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ABSTRACT time control.

Estimation of signal power/instantaneous energy requires nonli- this paper we propose a power estimator (PE) for complex-val-
ear systems. A power estimator based on the Wiener model is ppgd signals, with an application in the power control loop in
posed in this paper. Its input signal can be complex-valued, e.g.C,:QMA mobile radio systems. This PE has a structure based on the
baseband signal in a communications system, and its outputV¥éener mode[1][2][7][8] and it is thus computationally very ef-
guaranteed to be positive. It is computationally very efficient digient. It can be designed to be predictive. Also, the output is
compared to quadratic filters, and allows for a predescribed pi@uaranteed to be positive as required by the power estimation ap-
diction step required, for example, for application in delay sendplications. In Section I, the structure is presented and discussed.
tive closed control loops. Two methods of optimum/partial-optif Wo methods of optimum design are derived in Section Ill, and
mum design are presented. The partially-optimized power estinifi€ partially-optimized PE is demonstrated with a simple example.
tor is simulated in COSSAP environment as a part of the pow&he results of communication system simulations in COSSAP en-
control loop of a CDMA mobile radio communication system. Th¥ironment are given in Section IV. Section V concludes the paper.
system performance improvements are observed from bit error rate

reductions. 2. POWER ESTIMATOR BASED ON

WIENER MODEL

1. INTRODUCTION The Wiener mode(WM) consists of a FIR filter followed by a
Power (instantaneous energy) of a signal is defined as the squeftgaring operatiofil][2]. It has been called the standard energy
of the signal magnitude, i.ex(t)f at a continuous time instant detector for real-valued signals because its structure reflects the
or k(n)P at a discrete time instant A standard power estimator function of removing noise and then calculating signal power. It
for real-valued signals, which is also called standard energy d@@n be viewed as a QF with a dyadic kernel, or a special case of
tector, consists of a linear time invariant (LTI) filter followed by ghe Wiener system used for nonlinear system recognition
magnitude-square operatipt]. A more general power estimation [11[2][7][8]. It is of practical interest due to its simple structure.

system for real-valued signals is referred to as quadratic filter (Qfy, complex-valued signals, we construct a PE with two WMs and
or a quadratic detectdt][2]. QF can provide better trade-off be- 5 adder (Fig. 1). The output of the system is estinaoeer of

tween different desired featurf®. However, the large processingthe input signal, rather than an estimate of the input signal itself.
delay and the heavy computational requirements of quadratic fithe difficulties in derivation and analysis are inherent due to non-
tering precludes its real-time use. Moreover, the resulting poWgearity. The two FIR filters are usually chosen to be equal ac-
estimate is not guaranteed to be positive. cording to the assumptions on the input which will be addressed

In engineering, computationally efficient power estimation offter- They have a real impulse respohg®, and are designed
complex-valued signalis often needed. For example, it is very®f-line according to the characteristics of thput.

important to keep the signal powers received at a base station from — - — - — - — - -

all the mobile users in a mobile CDMA radio communications WR(n)‘; Wiener Model ‘

system at equal and constant level by controlling their transmitted 5| (Y |
o

powers[3][4]. The powers of the received noisy baseband signals Xg(n) rz(n) y(n) = ‘x(m @‘+ én
should be measured, filtered and compared with a preset power “‘ }

level threshold, so that power control can be realized by a control x,(n ‘ n(n .
p y () " ‘ : () ( )

loop, and the mutual interference between different users can be

reduced. The use of a predictive power estimator in the power w,(n), L \WienerModel
control loop has been suggested to improve the performance of —_ - — - — - — - —
mobile radio communication systerf&[6]. The function of the Figure 1. The power estimator for complex-valued signals.

