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Abstract. In this paper we explore the design of internet-based systems using
field-programmable logic (FPL). We describe results from designing a
hardware platform that connects FPL directly to an internet. This hardware
platform comprises an FPGA; an Ethernet interface; storage for static and
dynamic configuration; and nonvolatile configuration logic. An important
feature of our hardware platform design is the implementation of network
protocols that allow transfer of both application and configuration data to and
from an FPGA across an internet. We provide quantitative comparisons
between the implementation of network protocols in programmable logic and
implementations using general-purpose processors.

Introduction

There is a growing demand for small, low cost, low power, flexible computing
devices or appliances that attach directly to internets. For example, there are
marketing forecasts that non-PC devices will account for almost 50 percent of internet
connected devices by 2002 and that sales of such internet appliances will likely
exceed the number of PCs sold by 2005 [1]. These internet connected devices or
appliances are a potential application for field-programmable logic (FPL). The ability
to use FPL and the Internet to reprogram hardware remotely would enable re-
programmable switches, routers, and firewalls; multipurpose hardware devices;
remote debugging and instruction; field upgrades and fixes; support for new and
changing standards; and many other applications [2−6]. We set out to explore the role
of FPL in such internet applications.

Currently PCs dedicate special hardware to control peripherals (memory, disks,
video, even for mouse and keyboard) yet there is no special hardware to control what
may become the most important peripheral of all: the Internet. Instead, we typically
use a large and inefficient operating system running on a processor that is highly
optimized for arithmetic and data processing. The complex pipelines and large
arithmetic and floating-point units of modern microprocessors remain largely unused
during communication. We wondered what was the most appropriate design for
internet applications: processors (general or special purpose), dedicated hardware,
programmable hardware, or a combination of any or all of these with software.
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There are three types of questions we set out to answer:
•  Engineering. Can we replace conventional microprocessor and software by

dedicated internet hardware? What performance can we achieve?
•  Economic. What is the cost? Does it make economic sense to dedicate hardware to

the Internet as a peripheral?
•  Technology. If the economics make sense, what is the appropriate technology?

We built a hardware platform to explore the answers to these questions;
particularly the trade-offs between hardware and software implementations of an
increasingly important function: internet connectivity. In this paper we answer the
first group of engineering questions by explaining how we designed one solution. We
do not have complete answers to the remaining questions (yet), but in this paper we
begin to address these issues in a quantitative manner.

There are two ways to communicate over a channel: in a dedicated or shared
manner. In a shared network such as the Internet, data is divided up into packets and
each packet travels separately from source to destination. We focus on the Internet in
this paper, though our work applies to any packet-shared network: wired or wireless.

The Internet is built around a set of protocols, which are methods and algorithms
that handle the data packets. The most commonly used protocols established over the
last 20 years are the Transmission Control Protocol (TCP) and the Internet Protocol
(IP). TCP and IP are usually thought of as separate layers, but normally implemented
together in software, called the TCP/IP stack, that runs on a general-purpose
processor. However, the Internet runs on many layers of software and hardware, not
just the TCP/IP stack. Comer [7] and Stevens [8] explain the software fabric of the
Internet.

If the Internet is a road and a connected device is a car, you could think of the
TCP/IP stack as the car engine. The hardware layer below the TCP/IP stack is the
media access controller (MAC), the gearbox and brakes of the car. The hardware
layer below the MAC that connects to the cables of the Internet is the physical layer
(PHY), the wheels of the car. There will be different PHY layers depending on
whether we use cable, wireless, or fibre, for example. However, the connection
between the MAC and different PHY layers is very similar (and often identical), and
is called the media-independent interface (MII). The digital MII is the interface
between special (often mostly analog) PHY circuits and the digital systems that
implement the MAC and TCP/IP stack. We have been unable to find good reference
materials that explain the (mostly hardware) MAC and PHY layers, other than the
datasheets from companies that make these components (see [9], for example). The
definitive reference is the IEEE standard 802.3.

