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ABSTRACT

An adaptive autoregressive moving average (ARMA)
modelling of nonstationary EEG by means of Kalman
smoother is presented. The main advantage of the
Kalman smoother approach compared to other adaptive
algorithms such as LMS or RLS is that the tracking lag
can be avoided. This advantage is clearly presented
with simulations. Kalman smoother is also applied to
tracking of alpha band characteristics of real EEG dur-
ing an eyes open/closed test. The observed tracking
ability of Kalman smoother, compared to other meth-
ods considered, seemed to be better.

1 INTRODUCTION

In the analysis of nonstationary EEG the interest is of-
ten to estimate the time-varying spectral properties of
the signal. A traditional approach to this is the spec-
trogram method, which is based on Fourier transfor-
mation. Disadvantages of this method are the implicit
assumption of stationarity within each segment and
the rather poor time/frequency resolution. A better
approach is to use parametric spectral analysis meth-
ods based on e.g. time-varying autoregressive moving
average (ARMA) modelling. The time-varying param-
eter estimation problem can be solved with adaptive
algorithms such as least mean square (LMS) or re-
cursive least squares (RLS). These algorithms can be
derived from the Kalman filter equations [1], [2].

In this paper we use the Kalman smoother algo-
rithm in tracking of nonstationary properties of EEG.
Kalman smoother is compared to LMS and RLS al-
gorithms in tracking of alpha band characteristics of
EEG measured during an eyes open/closed test. The
Kalman smoother approach is also applied to the de-
tection of alpha waves of EEG. The main advantage
of the Kalman smoother algorithm compared to other
adaptive algorithms is the fact that the tracking lag
can be avoided. This is demonstrated with simula-
tions. Kalman filter has been previously used in EEG
analysis in e.g. [3], [4], [5].

2 METHODS

If the signal to be modelled is nonstationary it cannot
be modelled as an output of a time-invariant system.
It is natural in this case to assume that the system has
time-varying parameters.

2.1 Time-varying linear regression

Here we use the time-varying autoregressive moving
average ARMA(p,q) model for the signal

z(t)= −
p∑

j=1

aj(t)z(t − j)+
q∑

k=1

bk(t)e(t − k)+e(t) (1)

where aj(t) and bk(t) are the time-varying ARMA pa-
rameters and e(t) is the driving white noise process.
By denoting

θt = (−a1(t), . . . ,−ap(t), b1(t), . . . , bq(t))
T (2)

ϕt = (z(t−1), . . . , z(t−p), e(t−1), . . . , e(t−q))T(3)

the model can be written in the form

zt = ϕT
t θt + et (4)

where zt = z(t) and et = e(t). This is clearly a lin-
ear observation model, with ϕT

t being the observation
matrix and et being the observation error. A typi-
cal description for the parameter variation when no
a priori information is available, is the random walk
model [6]. Thus for the parameters θt we write a state
equation of the form

θt+1 = θt + wt (5)

where wt is a noise process. Equations (4) and (5) form
a specific form of the general state space equations,
with the input process wt. Now the problem is to
estimate the time-varying parameters θt, according to
the state space model.

2.2 Kalman filter

The Kalman filtering problem is to find the minimum
mean square estimator θ̂t for state θt given the obser-
vations z1, . . . , zt. This has been shown to be equal to
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the conditional expectation value

θ̂t = E {θt|z1, . . . , zt} (6)

We assume here the state and measurement noises
wt and et to be uncorrelated, zero mean, random
processes with covariance matrices Cwt

= σ2
wI and

Cet
= σ2

eI, so that the individual parameter evolu-
tions are assumed to be independent. The initial state
θ0 is assumed to be uncorrelated with et and wt with
finite variance. The Kalman filter equations can be
written in the form

θ̂t|t−1 = θ̂t−1 (7)
Cθ̃t|t−1

= Cθ̃t−1
+ Cwt−1 (8)

Kt = Cθ̃t|t−1
ϕt

(
ϕT

t Cθ̃t|t−1
ϕt + Cet

)−1

(9)

Cθ̃t
=

(
I − Ktϕ

T
t

)
Cθ̃t|t−1

(10)

εt = zt − ϕT
t θ̂t|t−1 (11)

θ̂t = θ̂t|t−1 + Ktεt (12)

where θ̂t|t−1 is the mean square estimator for state
θt given the observations z1, . . . , zt−1, θ̃t is the state
estimation error θ̃t = θt − θ̂t and Kt is the Kalman
gain matrix. The adaptation of the filter is primarily
affected by Cwt

.

