters. Their impulse responses are equal ac-
cording to the assumptions on the input signal and noise, and
can be calculated from the Wiener-Hopf equation [11]

h R ropt R R 
�1 , (7)

where RR = E{( xR+wR)(xR+wR)T} is an NuN auto-correlation
matrix, rR = E{ xR(n+p)>xR+wR@} is a cross-correlation vector,
and xR and wR are the real parts of x and w, respectively. Since
noise w(n) is WGN and independent of x(n), further derivation
yields

� �h R I ropt xR w xR �

�

V
2 1

2 , (8)

where RxR  =  E{ xRxR
T} and r xR  =  E{ xR(n+p)xR}. The partial

optimization approach is of practical interest due to its simple
and closed-form solution.

It can be seen from (8) that a prototype signal x(n) and noise
variance are needed to calculate the optimal impulse response,
and also the filter length N has to be specified. The following
study on parameter selection provides a method of choosing
filter length N and prototype signal length L.

One-step-ahead predictive Wiener filters of lengths N=1~50
are designed for each mobile speed 5, 10, …, 45 km/h and
prototype signal length L=300, 600, …, 15000 samples. In-
phase and quadrature components of Rayleigh fading signals,
whose components are corrupted with AWGN with variances 0,
0.05, 0.1, 0.2, 0.3, …, 0.9, 1, and 5 are employed as prototype
signals. The resulting Wiener filters are tested by estimating
one-step-delayed test signals with the same statistics as the pro-
totype signals. The MSEs E{ HR

2 (n)} and E{ HI
2 (n)} at the filter

outputs are calculated for each case, and an error surfaces ver-
sus L and N are formed. The values of N and L corresponding
to minimum MSEs are then obtained. For simplicity, we use
“optimal predictor” in the following to indicate the predictive
Wiener filter designed based on the N and L values determined.

Magnitude responses of three optimal predictors are shown
in Fig. 2. It can be seen that for the low-noise cases, the pre-
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dictor band-width generally grows with the received fading sig-
nal band-width which is proportional to the mobile speed. At
high noise cases, the predictor design favors noise reduction,
even with the cost of payload signal degradation.

Figure 3 depicts an MSE surface for the low-noise, 10 km/h
case. The optimum predictor is found with predictor length
N=50, designed using a prototype signal of L=13200 in-phase
component samples. It is seen that the MSE error surface has a
fairly large flat area which is also equally evident in all the
other error surfaces in our studies. This flat area is due to the
fact that the optimization of the predictor coefficients is done
according to the predefined N, and the fact that a prototype sig-
nal segment of sufficient length reflects the statistics of the sig-
nal with high probability. In other words, the choice of predic-
tor length N is quite free and the selection of L is also flexible
within a fairly large region. All the error surfaces greatly re-
semble that seen in Fig. 3. The MSE surfaces for the higher
mobile speeds exhibit “wavy” behavior below certain prototype
signal lengths, and optimum predictors with lengths within that
region would be dangerously specific to the statistics of the
prototype signal, although from the signal statistics point of
view it may seem illogical to use longer prototype signals for
higher mobile speeds. Since the resulting region of N is more or
less dependent on the choice of the prototype signal, not all
predictors designed are always optimal for the actual overall

signal statistics. It is to be stressed that the method of forming
the MSE surface and searching the relevant N and L for optimal
predictor design is actually not in any way related to the power
control problem. Thus the described method serves only as a
consistent and “scientific” way for selecting the predictor de-
sign parameters, instead of yielding the values of N and L opti-
mal for the actual application. For the power control function it
is beneficial to apply fairly short predictors within the flat
nearly-optimal region. Reasonable guidelines are N=5a25 and
L=3000a6000 for mobile speeds <20 km/h, and N=10a25 and
L=6000a9000 for speeds >20 km/h.

