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Power Prediction in Mobile Communication Systems
Using an Optimal Neural-Network Structure

Xiao Ming Gao, Xiao Zhi Gao, Jarno M. A. Tanskanen, and Seppo J. Ovaska,Senior Member, IEEE

Abstract—This paper presents a novel neural-network-based
predictor for received power level prediction in direct sequence
code division multiple access (DS/CDMA) systems. The predictor
consists of an adaptive linear element (Adaline) followed by a
multilayer perceptron (MLP). An important but difficult prob-
lem in designing such a cascade predictor is to determine the
complexity of the networks. We solve this problem by using
the predictive minimum description length (PMDL) principle
to select the optimal numbers of input and hidden nodes. This
approach results in a predictor with both good noise attenuation
and excellent generalization capability. The optimized neural
networks are used for predictive filtering of very noisy Rayleigh
fading signals with 1.8-GHz carrier frequency. Our results show
that the optimal neural predictor can provide smoothed in-phase
and quadrature signals with signal-to-noise ratio (SNR) gains
of about 12 and 7 dB at the urban mobile speeds of 5 and 50
km/h, respectively. The corresponding power signal SNR gains
are about 11 and 5 dB. Therefore, the neural predictor is well
suitable for power control applications where “delayless” noise
attenuation and efficient reduction of fast fading are required.

Index Terms— Mobile communication systems, neural net-
works, neural networks structure optimization, power prediction,
predictive minimum description length (PMDL) principle,
Rayleigh fading signal.

I. INTRODUCTION

A S THE user capacity of a direct sequence code division
multiple access (DS/CDMA) system is inherently inter-

ference limited, it is of paramount importance to keep the
transmission power of each individual mobile user as low as
possible while also receiving the signals of all users at an equal
and constant power level at the base station [39]. This is crucial
in the transmission from mobiles to a single base station,
where all the mobile units need to be controlled by the base
station to overcome the near–far effect. The feedback power
control procedures allow the base station to send power control
commands to either lower or raise independently each user’s
transmitting power level to maintain the received powers
approximately constant and equal. A power control loop with
predictive power level estimation is illustrated in Fig. 1.
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Fig. 1. Power control loop in a CDMA system.

In a recent paper [38], a new power prediction scheme was
introduced for compensating the harmful delays in the closed
power control loop. In addition to delay compensation, the
linear power predictor also bandlimits the noisy power signal
and, therefore, both reduces its noise content and smoothens
out fast fading. However, the noise attenuation capabilities of
the computationally efficient linear schemes are very limited
under low signal-to-noise ratio (SNR). A neural-network-based
nonlinear predictor was proposed in [25] for improved noise
suppression capabilities. On the other hand, the structure of
the proposed neural predictor is not optimal and its learning
algorithm is not adaptive.

In this paper, we present an optimal neural-network-based
predictor for efficient noise reduction. Thehybrid neural
predictor consists of an adaptive linear element (Adaline)
and a multilayer perceptron (MLP) [34]. However, when
applied directly to the signal heavily corrupted by additive
noise, a neural network with excessive numbers of weights
and nodes may easily learn the noise component rather than
solely the primary signal. This is typically the case in practice
when the numbers of these parameters are often chosen by
trial and error, based on vague subjective optimization. To
tackle this problem, we apply an information criterion-based
model selection principle, the predictive minimum description
length (PMDL) method [28], to select optimal neural-network
structures [20], [11], [12]. Thehybridneural predictor structure
is first optimized off-line. The optimized predictor is then
used with on-line adaptationfor predictive filtering of the
noisy power signal, the statistical characteristics of which may
change drastically with time.

The simulation results demonstrate that the neural predictor
offers higher noise attenuation than the earlier linear predic-
tor. Besides, this adaptive neural predictor has considerably
wider prediction bandwidth. The linear polynomial predictors

1045–9227/97$10.00 1997 IEEE



GAO et al: POWER PREDICTION IN MOBILE COMMUNICATION SYSTEMS 1447

with wide prediction bandwidth evidently have poor noise
attenuation [38].

This paper is organized as follows. In Section II, we first
review the applied mobile radio channel model, the noise type,
and the linear prediction schemes. The neural-network-based
hybrid predictor is then introduced. In Section III, we give
an overview of different criterions for neural-networks selec-
tion. The stochastic complexity and its approximation, PMDL
principle, are introduced in Section IV. In Section V, the appli-
cation of PMDL is formalized and used for our neural predictor
optimization. The optimized neural predictor is then applied
to predict noisy power signals in a Rayleigh fading channel,
and the simulation results are given in Section VI. Finally, we
conclude this paper with a few remarks in Section VII.

