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ABSTRACT

A global optimization approach to active contours is neces-
sary if images to be analyzed have low signal to noise ratio.
In this setting, it is reasonable to study global properties of
energy functions to be optimized. A simple connection be-
tween internal energy functions of active contour models
of a certain type and Rayleigh quotients is derived in this
paper. The importance of Rayleigh quotients lies in the fact
that they are related to eigenvalues of real symmetric ma-
trices. As a consequence, one can study the internal energy
of an active contour model with numerical routines that
are designed for eigenvalue computations of real symmet-
ric matrices.

1. INTRODUCTION

Deformable models [1] are widely used techniques in im-
age analysis and processing. Particularly active contours
[2], also termed snakes, have received a lot of attention.
The idea behind snakes is to regularize edge-detection
by imposing soft constraints on the shape of the contour
to be extracted. This way it is possible to find a contour
from a noisy image without knowing its exact shape or
position. Active contours are frequently applied in med-
ical image analysis [3], but also other applications exist [1].

To be more precise a snake is a curve with an associated
energy function. A contour extraction from an image is
formulated as the minimization of the energy function.
The energy is divided into the internal energy and the
external energy. The external energy is derived from
image data. The internal energy depends only on the shape
of the curve hence regularizing the often ill-posed problem.

The internal energy for the original snake-model [2] was
not invariant to scaling of the curve in order to reduce

sensitivity to initialization imposed by the applied local
minimization technique. For most of the applications, this
solution is not satisfactory, see for example [4], [5]. A
possible solution is to minimize the energy globally and
set hard constraints to ensure admissibility of the result-
ing curve. Normally, this requires the internal energy to
be invariant to translation, rotation and scaling of the curve.

For implementation, it is convenient to approximate the
curve by a polygon, which is completely described by its
vertices. This simple representation is yet a powerful one.
It permits one to incorporate detailed prior information
about the expected shape of the target to be delineated in
the internal energy of the snake [6], [7]. However, fur-
ther analysis of the internal energy function is often omit-
ted. The analysis of its global behaviour may prove to
be important, especially as increased computation power
and improved algorithms allow more efficient energy min-
imization. The intention here is to show that the internal
energy of the snake can be interpreted as a Rayleigh quo-
tient [8]. Rayleigh quotients relate to the eigenvalue prob-
lem for symmetric matrices for which there are a number
of algorithms and software. Hence, the simple connection
provides a fast way to obtain information about the specific
snake model. Assumptions required are not prohibitive and
many active contour models with little or no modification
will satisfy them.

2. SNAKES AND RAYLEIGH QUOTIENTS

A snake is an ordered set of points
� � � � � 	 � � � 	 � � � � �

,
where each snaxel

� � � � � � 	 � � �  " $ &
. Only closed con-

tours are considered and hence subscript arithmetic is mod-
ulo ' . The energy of the snake is

( ) � + � . ( � 0 2 ) � + 3 ) 4 6 . + ( 9 ; 2 ) � + 	
(1)

where
( � 0 2

is the internal energy,
( 9 ; 2

is the external en-
ergy and

. " � @ 	 4 �
is the regularization parameter. The
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internal energy is( � 0 2 ) � +
(2)� C � � �� F � ( � 0 2 ) � � I � � 	 � � � 	 � � � � 	 � � L � 	 � � � 	 � � � � +P ) � +

� C � � �� F � I I C � � �R F � S � U � R 6 � � I I &
C � � �� F � I I � � L � 6 � � I I & 	

where all S � U
are V W V matrices (with the convention thatS � Y � @

). The purpose of the normalization factor
P ) � +

is to yield a scale invariant
( � 0 2

. At least active contour
models presented in [6] and [7] have internal energies,
which can be written in a form (2).

If we now assume that the internal energy (2) is trans-
lation invariant, we can interpret it as a Rayleigh
quotient. For this, let \ � � �  � 	 � � � 	 �  � � � �  �� � � 	 � � 	 � � 	 � � 	 � � � 	 � � � � 	 � � � � �  

. Now (2) can be written
as: ( � 0 2 ) � + � I I ` \ I I &P ) � + 	

(3)

where

` �
bccc
d

6 e S � g h h h S � i j gS � l 6 e S � n h h h S � i j g
...

. . .
...S � � � l h h h 6 e

p qqq
s

and
e

is the V W V identity matrix. However, this is still
not what we are after;

P ) � +
can be zero even if \ is not.

Therefore, recalling that the internal energy is translation
invariant, we assume

� � � v
without any loss of generality.

