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ABSTRACT

This paper propose a new complex adaptive notch Þl-
ter (ANF) structure based on the Steiglitz-McBride (SM)
method. Recursive least square (RLS) algorithm is applied
to the proposed ANF with optimized stepsize. Simulations
show that RLS-SM ANF converges fast and requires less
computational complexity than the conventional ANF using
recursive prediction error (RPE) algorithm.

1. INTRODUCTION

Adaptive notch Þlters (ANF) are widely used in many signal
processing applications to extract, eliminate or trace narrow-
band or sinusoidal signals embedded in broadband noise [2].
If such signal consists of in-phase and quadrature compo-
nents, a complex coefÞcient ANF must be implemented.
Most of such applications are in radar and communication
systems. An early contribution to ANF algorithms by Ne-
horai [3] imposed constraints on a notch transfer function,
which leads to simple relations between poles and zeros
in adaptive Þlter design. Nehorai also derived the Gauss-
Newton type recursive prediction error (RPE) algorithm [3]
whose structure is shown in Fig. 1. The algorithm adjusts the
Þlter coefÞcients to minimize the cost function � � � � � 
 � � � �
by calculating the gradient recursively. Based on the same
objective function, Pei [4] extended the RPE algorithm to
complex coefÞcient ANF, which converges to a small biased
solution. Cheng [1] derived a new real-valued ANF algo-
rithm using the well-known SM method. ChengÕs idea comes
from the system identiÞcation application by using delayed
signal as the reference signal [7]. In this paper, we extend the
result of [1] and derive complex coefÞcient adaptive notch
Þlter algorithm using SM method. Furthermore, optimized
stepsize is employed in our algorithm. Simulation results
show that the complex SM method converge faster than RPE
algorithms in [4].
The paper is organized as follows. In Section 2, Complex

ANF algorithms using the SM method are derived. Section
3 analyzes the ANF convergence. In Section 4, simulation
results show the improved performance of ANF using SM
method. Finally, Section 6 concludes the paper.

2. SYSTEM MODEL

Consider a measured stationary data � � 
 � which comprises a
known number of complex sinusoids and a white noise � � 
 � ,

� � 
 � � �� � �  "
�

� $ % � ' )
�


 + - � + � � 
 � (1)

where the amplitudes � "
�

� , phases � -
�

� and the frequencies� ) 3 
 � � are unknown constants. � � 
 � is a sequence of i.i.d.
complex random variable with zero mean and variance de-
noted by 7 � . It is known that (1) can be represented by an
ARMA model [6],8 � 9 :  � � � 
 � � 8 � < 9 :  � � � 
 � (2)

where
8 � 9 :  � is a monic polynomial of order > and its

roots are on the unit circle with arguments equal to � )
�

� .
The parameter < ? � B C E � is a pole radius which keeps the
Þlter

8 � 9 :  � G 8 � < 9 :  � stable. Such Þlter is also known as
constrained form notch Þlter.

3. COMPLEX SM ANF ALGORITHMS

The idea of ANF algorithm using the SM method comes from
the system identiÞcation application by using delayed signal
as the reference signal [7]. The resulting block diagram is
depicted in Fig. 2. The function of the delay factor I in the
Þgure is to decorrelate the the preÞlter outputs J � 
 � and K � 
 �
in the upper and lower paths. If the noise is white, I � E
is enough to decorrelate the signals. By letting the structure
to approximate a notch Þlter, the structure shown in Fig. 3 is
obtained.
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Figure 1: Adaptive notch Þlter with recursive prediction error
algorithm for coefÞcient adjustment
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Figure 2: Adaptive notch Þlter based on SM method

3.1. Simplified ANF structure

Assuming the broadband signal is stationary, we can move
the delay operation at the lower branch after the preÞlter
shown in Fig. 2, such arrangement can save one preÞlter
block. Larger I can be chosen in other applications when
the noise is colored. Since the resulting transfer function af-
ter the convergence is desired to be a notch Þlter, the follow-
ing equation should be satisÞed:| } ~� � � � E � 9 :  � � � 9 :  �� � � 9 :  � � � 8 � 9 :  �8 � < 9 :  � (3)