II. NOISY FADING POWER SIGNAL

AND POWER PREDICTION SCHEMES

A. Channel Model and Noise

A detailed description of the modeling of a Rayleigh fading
radio channel and noise was given by Jakes in [15]. In
this paper, our signal simulator assumes the superposition of
plane waves whose arrival angles are uniformly distributed.
Different plane waves are associated with different Doppler
shifts ranging from the minimum to the maximum specified
by the mobile speed. The simulator consists of low-frequency
oscillators at these Doppler shift frequencies, and the fre-
quency distribution results in a satisfactory approximation of
the Rayleigh fading. The in-phase and quadrature components,

and , respectively, are formed by summing the appropri-
ately weighted oscillator outputs. After multiplication with the
corresponding carrier components, the signal is centered at
the carrier frequency. Our carrier frequency was 1.8 GHz,
the sampling rate of the baseband equivalent in-phase and
quardrature components was 1 kHz, and the applied vehicle
speeds were 5 and 50 km/h (a “high speed” channel in an urban
environment), respectively. The Rayleigh fading simulator is
illustrated in Fig. 2.

The noise used was zero mean white Gaussian noise that
was independently added to the in-phase and quadrature com-
ponents. In this paper, we study the performance of the neural
predictor for the prediction of noisy Rayleigh fading signals
in a “bad” channel, where the component input SNR is 0 dB.

B. Linear Prediction Schemes for Noisy
Fading Signal Prediction

The linear predictors often employed for predictive filtering
of power signals are theHeinonen–Neuvo(H-N) FIR predictor
[13] and therecursive linear smoothed Newton(RLSN) pre-
dictor [23]. Due to their recursive nature, the RLSN predictors
can offer much better noise attenuation than the H-N predictors
with equal computational burden. Both of these predictors are
based on a low-degree polynomial signal model.

There exist two power prediction schemes: 1) direct pre-
diction of the noisy power signal which has been calculated
from the noisy in-phase and quadrature components and 2)
computing the predictive estimates of the components sep-

Fig. 2. Rayleigh fading channel simulator. Oscillatorm is the maximum
Doppler shift frequency oscillator. Oscillator 1,� � �, Oscillator 8 are the
Doppler shift frequency oscillators with appropriate frequency distribution,
and Oscillatorc is the carrier oscillator. Appropriate oscillator phase shifts are
obtained by the choice of coefficientsfS1; � � � ; S8g; andfC1; � � � ; C8g: M
is the carrier modular.

arately and obtaining the power estimate by summing the
squared values of these components. In many cases, however,
the noise attenuation capability of the fixed linear methods is
not satisfactory [38].

C. Neural-Network-Based Nonlinear Power Predictor

Our neural-network-based predictor is shown in Fig. 3. Be-
cause of its remarkable nonlinearity, the MLP will harmfully
learn thenoise componentwhen applied directly to the input
signal under low SNR. Therefore, our predictor consists of two
modules. An Adaline prefilter is used in Module-1. The output
of the Adaline is then fed to the input of Module-2, where an
MLP with one hidden layer is used. The hyperbolic tangent
sigmoid functions are used as the nonlinear transfer functions
of the hidden nodes, and the transfer function of the output
node is linear. The single node in the output layer represents
one-step-ahead prediction. A tapped delay line type input stage
is employed to make it possible to filter out additive noise.

There are many ways to maximize the predictor’s gener-
alization and noise attenuation capabilities. From the network
structure’s point of view, we may select the optimal number of
input and hidden nodes, or assume partial connections between
different nodes and apply some pruning methods to eliminate
very small weights in order to simplify the network structure
[8], [9]. Another approach could be the use of a special training
method such as early stopping [40], target smoothing [24],
or training with jitter [14]. In this paper, we select explicitly
the optimal number of input and hidden nodes of the neural
predictor.

III. N EURAL-NETWORK SELECTION

Although the multilayer perceptron neural network is a
widely used network paradigm for solving nonlinear mapping
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Fig. 3. The structure of thehybrid neural-network-based predictor.

problems, there is no general criterion for selecting the optimal
structure for a specific problem. It is already known that
a neural network with one hidden layer of sigmoidal units
can approximate any continuous mapping arbitrarily well,
provided that there are enough neurons in the hidden layer
[7]. However, the performance for generating accurate outputs
for the training inputs competes against predicting appropriate
outputs for unknown inputs. For instance, in the case of a
multilayered network, when we add some nodes in the hidden
layers, the network can produce more precise outputs for the
training data, but it may also give worse outputs for unseen
data. Further, networks with excessive number of parameters
or weights have a higher probability of reaching local minima
during the training procedure, and this makes the reproduction
even harder. Hence, it is important to find the the simplest
possible network structure, i.e., use the minimum number of
weights and nodes, without any degradation of performance.

