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Power Prediction in Mobile Communication Systems
Using an Optimal Neural-Network Structure
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Abstract—This paper presents a novel neural-network-based
predictor for received power level prediction in direct sequence
code division multiple access (DS/CDMA) systems. The predictor

and excellent generalization capability. The optimized neural
networks are used for predictive filtering of very noisy Rayleigh
fading signals with 1.8-GHz carrier frequency. Our results show
that the optimal neural predictor can provide smoothed in-phase Fig. 1. Power control loop in a CDMA system.
and quadrature signals with signal-to-noise ratio (SNR) gains
of about 12 and 7 dB at the urban mobile speeds of 5 and 50
km/h, respectively. The corresponding power signal SNR gains  In a recent paper [38], a new power prediction scheme was
are about 11 and 5 dB. Therefore, the neural predictor is well jntroduced for compensating the harmful delays in the closed
suitable for power control applications where “delayless” noise power control loop. In addition to delay compensation, the
attenuation and efficient reduction of fast fading are required. . . . . .
linear power predictor also bandlimits the noisy power signal
Index Terms—Mobile communication systems, neural net- and, therefore, both reduces its noise content and smoothens
works, neural neworks structure optimization, power prediction, ¢+ tat fading. However, the noise attenuation capabilities of
predictive minimum description length (PMDL) principle, ; - . .
Rayleigh fading signal. the computgtlonally efﬂuent’ linear schemes are very limited
under low signal-to-noise ratio (SNR). A neural-network-based
nonlinear predictor was proposed in [25] for improved noise
. INTRODUCTION suppression capabilities. On the other hand, the structure of
S THE user capacity of a direct sequence code divisiéhe proposed neural predictor is not optimal and its learning
multiple access (DS/CDMA) system is inherently interalgorithm is not adaptive.
ference limited, it is of paramount importance to keep the In this paper, we present an optimal neural-network-based
transmission power of each individual mobile user as low &sedictor for efficient noise reduction. Thieybrid neural
possible while also receiving the signals of all users at an eqiéedictor consists of an adaptive linear element (Adaline)
and constant power level at the base station [39]. This is crucéld a multilayer perceptron (MLP) [34]. However, when
in the transmission from mobiles to a single base statiodpplied directly to the signal heavily corrupted by additive
where all the mobile units need to be controlled by the bageise, a neural network with excessive numbers of weights
station to overcome the near—far effect. The feedback pov@td nodes may easily learn the noise component rather than
control procedures allow the base station to send power congelely the primary signal. This is typically the case in practice
commands to either lower or raise independently each useten the numbers of these parameters are often chosen by
transmitting power level to maintain the received powei§ial and error, based on vague subjective optimization. To
approximately constant and equal. A power control loop witidckle this problem, we apply an information criterion-based
predictive power level estimation is illustrated in Fig. 1. ~ model selection principle, the predictive minimum description
length (PMDL) method [28], to select optimal neural-network
_ , , _ structures [20], [11], [12]. Thlybrid neural predictor structure
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with wide prediction bandwidth evidently have poor noise — I

attenuation [38].
This paper is organized as follows. In Section II, we first
review the applied mobile radio channel model, the noise type :

) o ! ! S Oscillator 2 C
and the linear prediction schemes. The neural-network-based -
hybrid predictor is then introduced. In Section lll, we give + : +
an overview of different criterions for neural-networks selec- .
tion. The stochastic complexity and its approximation, PMDL S Oscillator 8 C
principle, are introduced in Section IV. In Section V, the appli- -
cation of PMDL is formalized and used for our neural predictor S C
optimization. The optimized neural predictor is then applied ~ "

to predict noisy power signals in a Rayleigh fading channel,
and the simulation results are given in Section VI. Finally, we .

