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ABSTRACT

In this paper, we investigate the characteristics of some
one-step-ahead nonlinear predictors based on a two-layer
feed-forward neural network (2LFNN). The behavior of
neural networks (NN) is investigated in the frequency do-
main using two frequency response estimation techniques,
and in the time domain, by analyzing the unit step and tri-
angular pulse responses. Some of the estimated frequency
responses of these NNs resemble those of corresponding
linear polynomial predictors, revealing the nearly poly-
nomial nature of the applied training signals. Similarity of
the two frequency response estimates is an indication of
good generalization properties.

1. INTRODUCTION

A. General

Even though nonlinear systems do not have unique fre-
quency responses, it is possible to observe their responses
to known input signals. A class of non-linear filters, FIR-
median hybrid filters, has been analyzed by Neejärvi et al.
using sinusoidal and pulse input signals [1], [2]. In this pa-
per, the same sinusoidal input method is used, along with
white Gaussian noise (WGN) inputs, to estimate input de-
pendent frequency responses of a set of NNs. In certain
cases, the two frequency response estimation methods are
found to yield similar results, while for some networks the
frequency response estimates are greatly input dependent.
For the time domain analysis, unit step and triangular pulse
inputs are used. Understanding NN’s frequency and time
domain characteristics will give NN designers valuable
additional insight to the NNs, and be of great help in de-
ciding the system parameters, like the number of neurons
in each layer or the initial weights, and evaluating the ap-
plicability of the designed NNs.

In this paper, a single-output 2LFNN predictor is ana-
lysed. The prediction � ��x n� 1  is given by
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where x(n) is the NN input signal sample with time index
n, f(·) and g(·) are the output and hidden layer activation
functions, respectively, � �w mout  is the mth connection

weight of the output layer neuron, and � �w l mhid ,  is the lth

weight of the mth hidden layer neuron. The input layer is
fed from a delay line with L taps. The network is illustrated
in Figure 1.
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Figure 1: A predictive 2LFNN with L inputs, M hidden
layer neurons, and a single output.

B. Application

The presented NN setup is motivated by power control
needs of code-division multiple-access (CDMA) mobile
communications systems. The user capacity of a CDMA
system crucially depends on functionality of the power
control. To enhance the power control system, predictive
filtering has been proposed [3] to be used within the closed
power control loop to lessen loop delay effects, reduce
noise and interference in received power measurements,
and smoothen out fast fading. This work is not concerned
with the power control system itself. In this paper, we
analyze a set of feed-forward NNs that have originally
been selected for the power control application. In [3], an
adaptive NN approach is proposed for the power estima-
tion problem. Considering the greatly time-varying and en-
vironment-dependent characteristics of natural radio chan-
nels, the adaptive approach is naturally more effective but
also computationally more demanding as compared to a
fixed predictor approach. The analysis methods presented
in this paper can be used in designing adaptive networks as
well.
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2. NEURAL NETWORKS

NNs with biases, a hidden layer of nodes with tangent-
sigmoid activation functions, and an output layer with lin-
ear activation functions, are capable of approximating any
function with a finite number of discontinuities [4]. A
2LFNN topology with 15 input nodes, 4 hidden nodes with
tangent-sigmoid activation functions, and 1 output node
with a linear activation function, was selected for analysis.
This topology was found to be potential for processing re-
ceived power samples in noisy Rayleigh-fading radio
channel conditions at urban mobile speeds. Initial values of
the weights were chosen randomly between -2 and 2. The
Levenberg-Marquardt (L-M) learning rule [5] is used to
minimize the sum of squared-error (SSE) function.

