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ABSTRACT

In this paper, a sequential architecture for 8×8 inverse dis-
crete cosine transform (IDCT) based on row-column de-
composition is described. The sequential one-dimensional
IDCT kernel is derived by utilizing vertical projection to
fast IDCT algorithm. The matrix transposition network is
realized with a register-based sequential permutation net-
work and the resulting modular two-dimensional architec-
ture can be freely pipelined. Moreover, the accuracy of the
proposed architecture is analyzed in order to fulfil the IEEE
standard for 8× 8 IDCT.

1. INTRODUCTION

Discrete cosine transform (DCT) and its inverse (IDCT)
are widely used tools in digital signal processing. Sev-
eral architectures for DCT and/or IDCT implementations
have been proposed for multimedia purposes. Typically
high speed operation is achieved with the aid of parallelism.
In principle, parallel architectures can be developed by ex-
ploiting inherent spatial and/or temporal parallelism in fast
algorithms for DCT and IDCT. However, such algorithms
are often irregular, which may limit the exploitation level
of the parallelism. In addition to high data rates, the accu-
racy of the implementation is important; e.g., IEEE Stan-
dard 1180-1990 [1] defines accuracy requirements for two-
dimensional 8×8 IDCT implementations.

Direct mapping of algorithm will result in architecture with
both spatial and temporal parallelism. In general, the cost
of the implementation should be low, i.e., the resources,
especially number of arithmetic units, in the architecture
should be minimized. Exploitation of spatial parallelism
results in column architectures where operands are fed into
the architecture in parallel. The arithmetic units are recur-
sively used to compute the entire transform. Exploitation
of temporal parallelism, in turn, results in pipeline archi-
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tectures (or systolic array) where data is fed into the ar-
chitecture sequentially. For this purpose the linear array
processor approach described in [2] can be used.

In this paper, a sequential two-dimensional IDCT architec-
ture is presented utilizing the principles used in architec-
tural derivation of fast Fourier transform [2]. Vertical pro-
jection is applied to signal flow graph of IDCT, which re-
sults in cascaded one-dimensional IDCT architecture. The
row-column decomposition is used for constructing two-
dimensional transform. The required matrix transposition
network is sequential and register-based with optimal num-
ber of registers. Due to the loop free structure, the archi-
tecture can be freely pipelined for improving throughput.
Furthermore, the internal word width requirements are de-
termined and analyzed for reaching the IEEE standard [1].

2. ARCHITECTURE

Architectural derivation is based on rescheduled constant
geometry DCT algorithm of type II presented earlier in [3].
Since the DCT is orthogonal transform, the corresponding
signal flow graph of IDCT in Fig. 1 is achieved by transpos-
ing the signal flow graph of the DCT. In addition, the signal
flow graph is flipped in order to have the operands for each
operation available when the result is needed. Such an ar-
rangement offers an advantage in serial realization; every
sample is not delayed in implementation thus decreasing
the latency. The coefficients di can be generated recur-
sively as

d1 =

√
1
2
, d2i =

√
(1 + di)

2
,

d2i+1 =

√
(1− di)

2
(1)

In order to reduce the dimensionality of the signal flow
graph, the vertical projection [4] is applied to the opera-
tional stages in Fig. 1; the stages are collapsed into a one
dimension resulting in basic sequential blocks. In order to
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Fig. 1. Signal flow graph of fast algorithm for inverse 8-
point DCT-II.

guarantee correct operation, the causality, i.e., the order of
computation should be concerned. Furthermore, the result-
ing processing element realizing only one operation simul-
taneously introduces the requirement of unambiguity.

The operational stages of IDCT algorithm in Fig. 1 are ac-
tually similar to stages in DCT algorithm in [3]. Thus, the
sequential basic blocks introduced in [3] can be utilized for
realizing the sequential IDCT kernel. The basic data pro-
cessing blocks needed in addition to multiplier are butterfly
unit and local subtraction unit, which is capable of perform-
ing the first operational stage of IDCT. The block diagrams
of the blocks are depicted in Fig. 2 (a) and (b).

The functionality of processing blocks in Fig. 2 can be ex-
plained as follows. In order to compute both operations
of butterfly, subtraction and addition, each sample is stored
for two sample periods introducing two storage elements
into butterfly unit. The computation of operations requires
one arithmetic unit that can be controlled to perform either
subtraction or addition. The local subtraction unit in Fig. 2
(b) passes samples through but when subtraction is needed,
it is computed between incoming and delayed value.