Many model selection schemes have been proposed for
determining the network structure for a particular application
[10], [19], [21], [26]. For example, a pruning-based approach,
called optimal brain damage, was introduced in [6]. The
aim of this method is to delete some weights that have the
smallest values. However, because there are many complicated
connections between the nodes, and those weights with smaller
values may be very sensitive to the final solution, this method
is not always feasible and some additional judgments should
be made. Another method often used to optimize the network
structure is by means of local connections and weight sharing
[22]. In this scheme, the individual nodes in the hidden layer
possess only a local region of inputs so that the number
of weights can be reduced. Besides, there exist some other
approaches based on the regularization technique, e.g., weight
decay and weight-elimination [40]. The idea of these methods
is to begin with a network that has an excessive number
of parameters for the given problem. Each parameter in the

network is associated with a cost function of the form

target prediction

(1)

The first term in (1) is the sum of the squared errors over the
set of observations The second term is a term penalizing
model complexity, where is a weight, and are freely
selected parameters. For a large absolute weight value,,
the cost is approximately equal to. If a given performance on
the training set can be obtained with fewer weights, this cost
function will encourage the reduction and eventually eliminate
as many weights as possible. The advantage of this method is
that different structures and number of parameters need not be
explicitly explored. However, the main difficulty with general
regulation techniques is that when forcing smoothness by just
adding some penalty terms, we may lose valuable information,
e.g., in abruptly changing parts of the signal.

The above mentioned criteria are specific for neural net-
works. Besides, there are some general methods that can be
used for model selection with various different model types.
For example, there are many ways in which model selection for
time series analysis can be done, which have been discussed by
Shibata [36]. A variety of statistical tests have been developed
for testing different models. However, hypothesis testing may
not be a practical approach, because it involves a large number
of tests and significance levels. Another approach is to find
a criterion which balances theover-fitting and under-fitting
characteristics of the model. The general form of such a
criterion is a cost function

(2)

Here is the number of observations and is the es-
timation of the error variance. The second term is
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some monotonous function dependent on the number of free
parameters . It describes a cost for the model complexity
and can be considered as a penalty term. The choices of

determine the characteristics of the criterion. Several
different forms have been suggested, e.g., by Akaike [2],
Schwartz [35], and Rissanen [27]. The Akaike information
criterion (AIC) has been widely used in the literature for
model selection, and there exist some attempts to apply it to
select the neural-network structure [10]. However, the AIC
was shown to be inconsistent [16], and it has a tendency to
overfit models. One of the most interesting model selection
methods is the minimum description length (MDL) principle
[27], which has been proven consistent and used successfully
in the analysis of autoregressive (AR) and autoregressive
moving average (ARMA) models. Recently, there have also
been some attempts to apply this criterion to neural-network
size selection, and the results show for some simple problems
that this method can succeed in finding the optimal network
structure [17]. The predictive MDL, where the coding is done
in a predictive manner, is presented in this paper, and applied
to neural-networks complexity selection.

IV. STOCHASTIC COMPLEXITY AND PMDL PRINCIPLE

A. Probabilistic Model, Code Length,
and Stochastic Complexity

Inspired by the algorithmic notion of complexity [18], [37],
[4] as well as Akaike’s work, Rissanen proposed the shortest
code length for the observed data as a criterion for model
selection [27]. In his subsequent papers [29]–[31], this gradu-
ally evolved into stochastic complexity. The word “stochastic”
means that the models, relative to which the coding ought to be
done, are probabilistic rather than being defined by programs
in a universal computer as in the algorithmic theory.

The objective of any modeling is to learn the behavior of
the machinery generating the observations. Modeling brings
together two important ideas: coding and learning, where cod-
ing is synonymous with description, and learning is virtually
synonymous with extraction of properties from data. The word
description presumes the existence of a language, in which the
properties can be expressed. If by a language we mean a set of
appropriately formed strings of recognizable symbols, we may
talk about the length of a description. The short description, in
particular, the shortest one, plays a special role. Therefore, it
seems worthwhile to examine models and modeling problems
in terms of coding systems.