In the following, we use optimum predictors designed with
the parameters found from the error surfaces. It should be
pointed out that some shorter ad hoc designed optimum pre-
dictors may actually yield as good results. Thus, also predictors
with ad hoc design parameters, length N=15, designed with
L=3000 samples, within the guidelines above, are also used in
the simulations.

D. Heinonen-Neuvo Polynomial Predictors

Heinonen-Neuvo (H-N) polynomial predictors >13@ are used
in the simulations since Rayleigh fading signals can well be
piecewisely approximated by polynomials. H-N predictors are
optimized to minimize filter output noise power when the input
is a noisy polynomial signal of a known degree. They are low-
pass filters with, in this paper, group delays exactly minus one
in narrow low frequency bands. Their coefficients have closed
from solutions for each filter length and low polynomial input
signal degree. Since the design of the H-N predictors does not
employ prototype signals, the relevant values of the predictor
length N and polynomial degree K are searched within the re-
gion N=5a50, K=1a3, by employing the same minimum MSE
criterion as with the optimum estimators.

III. POWER CONTROL SIMULATIONS

To assess the applicability of the PEs to the closed loop
power control in CDMA communication systems, a single-user
simulator, multiuser simulators with 5 and 10 users, and a
simulator with AWGN interuser interference model, are con-
structed in COSSAP software environment. The communica-
tions system parameters are selected as carrier frequency 1.8
GHz, chip rate 1.2192 MHz, bit rate 9600 Hz, control period
0.625 seconds, and single bit power control command with r1
dB mobile transmitter power level change step. These parame-
ters are derived from those for the Qualcomm CDMA system
[12] except that the control rate is doubled, and 127 chips per
bit is used instead of 128 chips per bit, which, with the bit rate,
yields the mentioned chip rate. Resulting CDMA codes are not
orthogonal; code autocorrelations yield 127, while the code
cross correlations are equal to -1, introducing interuser interfer-
ence. To evaluate system performance, bit error rates (BERs)
are counted by comparing 100,000 bits of the received signal
and the transmitted signal. Each user has a Rayleigh fading
channel corresponding to his mobile speed, and the total control
loop delay is set to 2 chip durations for all the users.

Four types of power controllers are tested: Controller 1 us-
ing partially-optimized one-step-ahead predictive PEs, Con-
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Fig. 2 Frequency responses of the optimal predictors designed for 10
km/h (solid) and 30 km/h (dashed) with component noise variance
0.05, and for 30 km/h and noise variance of 5 in components (dotted).
Note that the frequency scale is up to half the Nyquist rate.
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Fig. 3 The MSEs for the predictors designed for the mobile speed of
10 km/h and component noise variance 0.05. The optimal predictor is
found to be of length N=50 designed using L=13200 in-phase compo-
nent prototype signal samples.
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troller 2 using PEs with one-step-ahead predictive H-N predic-
tors, and the as the reference, Controller 3 using non-filtering
power measurement. The partially-optimized PE with the ad
hoc design parameters is employed in Controller 1’. The objec-
tive of the power control is to minimize the variance of the
power level received from each individual user, i.e., variance of
the user’s radio channel output power, which is now our control
variable.

A. Singleuser System

A singleuser simulator consists of a mobile transmitter, ra-
dio channel, base station receiver and power controller models.
The radio channel is a Rayleigh fading channel [4], with the
mobile speed set to 10 km/h or 30 km/h. AWGN is added inde-
pendently to the in-phase and quadrature components. In Fig. 4,
the component SNR axis labels correspond to the added com-
ponent AWGN variances 0, 0.1, …, 0.9, respectively.

In the singleuser simulator, the input to the power controller
is the despread total received signal which is only decimated so
that the controller input rate is the same as the bit rate. As all
the received noise left after despreading is also fed to the con-
troller, the predictors’ noise reduction capabilities are more
pronounced in the single user case than in the multiuser case.

 inf  6.99  3.98  2.22  0.97   0  −0.79 −1.46 −2.04 −2.55
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−2
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−1
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Fig. 4 Singleuser system BERs achieved employing the optimum pre-
dictors (solid), an ad hoc optimum predictor with N=15 (dotted), and
H-N predictors (dash-dot) in the controllers, along with the BERs us-
ing the non-filtering reference controller (crosses) at the mobile speed
of 30 km/h.