: . . . ’ 5 90 deg. Oscillator M1 X
conclude this paper with a few remarks in Section VII. ° H ¢ -

Il. NoIsy FADING POWER SIGNAL
AND POWER PREDICTION SCHEMES

Output

A. Channel Model and Noise Fig. 2. Rayleigh fading channel simulator. Oscillater is the maximum

. L . . ._Doppler shift frequency oscillator. Oscillator 1;-, Oscillator 8 are the
A detailed description of the modeling of a Rayleigh fadingoppier shift frequency oscillators with appropriate frequency distribution,

radio channel and noise was given by Jakes in [15]. kmd Oscillator: is the carrier oscillator. Appropriate oscillator phase shifts are
this paper, our signal simulator assumes the superposition°giined by the choice of coefficients’;. - . S}, and{C.---. Cs}. M

. . S |a the carrier modular.
plane waves whose arrival angles are uniformly distributed.

Different plane waves are associated with different Doppler o } )
shifts ranging from the minimum to the maximum specifie@@t€ly and obtaining the power estimate by summing the

by the mobile speed. The simulator consists of low-frequen&fluared values of these components. In many cases, however,
oscillators at these Doppler shift frequencies, and the frihe noise attenuation capability of the fixed linear methods is
quency distribution results in a satisfactory approximation &t satisfactory [38].
the Rayleigh fading. The in-phase and quadrature components, ) _
z. andz,, respectively, are formed by summing the approprp- Neural-Network-Based Nonlinear Power Predictor
ately weighted oscillator outputs. After multiplication with the Our neural-network-based predictor is shown in Fig. 3. Be-
corresponding carrier components, the signal is centeredcatise of its remarkable nonlinearity, the MLP will harmfully
the carrier frequency. Our carrier frequency was 1.8 GHigarn thenoise componenwhen applied directly to the input
the sampling rate of the baseband equivalent in-phase a&ighal under low SNR. Therefore, our predictor consists of two
quardrature components was 1 kHz, and the applied vehiatl@dules. An Adaline prefilter is used in Module-1. The output
speeds were 5 and 50 km/h (a “high speed” channel in an urlgfrthe Adaline is then fed to the input of Module-2, where an
environment), respectively. The Rayleigh fading simulator ILP with one hidden layer is used. The hyperbolic tangent
illustrated in Fig. 2. sigmoid functions are used as the nonlinear transfer functions
The noise used was zero mean white Gaussian noise thfithe hidden nodes, and the transfer function of the output
was independently added to the in-phase and quadrature coide is linear. The single node in the output layer represents
ponents. In this paper, we study the performance of the neusake-step-ahead prediction. A tapped delay line type input stage
predictor for the prediction of noisy Rayleigh fading signali&s employed to make it possible to filter out additive noise.
in a “bad” channel, where the component input SNR is O dB. There are many ways to maximize the predictor's gener-
alization and noise attenuation capabilities. From the network
B. Linear Prediction Schemes for Noisy structure’s point of view, we may select the optimal number of
Fading Signal Prediction input and hidden nodes, or assume partial connections between
ifferent nodes and apply some pruning methods to eliminate

of power signals are theleinonen—NeuveH-N) FIR predictor ery small weights in order to simplify the network _struct_u_re
[13] and therecursive linear smoothed NewtdRLSN) pre- [8], [9]. Another approach could be the use of a special training

dictor [23]. Due to their recursive nature, the RLSN predicto@emc.)d_ such as early stopping [40], target smoothlng .[24]’
can offer much better noise attenuation than the H-N predictﬂ%tram!ng with jitter [14’]' In this paper, we select explicity
with equal computational burden. Both of these predictors a £ (_)ptlmal number of input and hidden nodes of the neural
based on a low-degree polynomial signal model. predictor.
There exist two power prediction schemes: 1) direct pre-
diction of the noisy power signal which has been calculated
from the noisy in-phase and quadrature components and 2Although the multilayer perceptron neural network is a
computing the predictive estimates of the components sepidely used network paradigm for solving nonlinear mapping

The linear predictors often employed for predictive filtering

I1l. NEURAL-NETWORK SELECTION
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Fig. 3. The structure of théwybrid neural-network-based predictor.