The predictor training input signal is a sweeping sinu-
soid, corrupted by zero-mean additive white Gaussian
noise (AWGN) with unit variance, and the desired target
signal is the corresponding one-step-ahead predicted
noiseless signal. A sweeping sinusoidal signal is a time-
varying sinusoid whose frequency varies linearly from zero
to a fixed maximum frequency. Four zero-mean sweeping
sinusoids with unit maximum amplitudes, and maximum
frequencies 10 Hz, 25 Hz, 50 Hz, and 100 Hz, sampled at
1 kHz, were used to train four NNs, resulting in predictors
NN1, NN2, NN3, and NN4, respectively. Such maximum
Doppler shift frequencies correspond to the mobile speeds
of approximately 6 km/h, 15 km/h, 30 km/h and 60 km/h,
respectively, with the mobile system parameters defined in
[3]. In nature, received power signals resemble sweeping
sinusoids which are used as generalized presentations of
fading in a mobile radio channel with different Doppler
shift frequency ranges. NNs trained with actual fading
models would naturally have given unfairly good results
when tested with the same channel model, and sweeping
sinusoids lead to better generalization properties. Also, the
statistics of the channel are generally not known. It is fur-
thermore to be noted that a feed-forward NN of a de-
scribed type is necessarily stable, which is a fundamental
requirement for application in a closed control loop.

A. Signal Preprocessing

The NN input signal being power of the received signal, is
all positive and does not have a unique maximum ampli-
tude, whereas the NN training signals are zero-mean sinu-
soidal signals with unit maximum amplitude. Without pre-
processing this results in a destructive clipping effect. Af-
ter local mean removal preprocessing, the predictor is able
to function within its natural input signal conditions. The
local mean is calculated over the last 15 samples, and is re-
stored after the prediction. All the results in this paper are
achieved employing local mean removal preprocessing and
corresponding reverse postprocessing.

B. Prediction Performance

The NNs were tested with sweeping sinusoids, alike the
training signals, except with different AWGN. In Table 1,
the achieved SNR gains are shown when the trained NNs
are presented with their training signals, and test signals
which are the same sweeping sinusoids with new AWGN
sequences added. From Table 1 it is seen that NN4 has not
been able to learn its training signal, whereas NN1 oper-
ates seemingly well in differing noise conditions. The NN1
output for predicting a test signal with SNR of 10 dB is
shown in Figure 2. SNR gain is the difference between the
predictor output and input signal SNRs.

Table 1: SNR gains for the training and test sweeping sinu-
soids with input SNR 10 dB and 0 dB.

Signal NN1 NN2 NN3 NN4
training 9.8 dB 4.8 dB 2.6 dB -0.5 dB

test, 10 dB 5.4 dB 3.0 dB 1.4 dB -0.3 dB
test, 0 dB 7.9 dB 3.2 dB 2.9 dB 1.5 dB
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Figure 2: Test input (dotted) with SNR of 10 dB and
maximum frequency of 10 Hz, and target output (dashed)
sweeping sinusoidal signal, along with the NN1 output
signal (solid).

3. FREQUENCY DOMAIN PROPERTIES

A. Sinusoidal Response

NN responses to sinusoidal input signals give an idea of
NN behavior when the input signal contains smooth com-
ponents [1], [2]. Given the sinusoidal input x ni j, ( )  where

n  is the time index, i  is the fundamental frequency index,
and j  is the phase index, the discrete spectrum Y ki j, ( )  of

the filter output y n x ni j i j, ,( ) � ( )  can be computed by the

fast Fourier transform (FFT). The estimated transfer func-
tion � ( , )H k js  at the frequency k  corresponds to the value

of the magnitude spectrum at the fundamental frequency
i k :
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where  Nf (here 256) is the number of fundamental fre-
quency components and G ( )�  is the Dirac delta function.
More reliable estimates are obtained by considering dif-
ferent input signal phases j , and averaging the estimated
transfer functions. This approach was successfully used in
[1] and [2] to analyze median-type filters.

All the frequency response estimates exhibit lowpass be-
havior, and the passband bandwidth becomes larger, as the
maximum frequency of the training signal increases from
NN1 to NN4. Also, an interesting result can be seen com-
paring NN1 with the linear polynomial Heinonen-Neuvo
(H-N) predictor of the first degree and length 15 [6]: the
two transfer functions closely resemble each other (Figure
3). From Figure 3 it can also be seen that NN1 exhibits
lower passband gain peak than the corresponding H-N pre-
dictor.
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Figure 3: Sinusoidal frequency response estimates of NN1
(solid) and NN4 (dashed) along with the frequency re-
sponse of the first degree H-N polynomial predictor of
length 15 (dash-dot).