predictive power estimator is _threefold_: to reduce additive nOiﬁﬁput is a sum of theeceived signal and corrupting noise, both of
and corrupting interference (i.e., filtering), to calculate the r%dwich are complex. The signaln)=x(n)+jx,() is assumed to be

ceived signal power level which is affected by channel fading and . . i -
the distance between the mobile handset and the base station %g\/}(je-se_nse stationary process with known statistics. lts real part
measuring), and to predict the future value of the power of the ¥ imaginary part are uncorrelated and normally fesysl sta-

ceived signal. Predictive power estimator reduces to power meggpcs The real parvg(n) and imaginary parw(n) of the cor-

urement if its filtering/prediction function is removed. The powefUPting noisew(n) are assumed to be uncorrelated, both are white
estimator has to be computationally efficient to be applied in regRaussian noise (WGN) with zero mean, equal varian{2 and
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kurtosis 3o, /4 [9]. Hencew(n) is an additive WGN process with whereS = (x+w)(x+w)*T is anNxN Hermitian matrix. Noting that

zero mean, variance? and kurtosis 2 (see Appendix 1). For h is a non-zero vector, we set the partlal derivative in (7) to zero,
eliminate h from both terms, and obtain

the optimum PE formulation, we define input signal-to-noise ratio

(SNR) as the ratio of average powers of ingighal andcorrupt- E{(S+3) hh iiB=H &n+ T S8 8
ing noise where the subscripiG” denotes global optimization. Equation (8)
y=E{ X0’} B W)} =RO/c: (1) can not be further simplified due to the existence of the expecta-

tions. It provides an implicit expression for iteratively calculating
the optimal filter impulse responkg for a globally-optimized PE.
However, the numerical calculations could be massive and possess
some uncertainty in the obtainbd, and also convergence is not
The outputy(n)=[x(n+p)f+e(n) is an estimate of the signal powerguaranteed.

2 2 2 . T
KnF= X.R(n) X (n) W'th a prediction step.. The val.ue 9p can ‘3.2 Partial Optimization and Analytical Solution
be any integer depending on the underlying application. For in- ) o )
stance p>0 refers to g-step-ahead power prediction. The mearf\s the globally-optimal solution is difficult to obtain, we turn to
value of thedesired outpufx(n+p) can be obtained according to Séek a partially-optimal solution. Let the filtered input signal in
the stationary characteristicsxgh), as Fig. 1 be expressed ag)=x(n+p)+&(n) where &(n)=sx(n)+j&(n)
is the estimation error at the output of the FIR filters (Fig. 2). The
1= 3= . 2

Ellx(n+ aly =&l €03 = R 0_ _ ( )_ goal is to minimize the MSE{|{n)} = E{2 (n)} + E{£2 (n)}

The outputy(n) can also be expressed in terms of the filtered inpW, that an optimal estimate the delayed signds achieved at the

where E{ -} denotes the expectatiom,(l) is the autocorrelation
function whose value at the origin is the average pdR#&) of
the signal.

r(n) as output ofthe filters and the MSEE{€’(n)} at the PE output is in
y(n) = r(n)f=rmr*(n=h"(x+w)(x+w)*" h (8) turnreduced. That is, the overall PE is to be partially optimized.

wherer(n) = rg(n)+jr,(n) = h'(x+w) with the lengthN filter im- wWo(n) ——————————————————————— :

pulse response vectbr= [h(0) ... h(N-1)]", the signal vectox = R Wiener Model |

[X(n) ... x(n-N+1)]", and the noise vector = [w(n) ... w(n-N+1)]", M J i

the superscript “** denotes complex conjugate, and “T” denotes,(n) | r.n)= xR(n+ p)+€R( n B2 [

transposey(n) is always positive due to the squaring operation.

. ) ) . Figure 2. The Wiener model processing the real part of the input.
The real-valued power estimation error is defined as the difference

between the practical output and the desired output First, the WM which processes the real part of the input (Fig. 2) is
e(n=ynN-| X pP= (Hr(d- xn px( A ) (4) considered. The optimal filter minimizing{ &5 (n)} is actually

This error consists of the second-order texfs) andw?(n), as the Wiener filter whose impulse response can be calculated from
well as the cross term afn) andw(n). That is, this error is both the Wiener-Hopf equation [10] as
signal-dependent and noise-dependent after the nonlinear opera- h,, =R3:T - 9)

tion. The estimation bias, i.e., the mear(@, can be derived as | here Re=E{(XaWr) (Xe*WR)T} is an NxN auto-correlation ma-