This yields the block diagram shown in Fig 4. Therefore the
polynomials

� � � < 9 :  � and � � � 9 :  � in modiÞed Fig. 2 can
be deÞned as� � � 9 :  � � 8 � < 9 :  �� � � 9 :  � � � 8 � < 9 :  � � 8 � 9 :  � � 9 (4)

3.2. Algorithm derivation

The adaptive algorithm can be derived directly
from Fig 4. Let the estimated coefÞcient vector� � :  � � �  C � � C � � � C � � � � � :  where the superscript �
denotes the transpose operation. Using the recursive least
square (RLS) procedure, we derive the detailed algorithm as

+

•

� � � �
h i k �

� � �
x _ ` a � � � � �l�� n Q S o � p Q S q

l�� n Q S o � p Q S q  ¡ t _ ¢ h i l a
£  ¡ t _ ¢ h i l a d  ¡ t _ h i l a ¤ h k

Figure 3: Block diagram of ANF using SM method in adap-
tive line enhancer structure
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Figure 4: Block diagram of modiÞed ANF using SM method

below.

Step1: PreÞlter J � 
 � � E¦8 � :  � < 9 :  � � � 
 � (5)

where
¦8 � :  � < 9 :  � � E + � © ª � :  < 9 :  + � ©� ª � :  < � 9 : � + � � � +� ©� ª � :  < � 9 : �

. Rearranging the input-output, we obtain,J � 
 � � � � 
 � � � ­� :  ® � (6)

where the superscript ¯ denotes conjugate transpose, and® � � � < J � 
 � E � C < � J � 
 � ² � C � � � C < � J � 
 � > � � � . Since
the preÞlter output for lower branch K � 
 � � J � 
 � E � is a
delayed version of J � 
 � , one preÞlter can be saved.

Step 2: Output expression
The output can also be arranged in vector form,� � 
 � � J � 
 � ¦8 � � 9 :  � � K � 
 + E � � ¦8 � � < 9 :  � � ¦8 � � 9 :  � �� J � 
 � � � ­� :  ¸ � 
 � (7)

where ¸ � 
 � � � -  � 
 � C - � � 
 � C � � � C - � � 
 � � � and - � � 
 � �� < � J � 
 � X � + � < � � E � K � 
 � X + E � .
Step 3: Covariance matrix update¼ � 
 + E � � E¾ � 
 � ¿ ¼ � 
 � � ¼ � 
 � ¸ � 
 � ¸ ­ � 
 � ¼ � 
 �Á Â n ÃÄ Â n Ã + ¸ ­ � 
 � ¼ � 
 � ¸ � 
 � Å (8)
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Figure 5: The output MSE when estimating 1 sinusoid

where
¾ � 
 � � E � Æ � 
 � is the forgetting factor in the RLS

algorithm.

Step 4: Estimation parameter update
� � 
 + E � � � � 
 � + Æ � 
 � ¼ � Ç  ¸ � 
 � � � 
 � © (9)

The algorithm is in the RLS form. The differences between
the RPE algorithm and our RLS algorithm using the SM
methods are on the choice of regression vector ¸ � 
 � and
error � � 
 � . A better choice of these parameters can lead to
faster convergence and less excess mean square error (MSE)
at the output.

4. CONVERGENCE CONSIDERATIONS

In both RPE and RLS-SM algorithms, the convergence speed
and the excess MSE depends on two parameters: the pole
radius < and the stepsize Æ .