problems, there is no general criterion for selecting the optimaétwork is associated with a cost function of the form
structure for a specific problem. It is already known that w2

a neural network with one hidden layer of sigmoidal units o (w—?)
can approximate any continuous mapping arbitrarily well, C= Z (targey, — predictior),) +)‘Z R
provided that there are enough neurons in the hidden layer hes w14 ( J)
[7]. However, the performance for generating accurate outputs 1)

for the training inputs competes against predicting appropriate ) )

outputs for unknown inputs. For instance, in the case of ‘&€ first termin (1) is the sum of the squared errors over the
multilayered network, when we add some nodes in the hidd&fit Of observations. The second term is a term penalizing

layers, the network can produce more precise outputs for £ del complexity, wherev;; is a weight,A andw_o are freely
training data, but it may also give worse outputs for unse 4 ected parameters. For a large absolute weight vallg,

' . . ?he cost is approximately equal 2o If a given performance on
data. Further, networks with excessive number of parametﬁgs

or weights have a higher probability of reaching local minim]ahe tr'alnlng set can be obtained with fewer weights, this cost

during the training progedure, and this mgkes the reprqductlgg many weights as possible. The advantage of this method is
even. harder. Hence, it is mportant to f'm_j .the the S'rT“)l‘at"Hat different structures and number of parameters need not be
possible network structure, i.e., use the minimum number g jicitly explored. However, the main difficulty with general
weights and nodes, without any degradation of performancgagylation techniques is that when forcing smoothness by just
Many model selection schemes have been proposed #@fding some penalty terms, we may lose valuable information,
determining the network structure for a particular applicatioflg., in abruptly changing parts of the signal.
[10], [19], [21], [26]. For example, a pruning-based approach, The above mentioned criteria are specific for neural net-
called optimal brain damage, was introduced in [6]. Th@orks. Besides, there are some general methods that can be
aim of this method is to delete some weights that have theed for model selection with various different model types.
smallest values. However, because there are many complicdtedexample, there are many ways in which model selection for
connections between the nodes, and those weights with smdilee series analysis can be done, which have been discussed by
values may be very sensitive to the final solution, this meth&hibata [36]. A variety of statistical tests have been developed
is not always feasible and some additional judgments shodifd testing different models. However, hypothesis testing may
be made. Another method often used to optimize the netwdiRt be a practical approach, because it involves a large number
structure is by means of local connections and weight shariffytests and significance levels. Another approach is to find
[22]. In this scheme, the individual nodes in the hidden lay& criterion which balances thever-fitting and under-fitting
possess only a local region of inputs so that the numbg?_ara_lcter_lsncs of the model. The general form of such a
of weights can be reduced. Besides, there exist some otRBferion is a cost function
approaches bqsed qn 'Fhe _regularization_ technique, e.g., weight C =nlog a,’% + L(k). )
decay and weight-elimination [40]. The idea of these methods
is to begin with a network that has an excessive numbiere n is the number of observations and is the es-
of parameters for the given problem. Each parameter in thmation of the error variance. The second tedik) is

wWo
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some monotonous function dependent on the number of frgrecisely these distribution families that the basic idea of the
parameterst. It describes a cost for the model complexityhortest code length has led to concrete applications.

and can be considered as a penalty term. The choices oAn important coding system with many codes of each string
L(k) determine the characteristics of the criterion. Severis defined by a family of parametric distributions, where the
different forms have been suggested, e.g., by Akaike [4irior distribution may be replaced by a prefix code. Then,
Schwartz [35], and Rissanen [27]. The Akaike informatiolet B* be the set of all finite binary strings over the binary
criterion (AIC) has been widely used in the literature foalphabet. Now,B* can be partially ordered by the prefix
model selection, and there exist some attempts to apply itgmperty:a < b, if a is a prefix ofb. A coding system can
select the neural-network structure [10]. However, the AlBe defined to be a functiop: S — X*, where the domain
was shown to be inconsistent [16], and it has a tendency fois a subset ofB*, and X* is the set of all finite strings
overfit models. One of the most interesting model selectimver the setX, which is the alphabet of the symbols,
methods is the minimum description length (MDL) principlend z = ™ = z{---,x,. Any member¢; of S such that
[27], which has been proven consistent and used successfllli;) = = is said to be a code word of the string The