2.3 Fixed-interval smoother

The fixed-interval smoothing problem is to determine
estimates

θ̂t|T = E {θt|z1, . . . , zT } (13)

for fixed T and for all t in the interval 1 ≤ t ≤ T . The
solution for this can be written in the form [7]

θ̂t−1|T = θ̂t−1 + At−1

(
θ̂t|T − θ̂t|t−1

)
(14)

At−1 = Cθ̃t−1
C−1

θ̃t|t−1
(15)

where At−1 includes the error covariances stored in
the forward run of Kalman filter. Also the state esti-
mates θ̂t and θ̂t|t−1 need to be stored. The smoothed
estimates θ̂t−1|T are then obtained by running the
stored estimates backwards in time by taking t =
T, T − 1, . . . , 2. The initialization is evidently with
the filtered estimate.

2.4 Spectral estimation

Once the time-varying coefficients of the ARMA(p,q)
model (1) are solved the time-varying power spectral
density (PSD) estimation can be obtained in the terms
of the estimated coefficients

Pt(ω) = σ2
e(t)

|1 + ∑q
k=1 bk(t)e−iωk|2

|1 + ∑p
j=1 aj(t)e−iωj |2 (16)

where σ2
e(t) is the prediction error variance. After the

adaptive algorithm, used to estimate the time-varying
ARMA parameters, converges power spectrum can be
calculated for each time instant.
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Fig. 1. AR(2) process estimation with RLS and Kalman
smoother algorithms. The root evolution and the realization
are presented in block (a). Both algorithms were optimized (b).
Optimal value for the state noise covariance coefficient of the
Kalman smoother was σ2

w = 0.001 and the forgetting factor of
RLS was λ = 0.935. The estimates of the modulus and phase an-
gle of the root are shown in block (c). The true values (black),
Kalman smoother estimates (red) and optimal RLS estimates
(blue). The smoother RLS estimates (green) were calculated by
using λ = 0.98.

3 RESULTS

In order to evaluate the performance of the Kalman
smoother algorithm we conduct two simulations,
where Kalman smoother is compared to the popular
forgetting factor RLS algorithm. Finally the Kalman
smoother is applied to time-varying spectrum estima-
tion of real EEG and for alpha wave detection.

3.1 Simulations

In the first simulation a time-varying signal was gen-
erated as an AR(2) process. The root evolution and
a typical realization are presented in Fig. 1 (a). The
modulus and phase angle of the root were estimated
with Kalman smoother and RLS algorithms. Parame-
ters controlling the adaptation were optimized in both
algorithms to obtain the minimum error in AR coeffi-
cient estimation. The estimation errors as a function
of adaptation parameters for both algorithms are pre-
sented in Fig. 1 (b). The estimates are shown in Fig.
1 (c).

RLS estimates with the optimal value for the forget-
ting factor have only a small tracking lag but the esti-
mates are far more unstable compared to the Kalman
smoother estimates. By increasing λ RLS estimates
become more stable but the tracking lag increases at
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Fig. 2. A realistic simulation of EEG transition as an AR(5)
process. (a) The roots and the corresponding spectra before
(blue) and after (red) the transition. (b) A typical realization
of the process. Averaged estimates over 100 realizations of the
modulus and phase angle of the root corresponding to alpha
activity are presented in (c), where true values (black), Kalman
smoother estimates (red) and RLS estimates (blue/green) are
shown. The state noise covariance coefficient of the Kalman
smoother was σ2

w = 8 · 10−5 and the forgetting factors of RLS
were λ1 = 0.98 (blue) and λ2 = 0.9 (green).

the same time. This simulation shows clearly the ad-
vantages of the Kalman smoother compared to the
RLS algorithm. However not much can be said about
the performance of the Kalman smoother in tracking
of nonstationary EEG based on this simple simulation.
Hence we aim to a more realistic simulation of EEG.

In many cases we are interested in tracking of narrow
band characteristics of the EEG signal. One such case
is the event related desynchronization/synchronization
(ERD/ERS) of alpha waves. The occipital EEG
recorded while patient having eyes closed shows high
intensity in the alpha band (7-13 Hz). With the open-
ing of the eyes this intensity decreases or even vanishes.
It can be assumed that EEG exhibits a transition from
a stationary state to another. Such a transition was
here simulated as an AR(5) process. The roots of
the system for both stationary states (obtained from
real EEG measurements) and the corresponding power
spectrums are presented in Fig. 2 (a).