Bias= Hé ) =h"R h+c2G, - R(0) (5) trix, re=E{xg(n+p)[xr+Wg]} is a cross-correlation vector, ang
andwpy, are the real parts of andw respectively. The optimal fil-

where R, = E{xx*"} is the autocorrelation matrix of the signal . ; : :
. . . . R 2“7 ter impulse respon is thus real-valued. Noting thak(n) is
andG,=h"h is the noise gain of the filter. This bias is unavoidable P ponse,, g thak(n)

because of the existence of thew&torder terms in the expres- zero-mean WGN with a.var.lanc§ of, /2, and that it is independ-
sion of (n). The estimation variance, i.e., mean squared err@nt of xz(n), further derivation yieldsr=E{xx(n+p)xs} and Rg=

(MSE), can be expressed as E{ XpXRr }+ o2 1/2. Lettingr,=E{ xz(n+p)xg} and R,e= E{XrXr'},
E{e’ (N} =E ¥ M -2{EHYIn(xn)|F H|E xA)| ¥ .(@6) theWiener-Hopfequation can be further elaborated as
In the following text, both the terms “MSE” and “variance” are o = (R + o)/ e (10)
used depending on the context. Correspondingly, the minimum MSE (MMSE) achieved at the
3. OPTIMUM DESIGN output of the Wiener filter is [10]
E{Sé( r)} min = R( O /2_ rIFh opt * (11)

There are two methods to optimize the PE based on WM, as de-
rived in the following. Secondly, we consider the optimization of the WM which proc-
esses the imaginary part of the input. It has been assumed that the
o ) i real and the imaginary parts of the signal have equal statistics, and
The global optimization is performed to design the FIR filters tgq do the real and the imaginary parts of the noise. Therefore, the
minimize the MSEE{e*(n)} at the output of the PE. Taking the gptima filter impulse response in this WM must be disq and

partial derivative of (6) with respect koyields (see Appendix 2) the MMSEE{ 2 (n)} min at the filter output equals & &2 (N)} min

JE{e*(n} _ 2E{(S+ ) hhTS} he 2E{|)‘( N+ @r( Sk 5)} k7) Hence, the partially-optimized PE consists of an adder and two
ch WMs with equal Wiener filters. The power estimation bias in (5)

3.1 Global Optimization and Numerical Solution
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can be expressed now in terms of the MMSR(n)[3 i, at the 0.22
Wiener filters’ outputs as (see Appendix 3) o2b— — -
averager, N=5
Bias,, = —E{| &) min= 2 E{ &2 (M)} min- 12y ,omr 1
. . . . 3o Wiener filter, N=5 1
The variance in (6) can also be further derived, although its ge> o renerfer
eral expression is long and not given here. o |
£ o012 B
A simple case is studied to illustrate the partial optimum solutiol§ i
The input signal is chosen to be a constant which is an appro 3 - |
mation of narrow-band fading signals. We s#h) = Xg+jX; T -
=Xg(14) to satisfy the assumption on equal statistics. Henc °*[ =~ &eeeecN=t - ]
R(0)=2 X2, Ryg= X2E andr,= X2 e. HereE is anNxN matrix ML — Wiener filter, N=21 1
with all the elements of unity, arelis a lengthN vector with all o -5 0 5 10 15 20
the elements of unity. Substituting these into (10), the impulse r.. . . Input SNR (dB) .
sponse of the Wiener filter can be obtained in terms of the ian'tgure 3.The Wlen.e.r filters’ coefficient valudsfor constant sig-
SNR and the filter length, as nals, and the coefficient values of averagers of the same lengths.
12 T T T
h"p‘ - E}//(l+ Ny)=be. (13) \ (constant input signal with power of unity )
where the coefficient value= y/(1+Ny). This closed-form expres- ¢ [ \ il
sion can be used as a basis of the adaptive implementation of 1.§ . \ dash-dotted:  PE with averagers (N<6)
. . . . . . r N l N wi \ = 7
partially-optimized PH6]. The corresponding power estimation z \ dotted:  PE with avera;ers (N=21)
bias can be derived from (11) and (12) as § 6 \ solid:  partially-optimized PE (N=5) 1
Biasmin = —o'mzl b, (14) LlﬁJ AN dashed: partially-optimized PE (N=21)
L 4fr N B
and the variance can be derived from (6)&s g N
o ~
E{€( N} o = 0wy {1+ 2N + 2N 24 2NV J L 1+ W) *.(15)