Rissanen has constructed a family of probability distribu-
tions from the code lengths in a system so that they define
a random process or an information source. This allows the
definition of a general notion of complexity of a data string
relative to such a random process. Based on this, we can
construct a coding system out of a family of parametrically
defined probability distributions. Such a family also results if
we begin with a parametric predictor together with a prediction
error measure, so that prediction becomes a form of coding,
and it starts looking like “all models are probabilistic.” It is

precisely these distribution families that the basic idea of the
shortest code length has led to concrete applications.

An important coding system with many codes of each string
is defined by a family of parametric distributions, where the
prior distribution may be replaced by a prefix code. Then,
let be the set of all finite binary strings over the binary
alphabet. Now, can be partially ordered by the prefix
property: if is a prefix of . A coding system can
be defined to be a function , where the domain

is a subset of , and is the set of all finite strings
over the set , which is the alphabet of the symbols,
and . Any member of such that

is said to be a code word of the string. The
length of is the number of binary symbols in it, and written
as . Next, let denote the inverse image of under
the decoding map , i.e., the set of all code words of all
data strings of length . Let denote the set of the minimal
elements of under the partial order, and let denote
the subset whose elements get decoded as. It can be seen
that regardless of the number of elements in the set ,
the Kraft-inequality holds [5]

(3)

Define recursively in the length of the string, , with
the following property:

(4)

where denotes the string of length formed
by concatenating with the symbol . It is clear that the
probability function satisfies the marginality conditions for
a random process

(5)

Then, the complexity of is defined, relative to the coding
system , to be

(6)

For applications, the most important coding system is ob-
tained from a class of probabilistic models

(7)

where is a subset of the -dimensional Euclidean space
with nonempty interior, in which the number of parameters
may range over all natural numbers [29]. is the so-called
“prior” distribution. Hence, there are “free” parameters. It
must also be required that each distribution satisfy the
marginality conditions for a random process. With a small
abstraction, and can be considered as densities
which, if the observations consist of truncated numbers, assign
probabilities to them. Similarly, for a strict coding inter-
pretation, the parameters which are numerical data, may be
truncated to some precisionas well. Then a prefix code
can be constructed, which assigns to each truncated parameter
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a vector, say , and a code word with length with
the least integral upper bound of

(8)

Similarly, another prefix code can be constructed, which
assigns to the data the code word of length ,
given by the least integral upper bound of

(9)

where is the precision of each data item. The function
, which decodes out of the concatenated code words

, defines a coding system. If the generally
small excess of the integer valued code length over the
negative logarithms of the probabilities is ignored, we obtain
by letting the precision tend to zero

(10)

which by a further limiting process defines a marginal density
for the data. Hence, with the abstraction in terms of

densities, (6) can be converted into the following form:

with

(11)

which is called the stochastic complexity of, relative to the
model class .

Although the model class includes the so-called “prior”
distribution , its role in expressing prior knowledge is not
different from that of . In fact, the former need not be
selected at all, because it is possible to construct it from the
model class as a generalization of Jeffrey’s prior [32]. Also,
particularly important pairs of distributions of and
are the so-called conjugate distributions, because for them the
integral (11) can be evaluated in a closed form [31].

B. The Predictive Minimum Description Length Principle

The stochastic complexity (11) is an abstract quantity in-
volving no specific model. In practice, however, it is the
model that we want. There are various coding schemes,
each of which gives a code length as an approximation of
stochastic complexity, and thus provides us a model selection
criterion. One of those approximations is the predictive min-
imum description length principle, where the coding is done
in a predictive manner. By predictive coding we mean that
the conditional density of the possible values of the “next”
observation can be modeled as

(12)

where is obtained by an estimation algorithm
for the parameter with components. Such a density
allows us to encode the observation with the code length

.

Generally speaking, for example, in curve fitting and re-
lated problems, the models are not primarily represented in
terms of a distribution. Rather, we can use a parametric
predictor as in the case of neural networks.
Let be the prediction output of the network,

the input, and the array of all the
weights as parameters. In addition, there is a distance function

to measure the prediction error ,
where is the target output. Such a prediction model can
be immediately reduced to a probabilistic model in which the
optimization of causes the optimization of. In this case,
we define the conditional Gaussian distribution

(13)

where . The density (13) is then extended
to a sequence by multiplication, and the total code length of

observations can be expressed as

(14)

After having fixed the model class, we have the problem of
estimating the shortest code length obtainable with this class of
models. Let and be written briefly as and .
They are themaximum likelihoodestimates, i.e., the parameter
values which minimize the code length
for the past data. In particular