in the analysis of autoregressive (AR) and autoregressilemgth ofc; is the number of binary symbols in it, and written
moving average (ARMA) models. Recently, there have alss |¢;|. Next, letS,, denote the inverse image ™ under
been some attempts to apply this criterion to neural-netwatthe decoding mapD, i.e., the set of all code words of all
size selection, and the results show for some simple probledata strings of length. Let S,, denote the set of the minimal
that this method can succeed in finding the optimal netwogtements ofS,, under the partial order, and 1&t,(z) denote
structure [17]. The predictive MDL, where the coding is donthe subset whose elements get decoded.d$ can be seen

in a predictive manner, is presented in this paper, and applibdt regardless of the number of elements in the $gtr),

to neural-networks complexity selection. the Kraft-inequality holds [5]
Pay= > 27ll<L (3)
ciegn(m‘)

IV. STOCHASTIC COMPLEXITY AND PMDL PRINCIPLE

Define recursively in the length of the string(z°) = 1, with

A. Probabilistic Model, Code Length, the following property:

and Stochastic Complexity P+ = P(z™) P (z™F1)

Inspired by the algorithmic notion of complexity [18], [37], Z P!z, z)
[4] as well as Akaike's work, Rissanen proposed the shortest z€X

code length for the observed data as a criterion for mOdvx%ere (2", 2) denotes the string of length + 1 formed

selection [27]. In his subsequent papers [29]-[31], this gradu- S !
ally evolved into stochastic complexity. The word “stochasticEjly concatenating:" with the symbolz. It is clear that the

means that the models, relative to which the coding ought to Bgobablhty function P satisfies the marginality conditions for
a random process

done, are probabilistic rather than being defined by programs
in a universal computer as in the algorithmic theory. Z P(z)=1, P(z")= Z P(z", 2). (5)
The objective of any modeling is to learn the behavior of e X vex

the machinery generating the observations. Modeling brinﬁ;

together two important ideas: coding and learning, where coo%en’ the complexity of: is defined, relative to the coding

ing is synonymous with description, and learning is virtuall)s/yStemD’ to be

synonymous with extraction of properties from data. The word I(z|D) = —logy P(x). (6)

description presumes the existence of a language, in which the

properties can be expressed. If by a language we mean a set 60 applications, the most important coding system is ob-

appropriately formed strings of recognizable symbols, we migined from a class of probabilistic models

talk.about the length of a description. The'short description, iq M = {f(z]0), 7(0)]0 € QF, k=12 @)

particular, the shortest one, plays a special role. Therefore, it

seems worthwhile to examine models and modeling problembere Q* is a subset of thé-dimensional Euclidean space

in terms of coding systems. with nonempty interior, in which the number of parameters
Rissanen has constructed a family of probability distribumay range over all natural numbers [28]8) is the so-called

tions from the code lengths in a system so that they defityrior” distribution. Hence, there arg “free” parameters. It

a random process or an information source. This allows thaust also be required that each distributjf(x|6) satisfy the

definition of a general notion of complexity of a data stringnarginality conditions for a random process. With a small

relative to such a random process. Based on this, we astraction,f(x|f) and w(f) can be considered as densities

construct a coding system out of a family of parametricallywhich, if the observations consist of truncated numbers, assign

defined probability distributions. Such a family also results ffrobabilities to them. Similarly, for a strict coding inter-

we begin with a parametric predictor together with a predictiguretation, the parameters which are numerical data, may be

error measure, so that prediction becomes a form of codingyncated to some precisiahas well. Then a prefix cod€

and it starts looking like “all models are probabilistic.” It iscan be constructed, which assigns to each truncated parameter

(4)
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a vector, say(¢), and a code word with length[6(i)] with Generally speaking, for example, in curve fitting and re-

the least integral upper bound of lated problems, the models are not primarily represented in
) ) ) terms of a distribution. Rather, we can use a parametric
—logy 7[0(i)] - klogy é. (8 predictors, ., = F(x|0) as in the case of neural networks.
Similarly, another prefix code can be constructed, whiéz]et Zr41 be the prediction output of the networl, =
T, Tt—1, ", Tt—pt+1) the input, andd the array of all the

assigns to the data the code wd¥fl:|6(¢)] of length L[x|6(¢)],

given by the least integral upper bound of weights as parameters. In addition, there is a distance function