In Fig. 4, BERs from the single user simulations at 30 km/h
are shown. It is clearly seen that as the noise level gets higher,
the system with the non-filtering reference controller fails. This
is due to the fact that as the received noise power increases, the
power controller commands for lower transmitter power level.
The systems with low-pass predictors are still functional under
high noise conditions, with the optimum predictor providing for
a little better achieved BERs. At 10 km/h, the conclusion on the
necessity of the filtering remains equally clear, with all the cor-
responding BERs somewhat lower than those shown in Fig. 4.
The partially-optimized PE is seen to yield slightly better per-
formance than the H-N predictor. Also, there is little difference
whether the design parameters of the partially-optimized PEs
are optimized or selected ad hoc.

B. Multiuser System

In the multiuser simulators, input to the controller is the de-
spread received signal which is integrated over the bit duration
in order to produce an estimate of the bit energy received from
a given user. Integration instead of decimation is the difference

between the multiuser and the singleuser simulators. Integration
naturally has the effect of removing some noise and interference
from the controller input signal, and thus the predictors’ actual
predictive properties are more pronounced.

In the multiuser simulator, one user is observed. The speed
of the observed mobile user is set to 10 km/h or 30 km/h, while
the other interfering users’ speeds vi, i=1, …, 9, are set to vi=i ·5
km/h, in the 10-user simulations, and to vi=i ·10 km/h,
i=1, …, 4, in the 5-user simulations. A user in a multiuser
simulator is illustrated in Fig. 5. Receiver noise is simulated by
adding AWGN with component variance 0.05. For other than
mentioned simulator details, please refer to [14].

Transmitter ReceiverRadio
channel

From other users'
channels + noise

To other
users' receivers

Controller

Fig. 5 Block diagram of a user in the multiuser communications sys-
tem simulators.

The main multiuser simulation results are given in Tables 1,
2 and 3. The results also reflect relations between the simulated
actual multiuser interference models and the commonly used
AWGN multiuser interference model. From all the Tables 1, 2
and 3, it is seen that the multiuser and AWGN multiuser simu-
lations yield somewhat different results. Conclusions on the ef-
fects of the predictors are dependent on the interference model
used, which is mainly evident in Tables 2 and 3 describing
transmitter power consumption savings and power control
function performance improvements, respectively.

In Table 1, achieved BERs are listed. It is to be noted that
these are ‘raw’ BERs, i.e., e.g. no error corrective coding is
used. Thus, all other differences between BERs from the three
predictive systems and the reference system are negligible in
the sense of actual data transmission, except for the case where
interference is modeled by a very high AWGN level under high
mobile speed. In this case, the systems employing the optimum
predictors are able to deliver 20~30 % less bit errors than the
other two systems. From the corresponding results in Tables 2
and 3, it is seen that the cost of these BER improvements is in-
creased power consumption and greater variance of the radio
channel output power level, i.e., degradation of the control
variable quality. The optimum PEs with the ad hoc design pa-
rameters, Controller 1’, are seen to function as well as the ones
with optimized design parameters. Generally, the previous ones
deposit more transmitter power, which results in better BERs in
the high level AWGN interference model cases.

In Table 2, transmitter power consumption savings from ap-
plying predictive filtering are listed. The results reflect the fact
that H-N predictors are in most cases capable of slightly ad-
justing the control timing, resulting in a slightly decreased
transmitter power consumptions while maintaining or even
slightly decreasing the corresponding BERs. The improvements
are more pronounced if the interference can be modeled by the
AWGN. The effect of the optimum predictors is seen to be
mostly that of depositing more transmitter power.
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Table 3 presents the effects of the predictive power estima-
tion to the control variable. If the system is modelable by the
AWGN interference model, both H-N and optimum predictors
can provide for substantial improvements in the power control
operation in most of the cases. 50 % reduction in the variance
of the received power level is expected to directly contribute to
the communications system user capacity though this has not
been explicitly tested yet. Controller 1’ provides for slight
power control function improvements also in all the actual
multiuser simulation cases.