If we wish to add internet connectivity to a device, we must decide how to
implement the MAC layer and protocol processing, such as the TCP/IP stack, either in
programmable logic, dedicated hardware, processor plus software, or some
combination of these. In order to make these decisions we must be able to measure
the advantages and disadvantages of each approach. Kumar et al. have examined
benchmark suites for configurable computing systems [10], but we need measurement
techniques for network processing. There is little published work in this area and we
decided to establish some metrics ourselves before designing out hardware platform.

In the following section we establish some complexity measures for a MAC as
well as a software plus processor implementation of a TCP/IP stack. TCP and IP may
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not be the most important protocols (and certainly not the only protocols) for future
internet applications, but in this paper we use the TCP/IP stack to make our
complexity estimates, because few devices use other protocols.

We will examine three example designs using a PIC, an 8051 microcontroller, and
a Sparc microprocessor to estimate average as well as lower and upper bounds for the
amount of hardware and software required to implement a MAC and TCP/IP stack. At
the end of this paper, we will compare the figures for these example designs with our
FPGA hardware implementation.

Bounds on Protocol Processing

In June 1999 a small web server was implemented in 512 12-bit instructions (256
instructions for the TCP/IP functions) using a programmable microcontroller (a
Microchip 12C509A, often called a PIC [11]) and a 24LC256 EEPROM (256 kbit).
This web server used the Serial Line Internet Protocol (SLIP) in order to
communicate with a host computer (bypassing the need for an Ethernet MAC). This
PIC-based design supported a web site with approximately 32 small files (located in
the external EEPROM) [12].

Though few details of this particular design are available, it is reasonable to
conclude that it used „stateless TCP/IP“ instead of a conventional TCP/IP stack.
Stateless TCP/IP uses precomputed packets to drastically simplify the stack design.
Nevertheless, we will use this PIC-based design to establish a lower bound on the
complexity of an implementation of a very simple form of TCP/IP stack using
software plus processor.

We can make an estimate of gate size (in four-transistor NAND gate equivalents) if
we were to implement the PIC-based design using an ASIC or FPGA. We have used
metrics from [13, Chapter 15] to estimate the number of gates used by the
components, the ALU and datapath, for which we have area, but not gate size
estimates. We used a conversion factor of 5 × 10-4 /λ2 for a standard-cell ASIC
implementation. The parameter λ measures the feature size and permits gate size
measurements to be made from area measures, independently of the process
generation.

The 12C509A PIC contains a processor, 1024 by 12 bits of EPROM memory, and
41 bytes of data memory [11]. Table 1 shows the estimates of the gate counts for each
of the components in the 12C509A PIC. The total gate count estimate is 16.4 kgate
(including onboard program and data memory) or 4.5 kgate (excluding program
memory). This estimate is definitely a lower bound because some of the TCP/IP tasks
(constructing packet headers, for example) have been precomputed and stored in the
external EEPROM.

Table 2 shows the PIC-based design gate estimates translated to the Xilinx Virtex
FPGA family. The Virtex parts contain static RAM (called Block RAM) that are
separate from the CLBs. (The CLB, or Configurable Logic Block, is the basic unit of
logic in a Xilinx static RAM-based FPGA. One Virtex CLB contains four logic cells
plus four flip-flops organized as two slices.) Each Block RAM is a synchronous dual-
port 4 kbit RAM. The 12 kbit of EPROM onboard the 12C509A PIC thus translates to
four blocks of Virtex RAM. We will explain the figures used to estimate the size of
the MAC presently.



Internet Connected FPL      51

Table 1. Microchip 12C509A PIC Gate Size Estimates.

PIC component Area/kλ2 kgates Notes
ROM program
memory [11]

12 1024 x 12 bits, 1 gate per bit

EEPROM data and
control memory [11]

0.5 41 bytes, 1 gate per bit

8-bit ALU [13] 330 0.2 Estimate for a simple 8-bit
processor, 2901 equivalent

Instruction decode 2 Estimate for a simple 8-bit
processor

8-bit datapath 2400 1.2 Registers and Muxes
Timers (estimate) 0.5 Registers and Muxes
Total 16.4