8(er41) to measure the prediction errefy; = 2441 — L4141,
—log, f[x]0(4)] — nlog, € (9) wherex,y, is the target output. Such a prediction model can
be immediately reduced to a probabilistic model in which the

where ¢ is the precision of each data item. The functiogptimization ofe,; causes the optimization éf In this case,
D, which decodes: out of the concatenated code wordsve define the conditional Gaussian distribution

Cl6(1)]C|z|6(7)], defines a coding system. If the generally 1 ) ,
small excess of the integer valued code length over the [z, 0,0) = —— e /27 (13)
negative logarithms of the probabilities is ignored, we obtain Vro
by letting the precisior® tend to zero wherez! = (1,72, -, 2¢). The density (13) is then extended
, . ) ok to a sequence by multiplication, and the total code length of
Pl(z) e > flal6()]r[6(:)]6 n observations can be expressed as
N . B 1 n—1 n
e /0 ., Jal#) dn(e) 10 —lnf"60) =5 ; Gt 5 (ned).  (14)

which by a further limiting process defines a marginal density p¢qr having fixed the model class, we have the problem of

(x| M) for the data. Hence, with the abstraction in terms Qfsimating the shortest code length obtainable with this class of
densities, (6) can be converted into the following form: models. Leté(xt) and2(z*) be written briefly ad, and &2,

I(z|M) = —log, f(x|M) with They are thenaximum likelihooestimates, i.e., the parameter
2 values which minimize the code lengthln f(z:, |z, 6, 0)
flz|M) = / f(z|8) dn(6) (11) for the past data. In particular
feQk
which is called the stochastic complexity ©f relative to the 67 = 1 Z 2. (15)
model classM. t

=1

Although the model clas8/ includes the so-called “prior” Theref th dicti de lenath for the data is ai b
distribution 7, its role in expressing prior knowledge is not eretore, the prediclive code length for the data Is given by

different from that off(xz|#). In fact, the former need not be 1 T, In

selected at all, because it is possible to construct it from the-1n f(z"|k) = 5 E { AJ; +21n 63} + — n(27) (16)
. , . — op 2

model class as a generalization of Jeffrey’s prior [32]. Also, t=0

particularly important pairs of distributions ¢{x|¢) and7(6) in which &, is a suitable initial value. The choice @ is

are the so-called conjugate distributions, because for them fhmportant, because it affects only the first value in the sum.

integral (11) can be evaluated in a closed form [31]. In this form, themodel costi.e., the code length needed to
encode the model appears only implicit. That, however, cannot

B. The Predictive Minimum Description Length Principle  be avoided and is indeed included in this criterion. This can

The stochastic complexity (11) is an abstract quantity ife demonstrated by rewriting (16) in another form
volving no specific model. In practice, however, it is the n—1 fat b 5 )
model that we want. There are various coding schemes,In f(z"|k) :—1nf($n7én7a—n)+z A AL 7
each of which gives a code length as an approximation of = St 0:,6)
stochastic complexity, and thus provides us a model selection a7

criterion. One of those approximations is the predictive min- . _ L
imum description length principle, where the coding is don@here the first term is the minimized code length of (14),

in a predictive manner. By predictive coding we mean thgPtained when the parameters are replaced by the maximum
the conditional density of the possible values of the “nexfikelihood estimates. But the data could not be decoded if the

observationz,,can be modeled as decoder did not know the estimated parameters with which the
code was designed. Hence, the induced conditional density for
Jrg) (2eg1]z") (12) each observation;; given the past,

N A~ 1A =2
where 6(t) = 6(z') is obtained by an estimation algorithm flwegr|at, 8,,6¢) = M
for the parameterd with k& components. Such a density f(zt, 0, 6¢)
allows us to encode the observatign,; with the code length