All the needed data reorderings in signal flow graph of
IDCT in Fig. 1 can be performed with a sequential permu-
tation network constructed of shift-exchange units (SEU)
as proposed in [5]. A shift-exchange unit of size K (SEUK)
depicted in Fig. 2 (c) is capable of exchanging data ele-
ments K samples apart in sequential data stream. In gen-
eral, perfect shuffle reorders elements of a sequence in such
a way that the elements of the first half of a sequence are
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Fig. 2. Block diagrams of (a) butterfly unit, (b) local sub-
traction unit, and (c) shift-exchange unit of size K (SEUK).
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Fig. 3. Block diagram and timing diagram of sequential
permutation network of 8-point perfect shuffle permuta-
tion. D: Delay register. ck: control signal.

interlaced with the elements of the second half of the se-
quence. In other words, perfect shuffle permutation of a
vector x = (x0, x1, . . . , xK−1)T results in a vector y =
(x0, xK/2, x1, xK/2+1, x2, . . . , xK−1)T . Now, a 4-point
perfect shuffle permutation can be realized with a single
SEU1 unit and an 8-point perfect shuffle with cascade of
SEU2 and SEU1 units as illustrated with a timing diagram
in Fig. 3. Apart from the global reorderings between the
operational stage, there is also a single local reordering,
i.e., exchanging of data elements two samples apart, before
first multiplications in the signal flow graph in Fig. 1. Such
a sample exchange can be realized with a single SEU2 unit.

By cascading the basic data processing and data reordering
blocks described previously, the sequential 8-point IDCT
kernel can be constructed as illustrated in Fig. 4. Each
unit in the 1-D IDCT architecture corresponds to a spe-
cific operational stage in Fig. 1. The loopfree structure en-
ables the efficient pipelining. It should be noted that the
pipeline registers are not included in Fig. 4. However, the
degree of pipelining is a compromise between latency and
throughput. Assuming that each arithmetic unit is followed
by pipeline register, the latency of one-dimensional IDCT
kernel equals to 17 cycles.

In two-dimensional IDCT architectures, which are based
on row-column method, silicon area may be consumed into
realization of the intermediate matrix transposition. The
implementation efficiency is mainly dependent on interpre-
tation of matrix transposition. The most straightforward
way to realize the matrix transposition is its direct interpre-
tation, i.e., rows in, columns out. However, such an ap-
proach will introduce double buffering with large silicon
area and increased latency, since every sample is stored be-
fore reading [6].

The other difference is the way of storing the samples, i.e.,
the realization may be either memory-based or register-
based. Here, the matrix transposition is realized with the
register-based sequential permutation network presented in
[7]. The corresponding structure and principal operation is
illustrated in Fig. 5. It should be noted that the network
is optimal from latency point of view since the maximum
distance of the element to be moved in sequence equals to
latency, which is 49 cycles.
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Fig. 4. Block diagram of sequential IDCT architecture. LSU: Local subtraction unit. D: Delay register. SEUk: Shift-
exchange unit of size k. BU: Butterfly unit. PS8: 8-point perfect shuffle permutation. Clock and control signals are
omitted for clarity.
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Fig. 5. Sequential 8×8 matrix transposition: (a) structure and (b) principal operation [7]. SEUk: Shift-exchange unit of
size k. KD: Shift register of size K.

3. ACCURACY ANALYSIS

The hardware implementations are often based on fixed-
point, i.e., fractional, number representation due to the area
friendly realization. This requires the scaling of interme-
diate signal levels for avoiding overflow during the com-
putations. Typically scaling without additional hardware
costs is done by rewiring, i.e., scaling factors are powers of
two. Due to the fact, that all the intermediate data vectors
are passed through multipliers in the proposed architecture,
the signal levels can be adjusted at multipliers. This, on
the contrary, allows scaling factors to be selected with finer
resolution without additional hardware costs.

In the realizations of fixed-point number representation, the
main error is caused by the finite word width in the interme-
diate arithmetic. This error is also known as quantization
error. A test suite for the accuracy analysis of the proposed
IDCT architecture is made according to the IEEE Standard
1180-1990 [1].

