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ABSTRACT

The concept of atness is here introduced for dynamic

discrete-time systems analogously to the atness of

continuous-time systems. This concept gives a way

for open-loop as well as closed-loop control design for

dynamic systems when the goal is to drive the sys-

tem from one steady-state to another. The successive

derivatives of the so-called at output and the control

of a continuous-time system are substituted by their

backward shifts in discrete approach. Some atness

based properties are preliminarily studied via a lin-

ear example. Relations to dead-beat control are also

pointed out

1. INTRODUCTION

In many dynamical control and signal processing sys-

tems an intermediate goal is to drive the output of

a system from one steady-state to another as quickly

as possible. The recently coined and studied concept

of atness of nonlinear as well as linear di�erential

equations and systems points out a way for straight-

forward open-loop control design. Di�erential atness

has been developed in the works of Michel Fliess and

his co-workers in France, see, e.g., [7], [8], [10], [12].

It has its origin in the beginning of 1900s in the

studies of Elie Cartan on underdetemined di�eren-

tial systems, i.e. on the sets of di�erential equations

(without control) having a lesser number of equations

than variables. Flatness issues have also been studied

from another viewpoint by utilizing di�erential forms

and exterior algebras, c.f. Murray and co-workers in

[20], and [21], again originating in the work of Cartan.

If the di�erential system is at, its input and state

can be expressed as functions of another variable,

called a at output, and of a �nite number of its time

derivatives, and vice versa this another variable can

be respresented as a function of the state and control

and of devivatives of the control. Then, for control

design, starting from a desired at output, one can

construct the actual state (and output) and the open-

loop control, which produces the output. This can

be done easily just by di�erentiating suÆciently many

times the at output and by using the known, system

dependent functions, see some design examples in [11].

De�nition (Di�erential atness) [10]. Consider a

nonlinear ordinary di�erential system

dx

dt
= f(x; u); x(t) 2 Rn ; u(t) 2 Rm (1)

where x and u denote the state and the control of the

system, respectively. If there exist algebraic functions

A, B, and C and �nite integers �, �, and  such that

for any (suÆciently di�erentiable) pair (x; u) satisfy-

ing the dynamics (1) there exists a vector-valued suÆ-

ciently di�erentiable function z (z(t) 2 Rm ) satisfying

x = A(z; _z; : : : ; z(�)) (2)

u = B(z; _z; : : : ; z(�))

z = C(x; u; _u : : : ; u())

then the system (1) is called di�erentially at and the

variable z is called a at, or linearizing output.

Remark. It has to be noted that the atness concept

actually does not include the output, say y, at all.

Then, in fact, the inclusion of the output equation

for the considerations is, in principle, unnecessary.

However, in any practical control problem there is an

output to be controlled.

In this paper the discrete-time atness is introduced

according to Fliess & Marquez [13], which is based

on the original study of Fliess [6]. Here it is demon-

strated that minimal linear state-variable representa-

tions describe at systems. A scalar example is given

to illustrate open-loop control design based on at-

ness. Corresponding feedback control and nonlinear

problems are discussed, too.

2. DIFFERENCE FLATNESS

There are two possibilities to extend the concept of

atness to discrete-time systems by using a de�nition

analogous to that of di�erential atness. The deriva-

tives can be substituted by forward shifts or backward
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shifts, i.e. the term, say, z(t+ i) = q
i
z(t) substitutes

the derivative
diz(t)
dti

or z(t � i) = q
�i
z(t) substitutes

diz(t)
dti

. Forward shifts were discussed, however, with-

out further explicit constructions in Aranda-Bricaire

et al. [1], p. 2016. Here we apply the following back-

ward shift de�nition.

De�nition (Di�erence atness). Consider a non-

linear ordinary di�erence system

x(t+ 1) = f(x(t); u(t)); x(t) 2 R
n
; u(t) 2 R

m
(3)

If there exist algebraic functions A, B, and C and �nite

integers �, �, and  such that for any pair (x; u) sat-

isfying the dynamics (3) there exists a vector-valued

function z (z(t) 2 R
m
) satisfying

x = A(z; q
�1
z : : : ; q

��
z) (4)

u = B(z; q
�1
z; : : : ; q

��
z)

z = C(x; u; q
�1
u; : : : ; q

�
u)

then the system (3) is called di�erencely at and the

variable z is called a at, or linearizing output.