For the sake of performance comparison, conventional average
. - -10 -8 -6 -4 -2 0 2 4
are employed since they have extremely narrow bandwidth ar Input SNR (dB)
thus are very efficient for removing noise from constant signalgigyre 4. The estimation variances achieved by the PEs with
The impulse response of a conventional averadeyds &N with  \iener filters and the PEs with averagers.
a constant coefficient valueNL/When it is used to construct a PE
for a constant input signal in noise, the resulted power estimatic 2

bias and variance can be derived from (5) and (6), respectively, 18| (constant input signal with power of unity ) :
[6] el |
@ \ dash-dotted: PE with averagers (N=5)
Biasave = O-sv/ N, and E{ ez( I')} ave — 20-1 1+ '\” / NZ . (16) f v b\ solid:  partially-optimized PE (N=5), absolute value 1
The comparison results are depicted in Figs. 3, 4, and 5. It is o"§ e N dotted:  PE with averagers (N=21)

. . . Lo 1r il
served from (13) that the Wiener filter for a constant signal irz ™ dashed: partially-optimized PE (N=21), absolute value
N

noise is ascaled averagewhich has as narrow bandwidth as that 5 *° [
of conventional averager with the same length. Hence, it is als&% 06
very efficient for noise reduction from constant signals. All the o4
coefficient values are equal bowhich is a function of input SNR 02
and filter length. The maximum value bfis 1N. As input SNR o —
decreasesh decreases whereas the coefficient value of conver ™ 8 - - -2 0 2 4

. . . . Input SNR (dB)
tional averager stays atNL(Fig. 3). This feature of the Wiener . o 5 The biases achieved by the PEs with Wiener filters (the

filter reduces efficiently the power estimation bias and variance, : "
seen from Figs. 4 and 5, or by comparing (14) and (15) with (16)8 solute value of that in (16)) and by the PEs with averagers.
is doubled. To evaluate system performance, bit error rates (BERS)
4. SYSTEM SIMULATIONS are counted by comparing 100,000 bits of #eeived signal and
htge transmitted signal. Two Rayleigh fading channels are em-
dfoyed with maximum Doppler shifts corresponding to mobile

simulator with a closed power control loop is constructed iﬁpeeds of 10 km/h and 30 km/h. Three power controliers are

. ted: Controller 1 using a partially-optimized one-step-ahead
COSSAP software environment. The system parameters are Se- .. . i
lected as carrier frequency 1.8 GHz, chip rate 1.2288 MHz, gfedictive PE I{=15), Controller 2 using a PE whose FIR filters

rate 9600 Hz, control period 0.625 seconds, and single bit pom?erF first ‘?‘egfee one-step-ahead Heinonen-Ne.uvo (H-N) polyno-
control command withtl dB mobile transmitter power level mial predictorg12] (N=15), and Controller 3 using power meas-

change step. These parameters are derived from those for gﬁ%ment (no filtering/prediction). The latter two controllers are
osen for comparisons.

Qualcomm CDMA system [11] except that the control raté

To assess the applicability of the partially-optimized PE to tl
power control in CDMA communication systems, a single-us
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Some of the simulation results are listed in Table 1. When input 527, 1994,

SNR is 0 dB, the BER obtained by using Controller 3 is as high g§] Tanskanen J., Huang A., Laakso T. I., and Ovaska S. J.
0.1284 which is nofaicceptable. By using Controllers 1 and 2, “Prediction of received signal powen CDMA cellular
lower BERs are obtained as 0.0374 and 0.0524, respectively. systems”.Proceedings of 45th IEEE Vehicular Teology
When input SNR is 10 dB, all the controllers are able to track the  ConferenceChicago, IL, July 1995, pages 922-926.