(15)

Therefore, the predictive code length for the data is given by

(16)

in which is a suitable initial value. The choice of is
unimportant, because it affects only the first value in the sum.
In this form, themodel cost, i.e., the code length needed to
encode the model appears only implicit. That, however, cannot
be avoided and is indeed included in this criterion. This can
be demonstrated by rewriting (16) in another form

(17)

where the first term is the minimized code length of (14),
obtained when the parameters are replaced by the maximum
likelihood estimates. But the data could not be decoded if the
decoder did not know the estimated parameters with which the
code was designed. Hence, the induced conditional density for
each observation given the past,

(18)

contributes themodel cost, which is represented by the sum
in (17). represents the neural networks’ parameters, i.e.,
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weights and biases. That cost term may be regarded as the
accumulated errors when the model parameters are estimated
from the past data.

Unlike the two-passnonpredictiveMDL principle, in which
an explicitly calculated code length for the parameters is added
to the negative logarithm of the likelihood function, the PMDL
algorithm has the great advantage that the network parameters
need not be encoded, and they can be calculated from the
past string by an algorithm. The model costs are added to
the prediction errors, and theover-fittingandunder-fittingare
penalized automatically. Applications of the PMDL principle
in selecting optimal neural network for time series prediction
can also be found in [12] and [20].

V. NEURAL-NETWORK PREDICTOR

OPTIMIZATION USING THE PMDL PRINCIPLE

In this section, we investigate the applications of the PMDL
principle to the optimization of a neural-network predictor in
a noisy power signal prediction.

The structure of ourhybrid predictor, shown in Fig. 3, is
determined by optimizing separately both the Adaline and
MLP using the PMDL principle. The optimal number of input
nodes of Module-1 is first determined by using a simulated
power signal. The selection of Module-2 then uses the output
of the optimized Module-1. The optimizations of these two
modules are similar, and therefore only the latter is introduced
in details.

Suppose that the MLP has input nodes
and hidden nodes

Our problem is now to optimize and Here
are the sample values of the time series to

be predicted. Therefore, we have

(19)

In order to apply the PMDL principle, we divided
into consecutive segments of

length as a parameter. In casedoes not divide , the last
segment is shorter. For each network candidate withinputs
and hidden nodes, we first train the network using ahybrid
optimization technique to minimize the quadratic function [3]

(20)

With the so obtained optimal weights and biases from (20),
we use (19) to predict the points

in the subsequent th segment to
obtain the squared “honest” prediction error

(21)

Here, by “honest” we mean that the parameters of the
predictor are only determined by the past data. The

predictions of the data points in the very first segment are
taken as zero. Hence the predictive code length of the

th segment can be calculated by (16), where the lower
and upper limits in the sum are replaced byand ,
respectively, and in the last term is replaced by the segment
length This procedure is repeated until the code lengths of
all the segments are found. Adding the total predictive code
lengths together, we get the accumulated code length

(22)

where is the code length of theth segment. In case does
not divide , the code length of the last segment should be
added to (22). Then, we calculate the per symbol code length
as

(23)

The network with the minimum indicates the optimal
predictor structure.

Due to the local minima problem with neural networks,
minimization of (20) must be handled carefully. If a de-
terministic optimization algorithm, such as the conventional
backpropagation is used, the above procedures should be
repeated many times, each of which has random initialization
values. The final code length of each model is the averaged
code length of all the experiments. If a stochastic search
algorithm, such as the simulated annealing algorithm [1], is
used, thetemperaturemust be decreased as slowly as possible
so that a global minimum, or at least a relatively good local
minimum could be found.

VI. SIMULATION RESULTS

A. Off-Line Optimization of Neural-Network
Predictor Structures

Due to the time-varying and mobile speed-dependent char-
acteristics of the power response of the Rayleigh fading
channel, it is not practical to optimize the predictor structure
for a power signal covering the whole speed range. Therefore,
we only consider the optimization of the network structures
under two extreme conditions when the vehicle speed is 5 and
50 km/h with component input SNR of 0 dB. The additive
noise used is zero mean white Gaussian noise.