In order to make the simulation more realistic abrupt
transitions of AR coefficients were smoothed as de-
scribed in [8]. A typical realization of the simulated

Fig. 3. Time-varying spectral analysis of ERD/ERS test of
alpha waves of EEG. The measured EEG from channel O2 is
shown on the topmost axis. The time window used in the spec-
trogram was 2 seconds. The step size of LMS algorithm was
µ = 0.0002 while the forgetting factor of RLS was λ = 0.95.
The state noise covariance coefficient of the Kalman filter was
σ2

w = 0.0003.

AR(5) process is presented in Fig. 2 (b). Results of
tracking the alpha band characteristics are presented
in Fig. 2 (c), where averaged estimates over 100 real-
izations of the phase angle and the magnitude of the
root corresponding to alpha activity are presented. In
order to obtain as smooth estimates with RLS as is ob-
tained with Kalman smoother the forgetting factor λ
must be quite small. However this leads to substantial
tracking lag. With larger values of λ the tracking lag
can be attenuated, but estimates become now more
unstable.

3.2 ERD/ERS of alpha waves of EEG

The eyes open/closed test is a typical application of
testing the desynchronization/synchronization of al-
pha waves of EEG. One such transition from desyn-
chronized state to synchronized state is presented in
Fig. 3. The performance of the Kalman smoother
in tracking of alpha band characteristics is compared
to most commonly used adaptive algorithms RLS and
LMS and also to the traditional spectrogram method.
An ARMA(6,2) model was used in all adaptive algo-
rithms. The length of the time-window used in spec-
trogram was 2 seconds, which is long enough when con-
sidering the frequencies of the alpha band (7–13 Hz).
The step size of the LMS algorithm was µ = 0.0002
and the forgetting factor of RLS was chosen to be
λ = 0.95 resulting in quite stable estimates and still
rather fast adaptivity. The state noise covariance co-
efficient of the Kalman smoother was σ2

w = 0.0003.
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Fig. 4. Kalman smoother applied to alpha rhythm detection.
(a) An EEG sample of 15 seconds from channel O2 measured
from subject having eyes closed and the corresponding time-
varying PSD. Detection is based on thresholding the power in-
tegral over the alpha band (7–13 Hz) with a threshold of 10
µV2/Hz. Block (b) presents PSD estimates (calculated with
traditional FFT based method) for the signals obtained by con-
catenating the EEG epochs where alpha activity was detected
(red) or not detected (blue).

The tracking speed of the Kalman smoother seems to
be fastest and an interesting gap in alpha rhythm is
observed after 9 seconds. The contents of this kind of
gaps is considered more closely in Fig. 4.

3.3 Detection of alpha rhythm of EEG

The aim of automatic EEG analysis is often the de-
tection of certain waveforms. Hence the performance
of the Kalman smoother on detection of alpha waves
of EEG is considered here. Fig. 4 (a) presents a time-
varying spectrum for an EEG sample of 15 seconds
measured from healthy subject having eyes closed. Al-
pha wave detection was obtained by thresholding the
power integral over the alpha band (7–13 Hz). The
threshold was set to 10 µV2/Hz. The performance
of the alpha detector was verified by concatenating
the EEG epochs where alpha waves were detected and
those were no detection was made. The PSD esti-
mates, calculated with a traditional FFT based peri-
odogram method, for these concatenated signals are
presented in Fig. 4 (c) verifying the absence of alpha
rhythm in the lower concatenated signal.

4 DISCUSSION

The Kalman smoother algorithm was applied to
tracking of nonstationary EEG. The performance of
Kalman smoother in tracking of alpha band character-
istics seemed to be most reliable compared to LMS and

RLS algorithms. Kalman smoother was also applied
to the detection of alpha waves of EEG with success.
Also two simulations were conducted showing clearly
the main advantages (smooth estimates without track-
ing lag) of Kalman smoother compared to other adap-
tive algorithms. The implementation and usability of
the Kalman smoother approach are straightforward.
The adaptation rate is adjusted simply by setting the
state covariance coefficient σ2

w.
One problem in modelling the data with adaptive al-
gorithms is the selection of the model order. For time-
invariant systems there exist various criteria for select-
ing the model order [9]. All these criteria are based on
the compromise between model fit and model complex-
ity. Also in the time-varying case there exist some cri-
teria for selecting the model order. For example in [10]
the use of Akaike’s information criterion (AIC) was
justified in the time-varying case under certain condi-
tions. However in the case of tracking alpha rhythm
of EEG the ARMA model of order p = 6 and q = 2
seems to be suitable. The same model order was also
used in [11], [12].
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