Let x � � � � 	 � � 	 � � � 	 � � � � 	 � � � � �  
. NowI I ` \ I I � I I ` � @ 	 @ 	 x  �  I I� I I � | � 	 � � � 	 | & � � � @ 	 @ 	 x  �  I I� I I � | ~ 	 � � � 	 | & � � x I I � I I �` x I I �

The normalization factor
P ) � +

is a quadratic form:

P ) � + � � � &� � F & I I � � L � 6 � � I I & 3 I I � & I I & 3 I I � � � � I I & � x  � x 	
where

�
is V ' 6 V W V ' 6 V non-singular matrix. The ma-

trix
�

is also positive definite and hence there is a positive

definite matrix � �
such that � � & � �

[8, Thm. 2.14.2].
The introduction of a new variable � � � � x gives the
interpretation of (2) as a Rayleigh quotient

( � 0 2 ) � + � �  ) � � � � +  �`  �` � � � � ��  � �
(4)

3. PROPERTIES OF RAYLEIGH QUOTIENTS

The next theorem connects the Rayleigh quotient (4) and
the internal energy (2) to the eigenvalues of the real sym-

metric matrix
) � � � � +  �`  �` � � � �

, see [8] Theorems
3.2.1 and 3.3.1 and Exercise 1 at page 111.

Theorem 1 Let � be real and symmetric square-matrix.
The Rayleigh quotient � ) � + � � � � �� � � is stationary at, and
only at, the eigenvectors of the matrix � . At an eigenvector�
, � ) � + � �

, where
�

is the associated eigenvalue. More-
over

� � � � � � � ) � + 	 � � � � � � � ) � +
, where

� �
is the

greatest eigenvalue and
� �

is the least eigenvalue of the
matrix � .

Define
� 3 � � � � � 3 � � I � � @ 	 � � � 	 ' 6 4 �

, where� 	 �
are snakes with ' snaxels. Note that when snakes

are taken as vectors of
$ & �

their addition is simply vector
addition. The scalar multiplication in

$ & �
corresponds to

the scaling of snakes. If we now set
( � 0 2 ) � + � � �

ifP ) � + � @
, where

� �
is the least eigenvalue of the related

matrix
) � � � � +  �`  �` � � � �

we obtain a corollary to the
Theorem 1.

Corollary 1 Let
� �

be the least eigenvalue of the matrix) � � � � +  �`  �` � � � �
related to

( � 0 2 ) � +
. Let the multi-

plicity of
� �

be ¤ . Then the set of snakes of minimum in-
ternal energy ¥ � � � ¦ ( � 0 2 ) � + � � � �

is a vector space.
Moreover, if

� R 	 ¨ � 4 	 � � � 	 ¤ 	
are ¤ snakes correspond-

ing to ¤ linearly independent eigenvectors associated with� �
, a basis for ¥ is� � R I ¨ � 4 � � � ¤ � © � « 	 ¬ � 	

where
« � � � 4 	 @ �  	 � � � 	 � 4 	 @ �  �

and
¬ �� � @ 	 4 �  	 � � � 	 � @ 	 4 �  �

.

The proof of the Corollary is given in the Appendix. Of
course, while performing actual computations, one nor-
mally does not want to find a contour whose length is zero.
However, the above Corollary is still a useful one. For ex-
ample, it is applied in the Section 4.

4. EXPERIMENTS

As an example two particular internal energy functions are
analyzed by computing eigenvalues and eigenvectors of the
related matrices. The internal energy functions are

( �� 0 2 ) � + � C � � �� F � I I � � 6 �& ) � � � � 3 � � + I I &P ) � + 	
( &� 0 2 ) � + � C � � �� F � I I � � 6 �� � I I &P ) � + 	

where

�� � � 4
V ) � � � � 3 � � 3 ¯ � � °' � ± � ) � � � � 6 � � L � + +

and � ± �
is 90 degrees rotation matrix. The function( �� 0 2

is the discretized version of the curvature term of
the internal energy of the original snake model [2]. It
has been normalized by

P ) � +
for scale invariance. The

function
( &� 0 2

is from [6]. Symbols ³ � 	 � � 4 	 V 	
are

used when referring to the matrix
) � � � � +  �`  �` � � � �

corresponding the function
( �� 0 2

.