2.1. Flatness in Linear SISO-Systems

Here we study a class of linear single-input - single-

output (SISO) systems, which are controllable and ob-

servable, and which have the polynomial representa-

tion of the form (an 6= 0)

A(q
�1

)y(t) = B(q
�1

)u(t) (5)

A(q
�1

) = 1 + a1q
�1

+ a2q
�2

+ : : : + anq
�n

B(q
�1

) = b1q
�1

+ b2q
�2

+ : : : + bnq
�n

Theorem 1. Linear di�erence systems of the form

(5), where A(q
�1

) and B(q
�1

) are coprime, are di�er-

encely at when represented in the controllable and

observable form

x(t + 1) = Fx(t) +Gu(t) (6)

y(t) = Cx(t): (7)

A at output is de�ned, see [13], by

z(t) = S(q
�1

)y(t) +R(q
�1

)u(t): (8)

where S and R satisfy, due to coprimeness of A and

B, Bezout's equation

R(q
�1

)A(q
�1

) + S(q
�1

)B(q
�1

) = 1: (9)

Furthermore, the at output gives

u(t) = A(q
�1

)z(t) (10)

y(t) = B(q
�1

)z(t) (11)

The proof is omitted.

Remark. For a practical trajectory design the input-

output description with its atness de�ning equations

(8)-(11) are a feasible way to proceed instead of using

the state variable representation.

3. FLATNESS IN LINEAR

MULTIVARIABLE SYSTEMS

Controllable and observable linear multivariable sys-

tems has two equivalent polynomial matrix fraction

representations, see [5], p. 599. The left coprime frac-

tion representation resembles the representation of a

SISO system. The input-output system having the

control u(t) 2 R
m
, and the output y(t) 2 R

k
has a

representation of the form

A(q
�1

)y(t) = B(q
�1

)u(t)

For the present author this representation did not

open the way for atness.

The right coprime fraction representation of the sys-

tem transfer matrix is of the form (Dn 6= 0)

T (q
�1

) = N(q
�1

)[D(q
�1

)]
�1

(12)

D(q
�1

) = I +D1q
�1

+ : : : +Dnq
�n

(13)

N(q
�1

) = N1q
�1

+N2q
�2

+ : : : +Nnq
�n

(14)

where the matrix coeÆcients areDi 2 R
m�m

andNi 2

R
k�m

. In other words the shift polynomial matrices

are D(q
�1

) 2 R(q
�1

)
m�m

and N(q
�1

) 2 R(q
�1

)
k�m

.

This representation gives an obvious way to de�ne a

candidate for a at output (z(t) 2 R
m
).

z(t) = S(q
�1

)y(t) +R(q
�1

)u(t): (15)

where S and R satisfy, due to coprimeness of A and

B, Bezout's matrix equation

R(q
�1

)
| {z }

m�m

D(q
�1

)
| {z }

m�m

+S(q
�1

)
| {z }

m�k

N(q
�1

)
| {z }

k�m

= Im�m; (16)

where the new shift polynomial matrices are R(q
�1

) 2

R(q
�1

)
m�m

and S(q
�1

) 2 R(q
�1

)
m�k

. Without going

into details it can be shown, by keeping in mind the

matrix nature of the polynomial matrices, that

u(t) = D(q
�1

)z(t) (17)

y(t) = N(q
�1

)z(t): (18)

Consequently, the equations (15), (17), and (18) can

be used for the trajectory design for the output y by

starting from a feasibly chosen at output z.

It seems to be the case that a proper rational transfer

matrix having an irreducible right coprime fraction

representation (12) is di�erencely at. So, we present

the following result in the form of a conjecture, be-

cause all the details have not yet been veri�ed.
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Conjecture. The multivariable input-output system

presented in an irreducible right coprime fraction form

y(t) = N(q�1)D(q�1)�1u(t) (19)

is di�erencely at when represented in a nonreducible

(minimal) observable and controllable state variable

form
x(t + 1) = Fx(t) +Gu(t) (20)

y(t) = Cx(t) (21)

Outline of Proof. The equation (17) is clear. From

the equation (15) the output y and its delayed val-

ues can be eliminated by using the time-reversed state

equation. This results in the desired form

z(t) = V x(t) +W (q�1)u(t); (22)

where V 2 R
m�n , x(t) 2 R

n , and W (q�1) 2

R(q�1 )m�m. It seems that the idea of constructing

for each row Ti(q
�1), corresponding to each output yi,

of the transfer matrix

T (q�1) =

2
6664

T1(q
�1)

T2(q
�1)

...