Our average bound design uses a typical implementation of a MAC and a TCP/IP
stack in an embedded system with an 8051 microcontroller. A commercial 8051 core
(an 8-bit machine) occupies approximately 500 CLBs in a Xilinx Virtex FPGA (this
figure is for the processor core and excludes program memory) [14]. The
synthesizable 8051 soft core from Synopsys requires 10−13 kgate [15]. These two
measurements of the size of an 8051 give us a conversion factor (biased towards
circuits such as microprocessors) of approximately 20 gates/CLB that we will use in
this paper. (Any attempt to compare ASIC and FPGA capacities in gates is fraught
with problems, but we are using these figures here for no more than back-of-the-
envelope calculations.) Additional space for code is required to implement the TCP/IP
stack and an Ethernet MAC in our 8051 based example. We can estimate the code
requirements as follows:
•  A typical embedded TCP/IP stack requires approximately 25 kbyte of code (see

[16], for example).
•  A full-featured commercial Ethernet MAC core occupies about 800 Virtex CLBs

[17], or about 16 kgate.
•  A basic Ethernet MAC requires about 4 kgate [13], or about 200 Virtex CLBs.
•  Driver code for the Ethernet and a real-time operating system (RTOS) to handle

the 8051 interrupts is also required. A typical RTOS requires a minimum of 4
kbyte of code to perform task management and handle interrupts (see [18], for
example, for figures for an ARM7 processor).

Table 2 shows that the 8051 based design totals 10 kgate (excluding program and
data memory). Table 2 also includes a lower estimate of 25 kbyte of ROM and 4
kbyte of RAM for program and data memory, which translates to 58 Virtex RAM
blocks.

Our upper bound design uses a Sparc processor. The Leon embedded Sparc
compatible processor requires 1800 Virtex CLBs (36 kgate) [19]. A TCP/IP stack for
a Sparc compatible processor requires approximately 25 kbyte [16]. Again, this is in
addition to the approximately 10 kbyte memory requirement of a Sparc compatible
RTOS (see [18] for figures for a Sparc-lite processor). Table 2 shows the Sparc-based
design totals 36 kgate (excluding program and data memory) and would require about
70 blocks of RAM if implemented in a Virtex FPGA.
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Table 2. Processor implementation summaries.

Resource PIC 8051 Sparc Notes
Gates (kgate) 4.5 10 36
ROM (kbyte) 1.5 25 25 1024 x 12 bits
RAM (kbyte) 0 4 10
Virtex BRAM 3 58 70 4 kbit per block RAM
Virtex CLBs 425 700 2000 Include 200 CLB for simple

Ethernet MAC

Our estimates for implementing the lower bound (PIC), average (8051), and upper
bound (Sparc) solutions for internet protocol processing in FPGA logic are
summarized in Table 2. The smallest member of the Virtex family, the XCV50,
contains 384 CLBs and eight blocks of RAM; the XCV1000 contains 6144 CLBs and
32 blocks of RAM. The lower bound PIC-based design fits in a single Virtex device,
as the memory requirements are three RAM blocks. The other two designs would
require external RAM.

Details of Our Hardware Platform Design

Figure 1 is a block diagram of our hardware platform, the Demonstation. The Ethernet
interface to the Demonstation is a PHY chip [9]. The analog portion of the PHY chip
is the only thing preventing us from connecting a Xilinx FPGA physically to the
Ethernet cable.

We use the Xilinx byte-wide SelectMap interface to configure the FPGA [20].
Data from a 1 Mbyte parallel ROM is written to the SelectMap interface of the FPGA
at power-up by a configuration controller, implemented in a nonvolatile CPLD. The
FPGA then takes control of the configuration controller.

Two banks of asynchronous byte-wide SRAM, each 1 MB, are connected to the
FPGA. One of these SRAM banks connects to both the FPGA and the configuration
controller. This allows the FPGA to load configuration data from the Internet and then
write that data to SRAM. When a configuration file has been assembled in SRAM,
the FPGA instructs the configuration controller to reconfigure the FPGA using the
data in SRAM. Using this scheme, FPGA reconfiguration may be either full or partial.

