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ABSTRACT 

 
Recently we have developed an efficient flexible multirate 
signal processing structure with high oversampling ratio 
and adjustable fractional or irrational sampling rate 
conversion factor. One application area is a 
multistandard communication receiver which should be 
adjustable for different symbol rates utilised in different 
systems. The proposed decimation filter consists of 
parallel CIC (cascaded integrator-comb) filters followed 
by a linear interpolation filter. The idea in this paper is to 
use two parallel CIC filters to calculate the two needed 
sample values for linear interpolation. In this paper we 
give a modification of the proposed structure and its 
control logic that enables better image and aliasing 
attenuation. The modification is based on the observation 
of the dependence of behaviour of the control logic on the 
fractional part of the sampling rate conversion factor.  
 
 

1. INTRODUCTION 
 
In multistandard receivers, the hardware should be 
configurable or programmable for the reception of 
different types of signals having different symbol rates. 
After the AD conversion, utilizing commonly the delta-
sigma AD-conversion principle and high oversampling 
ratio, the sampling rate is reduced to be a low integer 
multiple of the symbol rate. In this decimation, the desired 
channel is preserved and other channels and noise are 
attenuated. The problem is that the needed decimation 
factor can be a difficult fractional number or even an 
irrational number and, for instance, FIR filters used for 
integer or fractional decimation cannot be efficiently 
utilized. Another problem is that there can be disturbing 
channels that are much stronger (e.g. 80-100 dB) than the 
desired channel. Therefore, the frequency bands which 
cause aliasing in decimation should have good 
attenuation. In addition to these requirements, the overall 
implementation should be simple because this decimation 
filter is used in the digital front-end of mobile receivers 
where the sampling rate is high [1], [2]. Based on these 
requirements (low complexity and possible irrational 
decimation factor), in [2] we have introduced a 

decimation filter structure which consists of two parallel 
CIC (cascaded integrator-comb) filters followed by linear 
interpolation. As it was shown this structure is easy to 
implement because the CIC filter does not need any 
multiplications and the linear interpolation requires only 
one multiplication. This structure has good anti-aliasing 
and anti-imaging properties.  
 
In the general case, the decimation factor is a very 
difficult non-integer, thus the overall decimation factor is 
expressed as  
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where Fin = 1/Tin and Fout = 1/Tout are the input and output 
sampling frequencies, whereas Rint is the integer part and 
ε  is the decimal part of the overall decimation ratio. In 
[2] we have restricted discussion only for ε ∈ [0,1). 
However, it was shown that sometimes it is better to use 
negative ε  in order to increase aliasing band attenuation 
level. Therefore, in this paper we introduce modifications 
of the structure and control logic proposed in [2], in order 
to use the system for ε∈(−1,0] as well. In that way 
characteristics of the proposed structure are improved, 
especially the worst case aliasing attenuation level. 
 

2. BUILDING UNITS  
 

Cascaded integrator-comb (CIC) filters are commonly 
used for decimation and interpolation by integer ratio 
providing efficient anti-image and anti-alias filtering  [3]. 
These filters have a simple regular structure without 
multipliers. CIC decimation filter (see  [3]) consists of N 
cascaded digital integrator stages operating at high input 
data rate Fin, followed by N cascaded comb or 
differentiator stages operating at low sampling rate Fin / R. 
Its frequency response is given by 
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where ω =2πf /Fin is the normalized input frequency. 
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When the decimation factor is an irrational number, the 
filters intended for integer or fractional decimation can 
not be directly used. One solution is to use polynomial-
based interpolation filters. Among them, linear 
interpolation filter has a simple implementation structure, 
only one multiplication is needed [4]. Because 
interpolation is basically a reconstruction problem, 
polynomial-based interpolation can be analysed using the 
hybrid analog/digital model shown in Fig. 1, [4]. In this 
model, the interpolated output samples y(l) are obtained 
by sampling the reconstructed signal ya(t) at the time 
instants t = (nl + µl ) Tin. Here nl is any integer, µl ∈[0,1) is 
the adjustable fractional interval, and Tin is the sampling 
interval of the input signal x(n). 

y(l)x(n)
DAC ha(t)

Resample at
t=(nl +µ l)Tin

ya(t)xs(t)

Fin Fout

 
Fig. 1.  The hybrid analog/digital model for the linear 
interpolation filter. 