The optimization of our neural-network predictor consists
of two steps. First, Module-1 is optimized with the PMDL
principle using input samples from
a segment of a received power signal, as shown in Fig. 4.
This time series has 1500 samples and the segment length
selected here is 125. The predictive code lengths of all model
candidates in Module-1 are given in Fig. 5, with component
input SNR of 0 dB at the speed of 5 km/h. It is easy to find that
the optimal Adaline has seven input nodes. After the optimal
structure of the Adaline is determined, the optimization of
the MLP in Module-2 is then made in the same way using
the output of Module-1. Under the same component SNR
and speed, the code lengths of different models of MLP are
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Fig. 4. A segment of in-phase component under SNR of 0 dB along with
the noiseless signal at the speed of 5 km/h.

Fig. 5. Code lengths of different models of Adaline at the speed of 5 km/h
with component input SNR of 0 dB.

given in Fig. 6. In general, a large number of hidden nodes is
rarely used because the computational complexity will increase
drastically. Hence, we limit the search to a small range, i.e.,

. The MLP with 11 input nodes and two hidden
nodes turns out to be the best structure.

Similarly, at the speed of 50 km/h, the power signal shown
in Fig. 7 is used for optimization. The code lengths of different
models of Adaline and MLP are given in Figs. 8 and 9,
respectively. It is easy to find that the optimal Adaline has
22 input nodes and the MLP has 18 input nodes and only one
hidden node. The optimized Adaline and MLP make up our
optimal neural predictor.

B. Real-Time Prediction with On-Line Adaptation

As the fading signals are highly nonstationary, which is the
case in mobile communication applications, the learning must
be adaptive. In our predictor, the adaptation of the Adaline
in Module-1 uses the computationally efficient Widrow–Hoff
(LMS) algorithm [41], and the MLP in Module-2 uses an

Fig. 6. Code lengths of different models of MLP at the speed of 5 km/h
with component input SNR of 0 dB.

Fig. 7. A segment of in-phase component under SNR of 0 dB along with
the noiseless signal at the speed of 50 km/h.

on-line backpropagation algorithm with a moving window.
This allows the predictor to adapt new data quickly while
adequately forgetting the old data [33].

The structure of ourhybrid predictor is first optimized
off-line using the procedures described above. The obtained
optimal predictor is then used for prediction of in-phase and
quadrature components of the fresh demodulated fading signal
separately. At the speed of 5 km/h with in-phase component
under SNR of 0 dB, the output of the predictor together with
the noiseless in-phase component is shown in Fig. 10. At the
speed of 50 km/h with in-phase component under SNR of 0
dB, the corresponding results are given in Fig. 11. The results
with the quadrature component are similar.

We use the measure

SNR SNR SNR (24)

as the quantitative measure of the prediction performance. The
optimal neural predictor can produce about 12-dB SNR gain
under the component SNR of 0 dB at the speed of 5 km/h.
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Fig. 8. Code lengths of different models of Adaline at the speed of 50 km/h
with component input SNR of 0 dB.

Fig. 9. Code lengths of different models of MLP at the speed of 50 km/h
with component input SNR of 0 dB.

Similarly, about 7-dB SNR gain can be obtained at the speed
of 50 km/h.

The prediction of received power signal can be obtained by
summing the squared predictions of in-phase and quadrature
components. The SNR gain of power signal can also be
computed using (24). Thus, the obtained SNR gains are 11
and 5 dB at the low and high speed, respectively.

VII. CONCLUSIONS

In this paper, we proposed ahybrid neural predictor for
received signal power prediction needed in high performance
DS/CDMA systems. In order to get good noise attenuation
and generalization capability, we used the PMDL principle to
select the complexity of our neural predictor. The simulations
demonstrated that the PMDL method indeed provided us
valuable guidance in selecting the optimal structure of the
predictor. The results show that the optimized neural predictors

Fig. 10. The prediction output of noisy in-phase component under input SNR
of 0 dB at the speed of 5 km/h along with the noiseless signal.

Fig. 11. The prediction output of noisy in-phase component under input SNR
of 0 dB at the speed of 50 km/h along with the noiseless signal.

can give us a significant SNR gain at low speed while the
improvement at high speed is clearly smaller. Notice that, in
this paper, the neural predictor was optimizedoff-line using
the PMDL method together with ahybrid global searching
algorithm. However, in practice, when the optimized predictor
is used for on-line prediction, one must make a tradeoff
between the sampling rate and adaptation speed. Although the
neural predictor has higher computational complexity than the
conventional linear approaches, it is feasible from the applica-
tion point of view, because the required sampling rate is only
1 kHz. Therefore, custom VLSI and DSP processors are the
potential implementation platforms of our adaptive predictor.
The presented neural predictor is a natural preprocessing stage
for advanced fuzzy and neural power controllers.
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