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5. Neural Networks in Mobile Power Control

As the radio channel statistics are constantly changing, and its parameters may be difficult to
measure, neural networks may offer solutions to the received power level estimation problem,
as well to a variety of other mobile communications system problems. Neural networks (NN)
are attractive mostly because of their widely used abilities to learn the signal statistics, or
other possible dependencies within the input data, if the network is properly constructed. This
learning can be designed to be done either off-line with known input data, or on-line, i.e., the
neural network can be made adaptive. A real-time adaptive neural network is naturally a
computationally heavy solution but its advantages are also obvious.

Neural networks [Fre91], [Gao95] are capable of learning relations between input data and
desired output data. In the context of this Thesis, neural networks could be used either in the
actual prediction, or to estimate signal properties. In the former case, the input data to the
network is a received power level history, and the output is the predicted power level. In the
latter case, the same input is associated, for example, with the mobile speed, or with the length
of the near-optimum polynomial predictor. In any case, the network has to be trained with
either a known training set of input and output data covering the whole range of possible
channel conditions, or with a suitable channel model. Also, as the polynomial prediction has
been shown to be effective for power prediction, a representative set of polynomials could
also be employed in the training. In operation, online adaptation can also be used regardless of
whether the NN was also trained off-line or not.

5.1 Introduction to Neural Networks

One example of a possible NN topology [Fre91] is shown in Fig. 5.1. No processing is done
in the input layer but the inputs are only distributed to the inputs of the computing elements in
the next layer, which may be either a hidden layer, or the output layer. A possible hidden
layer, or output layer, computing element, i.e., a neuron, is illustrated in Fig. 5.2. The neuron
computes a weighted sum s of all its inputs xi, and applies an activation function f to the sum.
Result is then either a network output, or a hidden layer neuron output which is distributed to
all the neurons in the next layer. Letting O denote an output of a neuron, it is given by
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Fig. 5.1. A neural network with K=6 inputs
and L=2 outputs.
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Fig. 5.2. A hidden layer or an output layer computing
element with inputs xi, weights wi, an activation function

f, and output O. In the first hidden layer M=K.
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The activation function f may be, for example, a linear function, or a sigmoid function
[Fre91]. Activation function is used to control the behavior of the outputs and intermediate
results of the network to improve learning and to achieve desired outputs. The network in Fig.
5.1 is taught [Fre91], for example, by presenting a training input vector to the network inputs
and calculating the outputs. The outputs are compared to the known desired outputs, and the
errors are propagated down the network in the fractions according to the weights in each
computing element. The weights are then updated with the backward propagated errors so that
if the same input is presented to the network again, the output is closer to the desired output as
before the training took place. This training approach is called error backpropagation [Fre91].
Training may also be continued online if desired. The network topology can either be selected
by trial-and-error method, or an algorithmic optimization method may be used [Gao96],
[Gao97a], [Gao97c]. As the intention of this text is to give the reader an idea of the
possibilities of the NNs, let us not go now any deeper into NN training methods, or to
topology optimization.

Generally, the NN topology has been found by trial and error methods, or by reducing the size
of the NN until performance degradation is seen. The Gao brothers have successfully applied
a criteria of predictive minimum description length (PMDL) [Ris84] to NN structure
optimization [Gao96], [Gao97b], [Gao97c]. Their NN work concerning mobile power control
is short described in the next section.

As nonlinear systems, NNs do not posses frequency responses in traditional sense. Even so, it
is very insightful for a NN designer to estimate the properties of the networks trained, or under
training. This also aids the designer in applicability considerations. In [Var97], input
dependent frequency response estimates are obtained for a NN originally designed for
Rayleigh fading prediction. Responses are estimated for sinusoidal [Nee90] and WGN input
signals, and also time domain behaviors for step and triangular signals are observed.
Similarities of the frequency response estimates from different input reflect good
generalization capabilities of the NN.

5.2 Examples of Neural Networks in Mobile Power Control

In [Gao96], [Gao97c] a hybrid neural network based predictor, Fig. 5.3, is constructed for
Rayleigh fading prediction. With online adaptation, the NN structure in Fig. 5.3, exhibits 3 to
5 dB better SNR gains than those obtained using H-N predictors but naturally the adaptive NN
structure is computationally severely more expensive than the H-N predictor solutions. In
[Gao96], [Gao97c] structures of both NNs, functional link NN, and multilayer perceptron,
Fig. 5.3, are optimized using the PMDL principle. The functional link NN is essentially an
adaptive FIR fed from a tapped delay line. Output of the functional link NN, Fig. 5.3, in turn
feeds the tapped delay line input of the multilayer perceptron.

In [Gao97a] a Modified Elman Neural Network (MENN) based DS/CDMA closed loop
power control system is presented. The MENN is shown in Fig. 5.4. This network type has the
advantage of having a context layer. In the context layer, no actual processing is done but the
nodes act as inner memory units storing the “context” in which the network is currently
operating. Due to the internal context nodes and adaptive connection weights w, the structure
is advantageous in identifying dynamic systems without knowledge on their exact order
[Gao97a]. Also, a multiple model control system is sketched that consists of several system
model identified off-line [Gao97a]. Switching between the models can be done, for example,
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based on the mobile speed estimates. The system
also includes a gain control subsystem which is
necessary for obtaining quick power control
responses when abrupt environmental changes
occur, say when a mobile suddenly appears from
behind a building creating a greatly improved
radio propagation channel with a new LOS path
between the mobile and the base station. In
[Gao97a], MENN was able to reduce the deep
fading to allow for successful communications
also during some fades. The power control
system presented in [Gao97a] is actually
parametrized for deep fade reduction, and as such
is thus not exactly suited for obtaining constant,
and minimum acceptable, received power levels
at the base station but the structure itself has great
potential for the power control applications.
Two other interesting concepts are using optimal
neuro-fuzzy predictors [Gao97b], and a temporal
difference method-based prediction [Sut88],
[Gao98] in mobile power control systems. In
[Gao97b], structure of the neuro-fuzzy predictor

is also optimized using the PMDL principle [Ris84]. The temporal difference-method based
predictor [Gao98] is also based on MENN network structure, Fig. 5.4, while in contrast with
the common direct signal value prediction, the actual function is designed for predicting the
probability of deep fade incidents several steps ahead [Gao98]. The basis of the temporal
difference method is to consider the difference between two successive predictor outputs as
the prediction error [Sut88], [Gao98].
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Fig. 5.4. Basic structure of a MENN of the size, selected for example only,  K=4 inputs from a tapped delay line,
L=2 outputs, three hidden layer and C=3 context layer neurons. Adopted from [Gao97a].

Possibilities of applying NNs to power signal prediction are numerous. NNs can be used to do
the actual prediction, either direct power prediction, or prediction in components. They can be
applied to radio channel modeling [Ibn97], or to adaptive channel equalization [Kec94]. In
[Miy93] NN systems has been suggested for CDMA MUD. Furthermore, they could be used
as signal derivative detectors, or to directly output the momentary predictor parameters. These
application possibilities make NNs an interesting research topic in the field of power control
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Fig. 5.3. A hybrid NN-based predictor structure
(of an arbitrary size, for example only).
Adopted from [Gao97c].
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systems. One could even think of a pure neural network power controller that would directly
generate the power control command to be sent to the mobile unit [Gao97a].