Tk(q
�1)

3
7775

a state variable representation, with appropriate sub-

system matrices Fi, Gi, and Ci, of the form

x
i(t+ 1) = Fix

i(t) +Giu(t)

yi(t) = Cix
i(t)

according to Chen [5], p. 265, is fruitful. Then along

the same lines as in the SISO case one could construct

for the state components xi
j
(t) representations of the

form
x
i

j
(t) = �i

j
(q�1)z(t):

which then form a long vector related to the at out-

put z by
x(t) = �(q�1)z(t):

4. NONLINEAR SYSTEMS

Local equivalence of a nonlinear system with a linear

one has in continuous-time framework studied by us-

ing a so-called Brunowsk�y canonical form. It is simply

a set of subsequent integrators driven by a single in-

put. The number of the integrator sets is equal to the

dimension of the control. The numbers of the integra-

tors in each chain are so-called controllability indices,

c.f. Chen [5], p. 190. In discrete-time systems the

canonical form corresponding to the Brunowsk�y one

is called a prime system. It is a set of forward shift

lines, each of which is driven by a separate input, see

Aranda-Bricaire et al. [2], [3], & Marino et al. [17].

Consequently, the numbers of the forward shifts are

the controllability indices, too.

Discrete-time systems are obtained via sampling of

a correspondind continuous-time ones with the goal

of obtaining a discrete model amenable for numerical

calculations. Then the zeros of the sampled system

may cause problems in control design. Inclusion of

sampled systems to a general framework of discrete-

time systems has in this respect studied in Monaco

& Normand-Cyrot [18], [19]. Feedback linearisation

was studied in [14]. On the other hand, open-loop

control design based on atness avoids these nonmin-

imum phase problems. A comprehensive framework

for studying nonlinear discrete-time systems was de-

veloped by Grizzle [15].

Theorems including linearizability via static di�eo-

morphisms or via state feedback are all valid for

demonstrating the atness of the original nonlinear

system. Quite generally, without presenting detailed

conditions or giving a proof, it can be stated the fol-

lowing.

Theorem. If the nonlinear discrete-time system

x(t+ 1) = f(x(t); u(t)) (23)

is linearizable to a controllable linear system

�x(t+ 1) = F �x(t) +Gv(t)

via (suÆciently di�erentiable) transformations (c.f.

Jakubczyk [16])

�x = �(x); u = k(x; v)

i.e. via the di�eomorphism � and the state feedback

k then the system (23) is di�erencely at.

5. EXAMPLE

A scalar discrete-time second order system

y(t) + a1y(t� 1) + a2y(t� 2) = (24)

b1u(t� 1) + b2u(t� 2)

is studied. Application of the polynomials A(q�1) =

1+ a1q
�1 + a2q

�2 and B(q�1) = b1q
�1+ b2q

�2 in the

Bezouz's identity gives the �rst order polynomials

R(q�1) = r0 + r1q
�1; S(q�1) = s0 + s1q

�1

The explicit atness equations between the variables

are then

z(t) = s0y(t) + s1y(t� 1) + r0u(t) + r1u(t� 1)

u(t) = z(t) + a1z(t� 1) + a2z(t� 2) (25)

y(t) = b1z(t� 1) + b2z(t� 2)

If the goal now is to drive the output y from 0 to

�y (6= 0) as quickly as possible by suitably manipulat-

ing the control variable u, we have a dead-beat control

problem. It can be shown that the minimal number
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of time steps required Nmin = degB�(q) + 1, where

deg denotes the degree of the reciprocal polynomial

B�(q) = qdegAB(q�1). In the model (24) Nmin = 2.

The design starts by choosing a step change for the

at output z:

z(t) =

�
0; t � 0

�z; 1 � t

The the input obtained form (25)8>><
>>:

u(0) = 0

u(1) = �z

u(2) = (1 + a1)�z

u(t) = (1 + a1 + a2)�z; t = 3; 4; : : :

produces the dead-beat output, i.e.8<
:

y(1) = 0

y(2) = b1�z

y(t) = �y = (b1 + b2)�z; t = 3; 4; : : :

If we want a smoother transfer of the output y from 0

to �y then a gradual change of the at output z form

0 to �z can be applied via some intermediate values

0; �z1; �z2; : : : ; �zn giving the corresponding smoother

control and output.

6. CONCLUDING REMARKS

The concept of atness in discrete-time systems facili-

tates control design for dynamic systems via so-called

at output variables. A typical problem encountered

in traditional control design is the non-minimum phase

problem. Then controlled systems may become unsta-

ble. Design via atness is independent of this property.

On the other hand direct design gives the control only

in open-loop mode. A conversion to practical closed-

loop mode can be carried out via the atness relations

(8)-(11), c.f. [13]. Then the atness-based control

can be applied also under model uncertainties. Mul-

tivariable extensions work analogously to the example

above. A corresponding nonlinear scalar study was

reported in [4].
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