All the hardware implementations of embedded web servers or TCP/IP stacks (that
we are aware of) either use a serial protocol or require a computer or router to connect
to a shared network. These are important differences, both of which are often ignored,
from a direct internet connection. The Demonstation interfaces directly with the
packet-switched multiple-access Ethernet physical layer. In addition, our design
permits dynamic reconfiguration over the Internet, without the need for an attached
computer, and this (as far as we know) is also unique.

Constructing the Internet in layers (software or hardware) allows each layer to be
changed. Applications use the Internet protocols to transfer data. These protocols are
defined by the Requests for Comments (RFC) [21]. The FPGA must implement an
application that is capable of file transfer using the network protocols to move data to
and from the Demonstation.
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Fig. 1. Block diagram of the Demonstation.

One application that uses TCP is the File Transfer Protocol (FTP). We could use
FTP to transmit configuration and data to the FPGA, but to simplify things, we started
with the Trivial File Transfer Protocol (TFTP), which is less complex than the FTP.
TFTP uses the Universal Datagram Protocol (UDP) rather than TCP. Taken together,
UDP and TFTP function in a similar fashion to TCP, and as a subset of FTP.

The MAC currently supports 10BaseT, but the PHY device will also support
100BaseT, and provides full Carrier Sense, Multiple Access, Collision Detect
(CSMA/CD), and Ethernet II and IEEE 802.3.

The IP layer provides IP address checking and the IP header checksum. In our
TFTP implementation no defragmentation is performed on received IP datagrams
(fragmentation occurs when a datagram is too large for a network between the source
and destination). Defragmentation is generally regarded as being undesirable, because
loss of a single fragment means that the entire datagram will be discarded [8]. TFTP
uses a maximum data block size of 512 bytes, and thus datagrams will not be
fragmented on an Ethernet. We did implement a simple defragmentation design in
approximately 100 Virtex CLBs as an experiment.

The UDP layer performs a checksum on the message contained within the IP
datagram, and provides source and destination port numbers for the applications that
use it. TFTP on the Demonstation implements a write-request server to a client. TFTP
sends a response message back to the client for each message received. This return
message is usually an acknowledgement of data received or an error message. Data
received over the Internet from the client is written to the SRAM (RAM1 in Fig. 2) on
the Demonstation. Once the last data message is acknowledged the TFTP layer
signals the configuration controller to initiate reconfiguration of the FPGA.

Results

Our Demonstation hardware platform successfully performs reconfiguration of Virtex
devices across 10 Mbit/s Ethernet using TFTP in a few seconds. The actual
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reconfiguration time depends heavily upon network loading. TFTP transmits data in
512 byte messages and each message has to be acknowledged before the next can be
transmitted. This gives a theoretical maximum throughput of 8 Mbits/s. Our measured
TFTP results give reconfiguration times of up to a minute for the largest Virtex
devices (which require up to 8 Mbit of configuration data). TCP has a theoretical
maximum throughput of 1.2 Mbyte/s [22] with measured sustained rates at 90% of
this value. We would thus expect to reduce reconfiguration times slightly using TCP
over 10 MB/s Ethernet.

Fig. 2. The Demonstation platform. Top left is the Ethernet interface: cable connector,
transformer and PHY chip. Bottom left is a prototyping area. Bottom right is an LCD panel,
and parallel port (PP) for debugging. Above the LCD is a socket for a Virtex FPGA. Next to the
FPGA socket (above right and below left) are two banks of SRAM (RAM1 and RAM2). To the
right of the FPGA socket are the power regulators. The configuration controller, a nonvolatile
CPLD, is on the underside of the board.

The worst case timing for our design occurs when a full-length frame (containing
1500 bytes of data) is followed by a minimum length frame (with 46 bytes of data).
Frames are separated by an inter-frame gap (IFG) of 9.6 µs. In the worst case we have
to move 1500 bytes from the MAC buffer to SRAM before we can process the next
frame. So we have 67.2 µs to process and store 1500 bytes, or 44.8 ns per byte. Our
design meets this timing constraint using a system clock of 50 MHz, giving us two
clock cycles per byte to process and store each byte.