actual fading channel, with a little different performances. Whefg] Huang A.Efficient Methods for Power Estimaties- Opti-
input SNR is as high as 20 dB, the effect of background noise and mization and ImplementatiorLicentiate Thesis, Helsinki
the interference on the received signal is very small and thus can  University of Technology, Espoo, Finland, 1996.

be omitted. Hence, the BERs obtained by using all the three Cgi}  Pitas I. and Venetsanopoulos A. Nonlinear Digital Fil-
trollers are almost equal. Similar observaticas be made in the ters London, UK: Kluwer, 1990.

case of mobile speed 10 km/h. It is clearly seen that the controllg8s Wigren T. “Recursive prediction error identification using
with predictive PEs give better performances than the controller  the nonlinear Wiener model’Automatica 29:1011-1025,
with power measurement, especially when input SNR is low. The  1993.

improvements come from the noise reduction and prediction regd] Nikias C. L. Higher-Order Spectra AnalysisEnglewood
ized by the PEs. The controller employing the partially-optimized Cliffs, NJ: Prentice-Hall, 1993.

predictive PE behaves even better than the controller using the @B] Therrien C.Discrete Random Signal and Statistical Signal
with H-N predictors. ProcessingEnglewood Cliffs, NJ: Prentice-Hall, 1992.

Table 1.Bit error rates under mobile speed 30 km/h. [11] QUALCOMM Incorporation,An Overview of the Applica-

tion of Code Division Multiple Access (CDMA) to Digital
Input SNR 0dB 10 dB 20 dB Cellular Systems and Personal Cellular NetwotRscu-
Controller 1 0.0374 0.0118 0.0079 ment no. EXGO-lOOlO), 1992.
Controller 2 0.0524 0.0120 0.0079|  [12] Heinonen P. and Neuvo Y. “FIR-median hybrid filters with
Controller 3 0.1284 0.0123 0.0079 predictive FIR substructures|EEE Trans. ASSP36(6):
892-899, 1988.
5. SUMMARY

Th tationally efficient PE based on the WM has b 8- APPENDICES
e computationally efficien ased on the as been pro- ) ) )
posed for complex signals. PE output is guaranteed to be positi e,AS stated in the texwr(n)~(0,0, /2), w(n)~(0,0, /2). The
as desired for all applications requiring power estimation. Als&urtosis ofwg(n) or wi(n) is thenE{ w’, (n)}= E{ w} (n)} = 3 5. /4
the PE can be designed to be predictive for delay sensitive conff@|. The mean, variance and kurtosisagh) can be derived as
applications for which 58<21 is found adequate. Two optimum EQw(n)} = E{we(n)} + JE{wi(n)} = O
design methods have been derived, and of these the partial optimi- 5 ZR '2 ",
zation method is of practical interest. In COSSAP software envi- EUWNIT = E{ we(n) }+ E{ wi(n)} =0,
ronment, the communication system simulations have been carriggw(n)[*}= E{ w5 (n)}+2E{ w2 (n)} E{ w? (}+E{ W’ (n)}=2c2.
out to compare the behaviors of three controllers with or without
PE. The results demonstrate obvious benefits of employing PEEquation (3) can be rewritten g®) = h'Sh whereS = S =
rather than power measurement when input SNR is low, and therw)(x+w)* T is a Hermitian matrix. Taking the partial derivative
advantage of using the partially-optimized PE over using the RE y(n) with respect tch yields dy(n)/ch = (S+S')h [10]. Hence,
with conventional filters/predictors is clearly seen. In practice, ahe partial derivatives of the three terms in (6) can be derived as
adaptive algorithm can be used to adjust the partially-optimized SE{YA(N)}/ & h = E{2y(n)-dy(n)/oh}= 2E{(S+S)hhTSH},
PE to suit for actual channel variation and S[6R SE{y(n)-x(n+p) P h = E{|x(n+p) P-dy(n)/oh}
= E{Ix(n+p)[*-(S+S)h},
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