 

60 



Table 1: Minima and maxima of the two energy functions
when the number of snaxels is varied. Minima of

( &� 0 2
are

always zero.
' � � � ( �� 0 2 � � � ( �� 0 2 � � � ( &� 0 2
20 0.0245 1 1.0251
21 0.0222 0.9944 1.0170
30 0.0109 1 1.0110
31 0.0102 0.9974 1.0077
50 0.0039 1 1.0040
51 0.0038 0.9991 1.0029

100 0.0010 1 1.0010
101 0.0010 0.9998 1.0007

Numerical computations were performed by Matlab 5.3
(Mathworks, Natick, MA, U.S.). It uses the EISPACK
routines [9] for eigenvalue calculations. Square roots of
matrices

�
were also computed by Matlab. For this, it

applies the Parlett-algorithm described in [10, p.384]. The
properties of the two internal energy functions that will be
presented are based on numerical simulations. Some of
these ought to be taken with caution. For example, it is
possible to make an error when stating results concerning
multiplicities of eigenvalues. We may not notice that two
eigenvalues are not equal if they are very close to each
other.

Minima and maxima of the both energy functions for sev-
eral values of ' are listed in Table 1. As can be seen
from Table 1, their ranges tended to

� @ 	 4 �
as ' increased.

The least eigenvalue of ³ �
had multiplicity 4. Snakes� R 	 ¨ � 4 	 � � � ¶

, corresponding some four linearly inde-
pendent eigenvectors were related by a linear transforma-
tion, i.e.

� � � · � R � � · � R º I » � @ 	 � � � 	 ' 6 4 �
, where· ¦ $ & ½ $ &

is a linear transformation. Now, noting that
the curves

� R 	 ¨ � 4 	 V 	 ¿ 	 ¶ 	
all had a shape of an ellipse,

by Corollary 1 it follows that all minimum energy curves
of

( �� 0 2
are ellipses. Curves corresponding to all the other

eigenvalues of ³ �
were self-intersecting and hence classi-

fied as inadmissible solutions to the problem. Also from
the shape of these curves it was clear that all linear combi-
nations of them were also self-intersecting.
For the function

( &� 0 2
the curve of minimal energy is, by

the construction, circle. Our simulation verified the fact.
Moreover, since the multiplicity of the least eigenvalue of

³ & was 2, we can conclude that circle is the only minimum
energy curve of

( &� 0 2
. However,

( &� 0 2
had also other admis-

sible curves as stationary points. Some of these are shown
in Fig. 1.

5. DISCUSSION

We have shown how to interpret a scale and translation
invariant internal energy of a snake as a Rayleigh quotient.
The approach is quite general. For example, the snake
models from [6] and [7] can be seen to satisfy our as-
sumptions. The only real restriction of our approach is the
choice of normalization factor. Also normalization factors

Figure 1: Few curves for which
( &� 0 2

is stationary when
' � ¿ @

.

that do not permit the Rayleigh quotient interpretation can
of course be used. However, further studies and discus-
sions about the meaning of the form of the normalization
factor are beyond the scope of this paper.

Rayleigh quotients relate to eigenvalues of the real
symmetric matrices. Because the symmetric eigenvalue
problem is well-studied, the connection allows one to
analyze global properties of the internal energy functions
of the snake models. Here minima, maxima and stationary
points of two internal energy functions were found by
using the derived connection. Another function had also
admissible, i.e. non-intersecting, curves as stationary
points in addition to the ones of minimal energy. This
is an interesting result, because it clearly demonstrates
a disadvantage of gradient descent techniques for the
optimization in the framework of active contours.

APPENDIX

The proof of Corollary 1 is presented. Snakes� R 	 ¨ � 4 	 � � � 	 ¤ , belong to ¥ by Theorem 1. By
assumption that if

P ) � + � @
then

( � 0 2 ) � + � � �
, also« 	 ¬ " ¥ . Since the (algebraic) multiplicity and the

geometric multiplicity of an eigenvalue of a real symmetric
matrix are equal [8],

P ) � R + Â� @
and the first snaxel of

� R
is zero for each

¨
, the set Ã � � � R I ¨ � 4 � � � ¤ � © � « 	 ¬ �

is linearly independent.

Now let
� " ¥ be arbitrary. Then also

� � � 6 � � « 6
� � ¬ " ¥ , where

� �
(resp.

� �
) is the

�
-coordinate (

�
-

coordinate) of the first snaxel of
�

. Furthermore
� � � v

.
Since Rayleigh quotients are differentiable where defined
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and
� �

is the minimum of the Rayleigh quotient corre-
sponding to

( � 0 2
, from Theorem 1 it follows that there

is an eigenvector associated with
� �

that corresponds to�
. Hence,

�
belongs to a space spanned by Ã . Assume

now that
�

is an arbitrary element of the space spanned
by Ã . Then

�
is obtained by a translation from some

linear combination of
� R 	 ¨ � 4 	 � � � 	 ¤ . It follows that( � 0 2 ) � + � � �

and the proof is completed.
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