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ABSTRACT 
 
In this paper, polynomial-predictive FIR (PPF) design is 
reviewed. Step-by-step instructions are given starting 
from the signal model, up to designing ideal fixed-point 
PPFs. This paper is a one-stop starting point for immedi-
ate application of PPFs. Also, a literature review is given, 
including examples of analogously designable filter types. 
 
 

1. INTRODUCTION 
 
Most real world signals exhibit smooth behavior, if ade-
quately sampled, and the achieved noise level is suffi-
ciently low. With smooth signals, piecewise polynomial 
signal model can be employed. Polynomial signals offer 
themselves for efficient prediction with polynomial-pre-
dictive FIRs (PPFs) [1]. PPFs, and their more sophisti-
cated augmented versions, find applications in control 
field, for example, where they can be advantageously ap-
plied in fighting control loop delay. 
 
Derivation of PPFs is reviewed in Section 2, and design-
ing for exact polynomial prediction in fixed-point envi-
ronments in Section 3. Magnitude response shaping feed-
back design is reviewed in Section 4. A literature review 
is given in Section 5, and Section 6 concludes the paper. 
 

2. POLYNOMIAL-PREDICTIVE FIR DESIGN 
 
The goal of PPF design [1] is to design such FIR coeffi-
cients h(k), k = 1, 2, ..., m, where m is FIR length, that a 
piecewise polynomial input signal is exactly predicted. 
Thereafter, noise gain (1) of the FIR is minimized. 
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2.1. Derivation of Constraints for FIR Coefficients 
 
Here, constraints on the filters coefficients are derived for 
(p+1)-steps-ahead PPFs (e.g. p = 1 yields two-steps-ahead 
prediction). With the latest input sample taken at time n–
1, prediction of an input signal x(n) is generally given by 
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Polynomial signal model yields constraints on the PPF 
coefficients for each polynomial degree i up to the maxi-
mum input polynomial degree I. 
 
0th degree constraint: Prediction of a constant signal 
x(n) = c yields the constant c itself, and constraint g0 as 
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1st degree constraint: prediction of a ramp signal 
x(n) = an with a slope a, is given by 
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which, with (4), yields the 1st degree constraint g1 as 
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2nd degree constraint: prediction of a parabola x(n) = an2 
is given by 
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With (4) and (9), (13) yields the 2nd degree constraint g2. 
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In [1], the constraint for one-step-ahead prediction p = 0 
of an Ith degree polynomial input signal is given as 
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2.2. Derivation of FIR Coefficients from Their 
Constraints 
 
To obtain closed form presentations for the filter coeffi-
cients from the constraints, method of Lagrange multipli-
ers [2][1] may be applied. The objective is to minimize a 
function of the filter coefficients and Lagrange multipliers 
λi, i = 1, 2, ..., I, given by 
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Function (16) includes the noise gain (1), and the con-
straints gi, i = 1, 2, ..., I. (16) is minimized when its partial 
derivatives with respect to the filter coefficients and La-
grange multipliers are zero. For example, for the second 
degree PPFs (I = 2), 
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Next, the partial derivatives are calculated and set to zero: 
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The system (18)–(21) is solved by first solving h(k) from 
(18), inserting h(k) into (19)–(21) and solving for λ0, λ1, 
and λ2, which are substituted back into (18), yielding the 
filter coefficients h(k). Mathematica code for solving this 
system of equations is given in Fig. 1, along with the re-
sulting closed form expression for I = 2 PPF coefficients 
for any p, and the coefficient values for p = 1, m = 10. 
Three lowest degree p = 0 PPFs are given below [1]. 
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In (22)–(24), k = 1, 2, ..., m. In Fig. 2, exemplary PPF 
magnitude responses and group delays are shown. Also 
generally, passband peak is suppressed and the passband 
width gets narrower as PPF length increases or polyno-
mial degree decreases. Prediction band, i.e., frequency 
range with group delay sufficiently close (depends on the 
application) to –p–1, gets narrower with increased PPF 
length or polynomial degree.  
 

3. FIXED-POINT PPF DESIGN 
 
Requirement for exact polynomial prediction in fixed-
point environments is that the fixed-point PPF (FPPPF) 
coefficients hq(k) must exactly satisfy the constraints (4),  
(9), (14), and up to the constraint for degree I [3]. At sim-
plest, FPPPF design can be an exhaustive search [4] over 
a limited region of a quantized coefficient space H, to find 
quantized coefficients hq(k) ∈ H, k = 1, 2, ..., m, which 
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Fig. 1. Solving the system of equations (18)–(21) with 
Mathematica. Also calculated are the values of the p = 1, 
m = 10, PPF coefficients. Notation: hk = h(k), λi = λ(i). 
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Fig. 2. Frequency responses (a) and group delays (b) of 
exemplary PPFs: I = 1, p = 0: m = 20 (dotted) and m = 50 
(solid); I = 2, p = 0: m = 20 (dashed) and m = 50 (dash-
dot). In (b), also the group delay of the PPF calculated in 
Fig. 1 (dark dotted). 
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fulfill the constraints. An example of a search region 
spawning two quantization levels above and below the 
exact coefficients h(k), given by (24), is seen in Fig. 3. 
 
After finding all the sets of hq(k) ∈ H, k = 1, 2, ..., m, 
which exactly satisfy our constraints within the search re-
gion, the set that minimizes the noise gain (1) is selected 
as the ideally quantized coefficient PPF. One such set of 
coefficients is seen in Fig. 3. Though the ideally quan-
tized coefficient PPFs make no assumptions of global 
noise gain minimization, their noise gain losses are negli-
gible when compared with the noise gains of the corre-
sponding non-quantized coefficient PPFs [3]. 
 