For linear interpolation, the impulse response of the 
reconstruction filter ha(t) is a triangular function, and thus, 
its frequency response is given by 
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The digital implementation of the linear interpolation, 
which needs only one multiplication, can be based on the 
following equation: 
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3. PROPOSED STRUCTURE FOR NON-INTEGER 

DECIMATION IN THE CASE OF ε∈(−1,0] 
 
Figure 2 illustrates the proposed structure for the 
decimation filter. The input signal x(n) is divided into 
polyphase components xk(m) for k = 0, 1,· · ·, Rint −1 by 
using delay line and parallel CIC filters. Therefore, the 
sampling rate at the output of the CIC filters is Fin /Rint. 
The final decimation by 1+ε /Rint is done using linear 
interpolation between some of the two signal pairs xk(m) 
and xk⊕1(m), where ⊕ denotes the modulo Rint summation. 
The linear interpolation block in Fig. 2 is shifted by one 
branch according to some condition (to be discussed later 
on). Because of the modulus Rint summation mentioned 
above, the next signal pair for linear interpolation after 
x0(m) and x1(m) is xRint−1(m) and x0(m). The fractional 
interval µl is recalculated for each output sample y(l) for 
l = 0, 1, 2, · · ·. The time interval between samples xk(m) 
and xk⊕1(m) equals to Tin and, thus, the linear interpolation 
is done at the high input sampling frequency Fin. This 
means better image attenuation. The CIC filters attenuate 
the disturbing channels and noise which would cause  
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Fig. 2.  Model of proposed decimation filter.  

aliasing in linear interpolation. In other words, the CIC 
filters and linear interpolation take care of anti-aliasing 
and anti-imaging property, respectively. It should be 
pointed out that the filter structure of Fig. 2 is not the final 
implementation form. All the CIC filter branches are not 
needed and some of the blocks can be shared to make the 
final implementation easier, as will be discussed in 
Section 3. 
 
As an example, Fig. 3 shows the input and output signals 
as well as some of the polyphase signals of the decimation 
filters for the decimation factor of R = 3.9. These 
polyphase signals x0(m) and x1(m) shown in Fig. 3(b) are 
obtained from x(n) using a delay and two parallel CIC 
filters as shown in Fig. 2. Linear interpolation is then 
applied between these two signals to obtain the output 
samples y(l) = y(lTout) for l–1, l, l+1 and l+2. After sample 
y(l+1), the next output sample y(l+2) falls outside the 
interval x0(m) and x1(m). When this occurs, the linear 
interpolation is shifted by one interval (as indicated by an 
arrow in Fig. 2) and the interpolation is done between 
signals xRint−1(m) and x0(m). 

lTout (l+1)Tout (l+2) Tout(l-1)Tout

x(n)

y(l)

x0(m)
(a)

(b)

µ l-1 µ l

x1(m)

xRint−1(m)

lTout (l+1)Tout (l+2) Tout(l-1)Tout
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Fig. 3.  (a) The input and output samples of the proposed 
decimation filter for R = 3.9. (b) The output samples of 
the two parallel CIC filter branches x0(m) and x1(m).  

3.1. The frequency response of the overall system 
 
The overall frequency response of the decimation filter 
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structure in Fig. 2 is a product of the frequency responses 
of the CIC filter and linear interpolation filter. Note that 
the former response is periodical whereas the latter is not. 
The frequency response of the parallel CIC filter stage is 
simply the same as the response of one CIC filter given by 
Eq. (2), where, however, R has to be replaced by Rint. 
Since the linear interpolation is done at the higher input 
rate Fin, its frequency response is given by Eq. (3). 
Consequently, the overall zero-phase frequency response 
of the proposed decimation filter, relative to the input 
sampling frequency, is given by 
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where ω = 2πf /Fin=2πf / (RFout). 
 

4. IMPLEMENTATIONS 
 
The implementation structure in the case of negative , 
given in Fig. 4, is exactly the same as in the case of 
positive ε  that is explained in [2], only the control logic is 
changed. However, here we shortly describe the 
implementation structure for the completeness of the 
paper. In the general case the number of the parallel CIC 
filters B, that is a number of comb filter branches, is given 
with B=2+N, where N is the order of the CIC filter. Two 
branches are used for calculating the output samples and 
the remaining N branches are used for initializing the 
state-variables of the branches needed later. However, the 
number of required comb branches can be reduced to the 
minimum. It is possible to use only B=3 branches in the 
comb section if following condition holds  

 N
1≤ε . (6) 