IV. SUMMARY

The Wiener model based computationally efficient power
estimators for complex signals have been proposed. The output
of the PE is guaranteed to be positive as naturally desirable for
all applications requiring power estimation. Also, the PE can be
designed to be predictive for delay sensitive control applica-
tions. For our application, predictive Rayleigh fading signal
power estimation in closed power control loops, short filters
with 5<N<21 are found adequate. Simulation results are shown
and compared with results from the corresponding non-filtering
reference systems. The results demonstrate clear need for fil-
tering within closed power control loops, while fine tuning the
control system is found possible by applying proper predictive
PEs. In practice, an adaptive algorithm can be used to adjust the
partially-optimized PE to suit for actual channel variation and
SNR >7@.
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Table 1. BERs from the simulations of 100000 bits with the total control loop delay of 2 chip durations, and observed user’s speeds 10 km/h and
30 km/h, for 5 and 10 users, and for AWGN interference models with component noise variances of 1 and 5.

Controller 5 users
10 km/h

5 users
30 km/h

10 users
10 km/h

10 users
30 km/h

AWGN interf.
10 km/h, var = 1

AWGN interf.
10 km/h, var = 5

AWGN interf.
30 km/h, var = 1

AWGN interf.
30 km/h, var = 5

1) optim. pred. 5.3·10-3 10.0·10-3 6.6·10-3 11.8·10-3 10.8·10-3 22.7·10-3 17.1·10-3 31.2·10-3

1’) optim. ad hoc pred., N=15 5.2·10-3 10.3·10-3 6.6·10-3 11.8·10-3 9.9·10-3 20.2·10-3 16.3·10-3 26.6·10-3

2) H-N pred. 5.2·10-3 9.8·10-3 6.6·10-3 11.6·10-3 9.8·10-3 22.1·10-3 19.0·10-3 42.8·10-3

3) reference 5.1·10-3 10.2·10-3 6.6·10-3 11.8·10-3 11.3·10-3 24.4·10-3 18.8·10-3 40.4·10-3

Table 2. Power savings achieved employing the prediction from the same simulations as in Table 2.
Controller 5 users

10 km/h
5 users
30 km/h

10 users
10 km/h

10 users
30 km/h

AWGN interf.
10 km/h, var = 1

AWGN interf.
10 km/h, var = 5

AWGN interf.
30 km/h, var = 1

AWGN interf.
30 km/h, var = 5

1) optim. pred. -0.2 % -0.5 % 0.4 % -0.5% 0.6 % -16.2 % -6.6 % -51.0 %
1’) optim. ad hoc pred., N=15 -0.6% -2.1% -0.6% -2.2% -3.0% -29.5% -14.1% -56.8%

2) H-N pred. 0.5 % 0.4 % -0.3 % 0.4 5.9 % 4.4 % 8.0 % 6.0 %

Table 3. Channel output variance reductions achieved by applying the prediction from the same simulations as in Table 2.
Controller 5 users

10 km/h
5 users
30 km/h

10 users
10 km/h

10 users
30 km/h

AWGN interf.
10 km/h, var = 1

AWGN interf.
10 km/h, var = 5

AWGN interf.
30 km/h, var = 1

AWGN interf.
30 km/h, var = 5

1) optim. pred. 2.7 % -1.0 % -1.4 % -3.1 % 59.2 % 41.7 % 50.3 % -111.7 %
1’) optim. ad hoc pred., N=15 1.3% 2.7% 1.4% 1.1% 51.6% 26.4% 39.8% -75.2%

2) H-N pred. -0.9 % 1.4 % -0.8 % 0.3 % 58.0 % 54.9 % 68.0 % 62.1 %