4. MAGNITUDE RESPONSE SHAPING 
 
Magnitude responses of PPFs exhibit high inherent pass-
band peaks, which is a drawback in most applications. By 
augmenting PPFs with appropriate feedbacks [5], PPF 
magnitude responses can be shaped without affecting the 
predictive properties. An augmented PPF of length m = 2 
is illustrated in Fig. 4. This feedback has smoothing func-
tion, since the leftmost summation point yields a weighted 
sum of an input sample and its prediction, like also the 
second summation point within the delayline, as seen 
from Fig. 4. Thus, the feedback does not affect the pre-
dictive properties of the PPF. Conditions for the feedback 
to exactly preserve the predictive properties of the basis 
PPF are only that {b(k), 1 – b(k)} ∈ H, k = 1, 2, ..., m, i.e., 
the feedback coefficients belong to the same quantized 
coefficient space H as the PPF coefficients h(k) [3]. 
 
In Fig. 5, magnitude response and group delay of the 
shortest I = 1, p = 0, PPF (23), m = 2, is shown along with 
two augmented PPFs with the same basis PPF [3]. Using 
feedbacks, passband peak is clearly reduced. All filters in 
Fig. 5 are coefficient quantization error free with eight bit 
coefficients, i.e., they fulfill all the required constraints. 
 

5. LITERATURE REVIEW 
 
PPFs were derived by Heinonen and Neuvo in [1], where 
the case p = 0 is presented. Derivation of PPFs with any p 
is given in the appendix of [6], and in [7], least squares 
formulation of PPF design for any p and I is given in a 
matrix form suitable for numerical calculations. In [7], as-
ymptotic noise gain of PPFs is also derived. In [8], a com-
putationally efficient structure for implementing PPFs is 
given; complexity does not depend on the PPF length but 
only on I. In [9], PPFs [1] were formulated for complex-
valued signals. Derivation and an example of an interpo-
lated FIR approach to PPFs, resulting in lower complex-
ity, is presented in [10]. To suppress passband peaks of 
PPFs, a prefiltering approach was proposed in [11]. 
Thereafter, PPF feedback augmentation design is given in 
[5]. In [5], examples are given on a modified first-degree 
PPF filter with a notch for power line frequency suppres-
sion, and on predictor-estimator cascade design providing 
for better stopband attenuation. Feedback augmentation is 
also presented in [12]. Finite coefficient word length is 
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Fig. 3. A search band (between solid lines) for quantized 
coefficients of the I = 2, p = 0, m = 8, PPF with 8-bit coef-
ficient precision. Circles ‘o’ denote the magnitude trun-
cated, and plusses ‘+’ the ideally quantized coefficients. 
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Fig. 4. Feedback augmented PPF of length m = 2. Hat de-
notes predictive estimate. 
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Fig. 5. Magnitude responses (a) and group delays (b) of 
augmented coefficient quantization error free I = 1, p = 0, 
m = 2 PPFs with the feedback coefficients {b(1), b(2)} 
= {0.6875, –0.9375} (dark dotted) and {b(1), b(2)} 
= {0.9375, –0.9375} (solid), along with their basis PPF 
{h(1), h(2)} = {2  –1} (dashed). 
 
the topic of [13][14]. PPF feedback coefficients are opti-
mized using a genetic algorithm in [15], and rigorously in 
[16]. Design of exact fixed-point PPF implementations is 
presented in [4] (also for predictive polynomial differenti-
ator FIRs), along with integer programming interpretation 
of the design method. Conditions for exact fixed-point 
implementations of predictive polynomial differentiator 
FIRs, and of their feedback augmentations, are given in 
[3], where also a quantization error feedback approach for 
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roundoff noise alleviation is proposed. PPFs are also the 
topic of [17]. Polynomial predictive filtering in control 
instrumentation is reviewed in [18] with several predictor 
structures. Matlab packages for PPF and augmented PPF 
design are available at [19] (note on the nomenclature: in 
[19] PPFs are referred to as Heinonen-Neuvo (H-N) fil-
ters, and augmentation can be done with the “FIR2IIR” 
designer). 
 
Predictive polynomial differentiator FIRs (PPDFs) are de-
rived analogously to PPFs; PPDFs for I = 1 are derived in 
[20], and for I = 2 in [21]; in them, also efficient recursive 
implementations are given. PPDFs get their feedback 
augmentations in [22]. PPDFs are also discussed in [23], 
and their coefficient quantization sensitivity is illustrated 
in [24]. PPDFs for angular acceleration measurement are 
reviewed in [25]. 
 
Sinusoidal predictors (SPs), also derived in time domain, 
are derived in [26] for application in power line frequency 
zero crossing detection. Evolved version of the system in 
[26] is presented in [27], where SPs are derived with con-
straints for suppression of DC and the first odd harmonic 
of the nominal SP frequency. IIR based computationally 
efficient implementation of SPs is given in [10]. A com-
prehensive presentation of SPs is given in [28], where 
also feedback augmentation is added to SPs. 
 

6. CONCLUSIONS 
 
Polynomial-predictive filtering, derived in time domain, is 
generally not well-known, and usually not mentioned in 
standard text books. Still, it is efficient and beneficial in 
processing many real-world signals. For most applica-
tions, it is sufficient to apply low degree polynomial pre-
dictors, i.e., of the maximum degree of I = 1, 2, or 3, 
which is also recommendable from the predictor magni-
tude response characteristics point of view. 
 
In this paper, step-by-step instructions for designing 
polynomial-predictive filters are given, along with a 
fixed-point design method. A literature review on 
polynomial-predictive FIRs and associated time domain 
filters is given. 
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