B. Power Spectrum

When the input signal is a sequence of AWGN samples
with mean P =0 and variance V 2 =1, the frequency be-
havior can be characterized by the power spectrum. The
Welch method of averaging modified periodograms is par-
ticularly well suited for direct computation of the non-
parametric power spectrum estimate [7]. The data record
of length Q (here 2048) is sectioned into L=Q/M segments
of M samples (here 256). Each segment is Fourier trans-
formed, in order to have L modified periodograms, and ac-
cumulated to obtain the power spectrum estimate. The esti-
mated NN transfer function can be computed as the square
root of the output-to-input power spectrum ratio, given in
the discrete frequency domain by

� ( )
( )

( )
H k

B k
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yy
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where B kyy( )  is the NN output power spectrum, and

B kxx ( )  is the NN input power spectrum.

The results show clear lowpass behavior for NN1, and its
frequency response estimate, shown in Figure 4, closely re-
sembles that illustrated in Figure 3 for NN1.
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Figure 4: Welch method frequency response estimates of
the NN1 (solid) and NN4 (dashed).

As the training signal bandwidth increases, the lowpass
property becomes less pronounced, and is not any more
present in the frequency response estimate for NN4 (Figure
4). Also, comparing the frequency response estimates for
NN4 in Figures 3 and 4, it is noted that the frequency re-
sponse estimates obtained by the two methods reveal input
signal-dependent response characteristics.

C. Noise Gains

From transfer function estimates � ��H ks  and � ��H kp , it is

possible to estimate the noise gains (NG) of the NNs by
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The noise gain estimates are given in Table 2.

Table 2: Estimated noise gains of the NNs using the two
transfer function estimates.

Estimate used NN1 NN2 NN3 NN4
� ( )H ks

0.19 0.35 0.33 0.36

� ( )H kp
0.22 0.33 0.31 0.33

4. TIME DOMAIN BEHAVIOR

Since new harmonics and subharmonics of the input fre-
quencies can be generated by a non-linear system, the na-
ture of the time response is generally dependent on the in-
put. To get insight to the time domain behavior, NN re-
sponses to unit step and triangular pulse signals are ana-
lyzed.

Our trained NNs usually seem to overestimate the con-
stant zero level input, and underestimate unity input. Only
NN3 exhibits underestimation also with constant zero input
while NN2 outputs constant zero level quite accurately.
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A. Step Response

The unit step responses reveal that the output settling time
is the same as the number of input nodes, as natural, but
during this period the number of oscillations in the output
increase from NN1 to NN4. Furthermore, it can be high-
lighted that the prediction is biased, partly due to the non-
unity DC gain, also visible from Figure 3 for NN1. The
unit step response for NN1 is shown in Figure 5. Biasing
effect could be eliminated by employing training signals
which include segments of constant zero and unity levels.
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Figure 5: NN1 unit step response (solid) along with the
unit step excitation (dashed).

B. Triangular Pulse Response

A triangular pulse can be seen as a simplified model for a
slowly varying signal. Depending on the slope of the rising
(setting) ramp, the signal has a different bandwidth. Our
triangular pulse has unity maximum amplitude. The pre-
diction accuracy depends on the slope, and gives clearly
better results during the rising input. The results show that
these NNs are actual predictors, as seen in Figure 6 for
NN1, and the prediction is biased, as in the case of a unit
step input (Figure 5).
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Figure 6: NN1 triangular pulse response (solid) along with
the triangular pulse (dashed).

5. CONCLUSIONS

The frequency response characteristics of the predictors
based on neural networks are naturally related to the fre-
quency contents of the training signals. Transfer function

estimates computed with the two different methods are
generally different because NNs are nonlinear systems and
their responses depend on the input signals. Nevertheless,
if an NN has good generalization capabilities, as NN1, the
two estimated transfer functions closely resemble each
other, and in this case also the polynomial predictor trans-
fer function, as expected because of the nearly piece-wise
polynomial nature of the training signals.

To have the best prediction performance, the training
signal should resemble the frequency contents of the signal
to be predicted, and also the input signal should be pre-
processed, in order to match the training signal amplitude
characteristics. After prediction, reverse postprocessing
has to be applied.

By computing the frequency response and time domain
behavior estimates, an NN designer gains valuable insight
into the NNs designed, and can use this additional infor-
mation in neural network parameter selection and applica-
bility considerations.
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