For 100BaseT Ethernet there would be 15.4 µs to process a full-length frame,
which requires a clock frequency of 146 MHz. The increased data rate could be
implemented by adding another receive buffer and/or by increasing the data path sizes
within the stack.
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Table 3. FPGA implementation summary. The design results in this table were obtained using
Synplify synthesis software with the Xilinx Alliance tools version 2.0. The CLB and RAM
block counts are for the Virtex FPGA family.

Protocol/layer VHDL lines CLBs RAM blocks
MAC 3000 200 6
IP 2000 150 0
UDP 4000 175 3
TFTP 2400 133 0
Total 11400 658 9

The complete FPGA protocol stack contains a total of nine block RAMs and 658
CLBs (or about 13,000 gates by the simple conversion metrics we have used here).
Table 3 summarizes the details of the various protocol and application layers
implemented in the FPGA.

We can compare the breakdown of VHDL and hardware for the Demonstation
protocol stack shown in Table 3 to an analysis of network protocol software for Unix
[22]. About 40% of the Unix code is dedicated to TCP; 20% to IP; 20% to network
utilities (error checking and so on); and 10% to UDP and ARP (a protocol for address
resolution) combined. These estimates hold for both the number of lines of C code
and number of procedures in each protocol layer. One thing these figures tell us is that
we should expect to write another 5000 lines of VHDL code and use at least 200
Virtex CLBs (or about 4 kgate) to implement a TCP layer.

We have tried to compare the results shown in Table 3 with other implementations,
but we believe we are the first to implement a protocol stack in an FPGA and the first
to design a platform that implements reconfiguration over the Internet. Probably the
closest work to ours is a product announced by iReady aimed at internet FAX
machines [23]. The custom iReady chip is built by Seiko and uses 67 kgate for a
network protocol stack (for the point to point protocol, PPP, using a serial port
together with support for IP, TCP, UDP, and two sockets) and 20 kbyte for network
buffers. The iReady chip is thus not able to connect directly to the Internet, but does
implement a TCP/IP stack. From brief discussions with iReady, we believe one
reason for the large difference between their implementation (67 kgate) and ours (13
kgate) is due to the fact that their chip has been designed and tested to work with
many different routers and switches, incurring additional overhead.

In the introduction we explained that we set out to answer three sets of questions.
In this paper we have presented answers to the first set of engineering questions. We
can replace conventional microprocessor and software by FPL in internet
applications. We can implement internet reconfiguration. We can reconfigure an
FPGA containing several hundred thousand gates in a reasonable time across the
Internet.

In the introduction we also posed economic and technology questions for which we
do not yet have answers. We have included very brief remarks on the issues of costs
and power because we find these are questions that we are asked repeatedly when
discussing our project.

We made no cost estimates before building Demonstation and cost did not
influence our design. The current platform is dominated by the cost of the Virtex part,
but low-cost alternatives, such as the Xilinx Spartan FPGAs, are equally suitable.
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Perhaps more telling is that there is no other way to implement the ability to
reconfigure hardware using an internet. In situations where remote reconfiguration is
valuable (such as satellites, for example) cost may be less of a factor.

The 8051 design gives us the ability to estimate power dissipation of an average
embedded TCP/IP stack implementation. The Dallas Semiconductor 8051 consumes
about 5 mW/MHz [24]. In the Xilinx Virtex family, the 8051 core runs at about 30
MHz. At 30 MHz the Dallas 8051 consumes 150 mW. We can quickly estimate that
an 8051 core running in a Virtex part at 30 MHz would consume more than this. Our
current Virtex implementation draws nearly 1 A total while using three different
supply voltages (5V, 3.3V, and 2.5V). The Demonstation includes FPGA, CPLD,
static RAM, LCD, parallel port, and PHY chip, and we made absolutely no effort to
minimize the power consumption of the present platform design.

We presented an FPGA implementation of the network protocols required to
connect hardware to an internet. We compared our design with other possible
implementations using standard processors. We have demonstrated that FPL can be
used to provide network protocols and applications that are currently implemented
using software and a general-purpose microprocessor. Complete details of the
XCoNet project are documented on the Web [25].
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