(18)

log . contributes themodel costwhich is represented by the sum
—logy i 4 (weals?). in (17). ©, represents the neural networks’ parameters, i.e.,
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weights and biases. That cost term may be regarded as phedictions of the data points in the very first segment are

accumulated errors when the model parameters are estimagsen as zero. Hence the predictive code lerdgth, ;)4 of the

from the past data. (k+1)th segment can be calculated by (16), where the lower
Unlike the two-passionpredictiveMDL principle, in which and upper limits in the sum are replacediayand(k+1)d—1,

an explicitly calculated code length for the parameters is addexbpectively, and in the last term is replaced by the segment

to the negative logarithm of the likelihood function, the PMDUengthd. This procedure is repeated until the code lengths of

algorithm has the great advantage that the network parametdtgdhe segments are found. Adding the total predictive code

need not be encoded, and they can be calculated from teegths together, we get the accumulated code length

past string by an algorithm. The model costs are added to -

the predlct|on errors, and ttwgr-ﬂttmgand under-flttmg.arg Chotal = Z C; (22)

penalized automatically. Applications of the PMDL principle ~

in selecting optimal neural network for time series prediction
can also be found in [12] and [20]. where; is the code length of thgh segment. In casé does

not divide IV, the code length of the last segment should be

V. NEURAL-NETWORK PREDICTOR added to (22). Then, we calculate the per symbol code length

OPTIMIZATION USING THE PMDL PRINCIPLE as
In this section, we investigate the applications of the PMDL Cper = Cper(p, g, d) = ictotal, (23)
principle to the optimization of a neural-network predictor in N
a noisy power signal prediction. The network with the minimunC,., indicates the optimal

The structure of ouhybrid predictor, shown in Fig. 3, is predictor structure.
determined by optimizing separately both the Adaline andDue to the local minima problem with neural networks,
MLP using the PMDL principle. The optimal number of inpuminimization of (20) must be handled carefully. If a de-
nodes of Module-1 is first determined by using a simulatgdrministic optimization algorithm, such as the conventional
power signal. The selection of Module-2 then uses the outprackpropagation is used, the above procedures should be
of the optimized Module-1. The optimizations of these tweepeated many times, each of which has random initialization
modules are similar, and therefore only the latter is introducwdlues. The final code length of each model is the averaged

in details. code length of all the experiments. If a stochastic search

Suppose that the MLP hag input nodesz(¢),z(¢t — algorithm, such as the simulated annealing algorithm [1], is
1),---,z(t—p+1) andg hidden nodes (¢), zo(t), - - -, z,(t). used, theemperaturemust be decreased as slowly as possible
Our problem is now to optimizey and q. Here z(¢),t = so that a global minimum, or at least a relatively good local
0,1,---,N — 1, are the sample values of the time series tminimum could be found.

be predicted. Therefore, we have

P VI. SIMULATION RESULTS
ui(t):Zwﬁx(t—j—i—l)—i-wOi, 1=1--,q

J=1 A. Off-Line Optimization of Neural-Network
z;(t) = tanh[u,; (¢)] Predictor Structures
q . . .
. _ o Due to the time-varying and mobile speed-dependent char-
b(t+1)= Z vizi(t) + vo. (19) acteristics of the power response of the Rayleigh fading

=1

channel, it is not practical to optimize the predictor structure
In order to apply the PMDL principle, we divided:(t),t = for a power signal covering the whole speed range. Therefore,
0,1,---,N — 1} into kuax = (N/d) consecutive segments ofwe only consider the optimization of the network structures
lengthd as a parameter. In cagedoes not divideV, the last under two extreme conditions when the vehicle speed is 5 and
segment is shorter. For each network candidate witlputs 50 km/h with component input SNR of 0 dB. The additive
and ¢ hidden nodes, we first train the network usingydbrid noise used is zero mean white Gaussian noise.
optimization technigue to minimize the quadratic function [3] The optimization of our neural-network predictor consists
kd—1 of two steps. First, Module-1 is optimized with the PMDL
Spg = Z [z(t +1) — #(t + )2 (20)  principle using input sampleg= (¢, ye—1,"" -, Ye—p+1) from
t=(h—1)d a segment of a received power signal, as shown in Fig. 4.
) _ _ _ ) This time series has 1500 samples and the segment lehgth
With the so obtained optimal weights and biases from (2Qe|ected here is 125. The predictive code lengths of all model
we use (19) to predict the points(t + 1),¢ = kd,kd + candidates in Module-1 are given in Fig. 5, with component
L---,(k+1)d — 1 in the subsequenti+1)th segment t0 jnpyt SNR of 0 dB at the speed of 5 km/h. It is easy to find that
obtain the squared “honest” prediction error the optimal Adaline has seven input nodes. After the optimal
_ A 2 structure of the Adaline is determined, the optimization of
By = [orn(t+1) = &enlt+ DI 1) the MLP in Module-2 is then made in the same way using
Here, by “honest” we mean that the parameters of thiee output of Module-1. Under the same component SNR
x,(t+ 1) predictor are only determined by the past data. Trend speed, the code lengths of different models of MLP are
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Fig. 5. Code lengths of different models of Adaline at the speed of 5 kmftig. 7. A segment of in-phase component under SNR of 0 dB along with
with component input SNR of 0 dB. the noiseless signal at the speed of 50 km/h.