4.1. Time-varying <
In most of the ANF algorithms the pole radius is a time-
varying function [4, 1]. The reason is that < determines the
bandwidth of the notches. Practically, if no a priori informa-
tion is available on the input sinusoid, when the notches are
too narrow, the algorithm may not converge. On the other
hand, a larger pole radius ( < È E ) will lead to less excess
MSE after convergence. Therefore an exponential function
is often used for < È E by letting < grow from an initial
value < � E � to the desired value < � Ì � according to

< � 
 + E � � < Î < � 
 � + � E � < Î � < � Ì � (10)

where < Î determines the rate of change in < � 
 � .
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Figure 6: the output MSE when estimating 3 sinusoids(Þxed
Æ and < for RPE)

4.2. Optimal Æ for SM method

In the algorithms derived by Pei [4] and Cheng [1], the step-
size is treated in the same way as < , which approaches ex-
ponentially the predeÞned value. Withouta priori knowledge
of the input, the choice of Æ is usually a difÞcult task. In
this paper, we apply the optimal stepsize derived in [5] for
IIR Þlters using the SM method. An optimal stepsize puts
a proper weight on the new incoming data at each updating
step, which will lead to the maximal reduction of MSE, thus
speeding up the convergence. The optimal Æ has the form

Æ � 
 � � ÐE + Ñ � 
 � (11)

where B Ò Ð Ò E is a reduction factor which is related to the
Þlter order and Ñ � 
 � � ¸ ­ � 
 � ¼ � 
 � ¸ � 
 � . Note that Ñ � 
 �
is an intermediate result of (8), so that Þnding the optimal
convergence factor does not increase the complexity of the
algorithm.

5. SIMULATIONS

We apply the proposed complex RLS-SM ANF and RPE al-
gorithm to suppress sinusoid in white noise. In all the follow-
ing experiments, The pole radius is time-varying according to
(10), where < Î � B Ô Õ Õ , < � E � � B Ô Ö and < � Ì � � B Ô Õ Õ × . We
use optimal stepsize derived in (11) for RLS-SM algorithms,
whereas the optimal stepsize is used in RPE algorithm. The
input signal is modelled as in (1). The sinusoid and white
noise are chosen such that the noise is ² B dB below the si-
nusoidal level. The output signal is normalized with respect
to the white noise power, in other words, B dB output is the
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Figure 7: The output MSE when estimating 5 sinusoids using
RLS-SM algorithm

best suppression result that we can achieve. The simulation
results are averaged over E B B independent runs.

5.1. The first-order notch filter

There is one complex sinusoid signals embedded in white
noise, whose frequency is )  � B Ô B E × . The Þlter output
MSE is shown in Fig. 5. It can be seen that using RLS-SM
algorithm leads to the optimal solutions in ca.15 iterations,
whereas the RPE algorithm requires ca.40 iterations to con-
verge.

5.2. The third-order notch filter

This experiment is for the case of three sinusoids where their
frequencies are )  � B Ô E , )

�
� B Ô ² and ) Ú � B Ô Ü . In this

case, RPE algorithm with time-varying pole radius can not
converge, therefore < is set Þxed at B Ô Ý . As can be seen in
Fig. 6, the RLS-SM algorithm works very well, whereas the
RPE algorithm converges much more slowly and generates
higher excess MSE.

5.3. Estimation of 5 sinusoids using RLS-SM algorithm

This is an extreme case that there are × sinusoids exist. where
their frequencies are )  � B Ô E , )

�
� B Ô ² , ) Ú � B Ô ² × ,

) ß � B Ô á and ) â � B Ô Ü respectively. Since this is a difÞ-
cult situation for ANF to converge, we loose the criteria on
extra MSE and let < � Ì � � B Ô Õ × . As can be seen in Fig. 7,
the algorithm converges in ca. 400 iterations, whereas RPE
algorithm fails to converge within 1024 iterations, even when
the optimal stepsize is utilized.

6. CONCLUSION

In this paper, the ANF using SM method proposed by
Cheng [1] is extended to the complex-coefÞcient case. We
propose a simpliÞed structure by relocating the delay el-
ements on one branch of the Þlter assuming the broad-
band process is white and stationary. Simulations show
that the RLS-SM algorithm converges faster than RPE algo-
rithm when suppressing sinusoid embedded in white Gaus-
sian noises. Our algorithm is more robust compared with the
RPE algorithm since it can deal with up to 5 sinusoids. Fur-
thermore, optimized stepsize developed in [5] for RLS-SM
algorithms is also employed to speed up the convergence.
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