The integrator stage is shared among the branches. The 
commutators COM1 and COM2 are used to select the 
correct input branch for the B comb sections and for linear 
interpolation, respectively.  
As it was mentioned the control logic algorithm is 
different in the case of negative ε . Using analysis in time 
as in Fig. 3, one can notice that operations for ε ’>0 and 
ε <0 are complementary, where ε ’=1+ε . That means, 
there is shifting performed for the case of ε <0 whenever 
there is no shifting in the case of ε ’>0. Using this 
observation the structure of the algorithm remains the 
same as in [2], however some changes are required. In 
Fig. 5(a) the control logic in the case of negative ε  is 
given. The first step in this algorithm is the initial set up 
of the index value l as well as the fractional interval 

0 = 0 .  The next step is the interpolation which is 
expressed by 
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Fig. 4.  Implementation structure for the proposed 
decimation filter. 

where I( )denotes the linear interpolation between the 
samples u0(m) and u1(m) with the fractional interval of l. 
After interpolation, l is incremented by one and the 
fractional interval can be computed by 

 ’1 εµµ ⊕= −ll , (8) 

with the initial condition 0 = 0 ,  note that here we use 
complementary value ε ’ instead of ε  and this is a main 
difference in the algorithm. In Eq. (8) the modulo 
summation indicates that only the decimal part of the 
result is used. According to Eq. (8), the calculation of l 
can be implemented by using an adder with fixed point 
arithmetic. The shifting in the interpolation has to be 
performed whenever there is no overflow while 
calculating l. Therefore, the overflow bit cl of the adder 
can be used as a shifting condition. The shift block in Fig. 
5(a) means that the interpolation is shifted by one branch 
(see Fig. 2). This shifting operation is implemented using 
the commutators COM1 and COM2 as it is shown in Fig. 
5(b). The commutator COM1 has Rint inputs and B 
outputs. The commutator COM2 has B inputs and two 
outputs. In order to describe the function of the 
commutators we use variables for the outputs of the 
commutators. There are B variables for the outputs of 
COM1 denoted by OUTi

1 for i=0,1… B−1 and two 
variables for COM2 denoted by OUTi

2 for i=1 and 2. The 
values of these variables determine what input sample is 
connected to the ith output. The switching algorithm for 
COM1 and COM2 is given in Fig. 5(b). When shifting 
occurs, only one output of COM1, numbered by p, should 
be switched to the another input. Hence, only the value of 
the variable OUTp

1 is changed. In COM2, when shifting 
occurs, both output branches should be switched to the 
another input. This is done because the order of the 
interpolator inputs must be preserved. 
 

5. EXAMPLES 
 
The bands that cause aliasing to the desired band are 
positioned around frequencies that are multiples of Fout. 
However the zeros of CIC filters are at the points which 
are multiples of RFout /Rint. The minimum aliasing 
attenuation occurs at the edge of the first aliased band. 
Figure 6 shows the minimum attenuation of the aliasing  
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(initial set up) 
01

0 =OUT , 11
1 =OUT ; 

for i=2 to B-1 

   iBROUT ntii +−=1 ; 

end 

02
0 =OUT , 12

1 =OUT ; 

p=1; 

(shifting) 
if c l = 0  then  

   )(11 BOUTOUT
intRpp −⊕= ; 

   )1(−⊕= Bpp ; 

   )1(2
0

2
0 −⊕= BOUTOUT ; 

   )1(2
1

2
1 −⊕= BOUTOUT ; 

end. 
 

(b) 

Fig. 5.  (a) The state flow diagram of the control logic. (b) 
Algorithm for switching of COM1 and COM2. Here ⊕ i  
denotes modulo i summation. 

bands in a range of the fractional decimation factor 
ranging from 32 to 34 in the case of the third order CIC 
filter. As it can be seen the minimum attenuation of the 
aliasing bands depends on ε . As ε  increases the 
minimum attenuation reduces, but this is avoided if we use 
positive ε  algorithm when ε <0.5 and negative ε  
algorithm when ε >0.5, as explained above. 
 

6. CONCLUSIONS 
 

Since the whole structure requires only one multiplier and 
since it offers good anti-aliasing and anti-imaging 
properties, the proposed decimation filter is considered as 
power-efficient, relatively simple, and flexible solution for 
non-integer factor decimation in the multistandard radio 
receivers. We have shown that the negative ε  algorithm 
can be implemented to the proposed structure. It was also 
shown that the negative ε  algorithm allows us to use 
reduced number of comb branches in the actual implem- 
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Fig. 6.  The maximum value of the aliasing bands for 
positive and negative ε  and the third order CIC filter.   

entation, and that means reduction in power consumption 
of the overall structure. Further, better aliasing attenuation 
is achieved using proposed negative ε  algorithm for 
certain range of  and positive �algorithm for other values 
of ε . 
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