given in Fig. 6. In general, a large number of hidden nodesd#-line backpropagation algorithm with a moving window.
rarely used because the computational complexity will increasgis allows the predictor to adapt new data quickly while
drastically. Hence, we limit the search to a small range, i.edequately forgetting the old data [33].

g = 1,2,3. The MLP with 11 input nodes and two hidden The structure of ourhybrid predictor is first optimized
nodes turns out to be the best structure. off-line using the procedures described above. The obtained
Similarly, at the speed of 50 km/h, the power signal showsptimal predictor is then used for prediction of in-phase and
in Fig. 7 is used for optimization. The code lengths of differerfuadrature components of the fresh demodulated fading signal
models of Adaline and MLP are given in Figs. 8 and Separately. At the speed of 5 km/h with in-phase component
respectively. It is easy to find that the optimal Adaline hagnder SNR of 0 dB, the output of the predictor together with
22 input nodes and the MLP has 18 input nodes and only ot noiseless in-phase component is shown in Fig. 10. At the
hidden node. The optimized Adaline and MLP make up ogpeed of 50 km/h with in-phase component under SNR of 0

optimal neural predictor. dB, the corresponding results are given in Fig. 11. The results
with the quadrature component are similar.
B. Real-Time Prediction with On-Line Adaptation We use the measure

As the fading signals are highly nonstationary, which is the SNRain(dB) = SNRu,(dB) — SNRy,(dB) (24)
case in mobile communication applications, the learning must
be adaptive. In our predictor, the adaptation of the Adalires the quantitative measure of the prediction performance. The
in Module-1 uses the computationally efficient Widrow—Hofbptimal neural predictor can produce about 12-dB SNR gain
(LMS) algorithm [41], and the MLP in Module-2 uses arunder the component SNR of 0 dB at the speed of 5 km/h.
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o ) ) can give us a significant SNR gain at low speed while the
Similarly, about 7-dB SNR gain can be obtained at the spegfprovement at high speed is clearly smaller. Notice that, in
of 50 km/h. this paper, the neural predictor was optimizefttine using

The prediction of received power signal can be obtained e PMDL method together with hybrid global searching
summing the squared predictions of in-phase and quadratgigorithm. However, in practice, when the optimized predictor
components. The SNR gain of power signal can also e ysed foron-line prediction, one must make a tradeoff
computed using (24). Thus, the obtained SNR gains are ddyveen the sampling rate and adaptation speed. Although the

and 5 dB at the low and high speed, respectively. neural predictor has higher computational complexity than the
conventional linear approaches, it is feasible from the applica-
VII. CONCLUSIONS tion point of view, because the required sampling rate is only

. . . 1 kHz. Therefore, custom VLS| and DSP processors are the
In this paper, we proposed fybrid neural predictor for gtential implementation platforms of our adaptive predictor.

received signal power prediction needed in high performan . . :
DS/CDMA systems. In order to get good noise attenuatic%nﬁe presented neural predictor is a natural preprocessing stage

and generalization capability, we used the PMDL principle 6" advanced fuzzy and neural power controllers.
select the complexity of our neural predictor. The simulations
demonstrated that the PMDL method indeed provided us
valuable guidance in selecting the optimal structure of the The authors would like to thank the reviewers for their

predictor. The results show that the optimized neural predictansightful comments and constructive suggestions. They also
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