The performance of the pipeline architecture based on the
IDCT algorithm shown in Fig. 1 is analyzed with simu-
lations. First, six random test data sets are generated as
specified in IEEE standard. Next, the proposed architecture
is simulated with different word widths for estimating the
error behaviour. Furthermore, two different quantization
methods, rounding to the nearest integer and truncation of
two’s complement (“rounding towards minus infinity”) are
utilized. The coefficients di are rounded to the same word
width as the internal data.

The obtained error values, mean error and mean square er-
ror per pixel and overall mean error and mean square error,
are presented in Fig. 6 with different word widths. Overall
mean square error reveals to be the limiting factor in simu-
lations and, thus, 17 bits are required to fulfil the specifica-
tion if rounding is used. It should be noted, however, that
this method is more expensive from implementation area
point of view.

If the hardware optimal quantization method, i.e., the trun-
cation of two’s complement is utilized, 22 bits are required
for internal arithmetic. The quantized values are biased al-
ways towards minus infinity and, therefore, the sign of the
error is negative at each pixel location. This removes the
variance present in rounding method and makes the mean
error value almost the same as the mean square error. Word
width can be reduced if the error with opposite sign can be
generated, i.e., introduce some variance to the error.

4. CONCLUSION

In this paper, a pipeline architecture for 8×8 IDCT is pro-
posed. The architecture is based on row-column decom-
position where the IDCT kernel is obtained by projecting
the signal flow graph of fast IDCT algorithm vertically.
The matrix transposition is realized with register-based se-
quential permutation network with optimal number of reg-
isters. The architecture can be freely pipelined for increas-
ing throughput. The internal word width requirements in
case of fixed-point realization was analysed with the aid of

 

34 



a) 16 17 18 19 20 21 22
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Pixel Mean Square Error, max

b) 16 17 18 19 20 21 22
0

0.005

0.01

0.015

0.02

0.025

0.03
Overall Mean Square Error

c) 16 17 18 19 20 21 22
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Pixel Mean Error, max

d) 16 17 18 19 20 21 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
-3 Overall Mean Error

Fig. 6. Error behaviour of the proposed architecture as a function of internal word width: a) pixel mean square error, b)
overall mean square error, c) pixel mean error, and d) overall mean error. Line with squares: rounding, line with circles:
two’s complement, and the solid line: requirement of the IEEE Standard.

simulations. The architecture requires internal word width
of 17 bits with rounding and 22 bits with truncation of two’s
complement to satisfy IEEE Standard 1180-1990. The two-
dimensional IDCT architecture yields arithmetic complex-
ity of 6 multipliers, 6 adder/subtractors, and 4 adders. The
overall latency with pipeline stages of single arithmetic unit
is 83 system cycles.

REFERENCES

[1] IEEE Std 1180-1990, “IEEE standard specification
for the implementations of 8x8 inverse discrete cosine
transform,” International Standard, Institute of Electri-
cal and Electronics Engineers, New York, USA, Dec.
1990.

[2] H. L. Groginsky and G. A. Works, “A pipeline fast
Fourier transform,” IEEE Trans. Comput., vol. 19, no.
11, pp. 1015–1019, Nov. 1970.

[3] J. Nikara, J. Takala, D. Akopian, J. Astola, and J. Saari-
nen, “Sequential architecture for discrete cosine trans-

form,” in Proc. 18th NORCHIP Conference, Turku,
Finland, Nov. 6–7 2000, pp. 279–282.

[4] P. Pirsch, Architectures for Digital Signal Processing,
John Wiley & Sons, Ltd., Chichester, United Kingdom,
1998.

[5] C. B. Shung, H.-D. Lin, R. Cybher, P. H. Siegel, and
H. K. Thapar, “Area-efficient architectures for Viterbi
algorithm I. Theory,” IEEE Trans. Commun., vol. 41,
no. 4, pp. 636–644, Apr. 1993.

[6] J. C. Carlach, P. Penard, and J. L. Sicre, “TCAD: a
27 MHz 8x8 discrete cosine transform chip,” in Proc.
IEEE Int. Conference on Acoustics, Speech, and Signal
Processing, Glasgow, UK, May 23–26 1989, pp. 2429–
2432.

[7] J. Takala, J. Nikara, D. Akopian, J. Astola, and J. Saari-
nen, “Pipeline architecture for 8 × 8 discrete cosine
transform,” in Proc. IEEE Int. Conference on Acous-
tics, Speech, and Signal Processing, Istanbul, Turkey,
June 5–9 2000, pp. 3303–3306.

   

  35 


