
Gene Matching Using JBits

Steven A. Guccione and Eric Keller

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 (USA)
fSteven.Guccione,Eric.Keller g@xilinx.com

Abstract. As the emerging field of bioinformatics continues to expand, the abil-
ity to rapidly search large databases of genetic information is becoming increas-
ingly important. Databases containing billions of data elements are routinely
compared and searched for matching and near-matching patterns. In this paper we
explore the use of run-time reconfiguration using field programmable gate arrays
(FPGAs) to provide a compact, high-performance matching solution to accelerate
the searching of these genetic databases. This implementation provides approxi-
mately an order of magnitude increase in performance while reducing hardware
complexity by as much as three orders of magnitude when compared to existing
commercial systems.

1 Introduction

One of the fundamental operations in computing is string matching. Here two linear
arrays of characters are compared to determine their similarity. This operation can be
found across a wide range of algorithms and applications. One area where string match-
ing has recently received a renewed interest is in the area of bioinformatics, in particular
in the area of searching genetic databases.

With the initiation of the Human Genome Project [2] in the early 1990s, the amount
of data to be searched, as well as the number of searches being performed on this data
has continued to increase. Because of the size and ongoing growth of this problem,
specialized systems have been commercially introduced to search these databases of
genetic information.

In this paper we present a system used to implement one of the most popular ge-
netic search algorithms, the Smith-Watermann algorithm, using run-time reconfigura-
tion. This approach provides not only smaller, faster circuits, but also reduces the input-
output requirements of the system while simplifying hardware / software interfaces.

2 The Smith-Watermann Algorithm

While many applications performing string matching look for an exact match to the
searched data, many other applications are interested in finding approximate matches.
This requires a somewhat more complex algorithm than the search for exact matches.
In the early 1970s, at least nine independent discoveries of a dynamic programming
algorithm for searching for inexact matches when comparing strings were published.
This algorithm has found use in fields as diverse as speech and image processing, cryp-
tography, text processing, and artificial intelligence [14].

2

One area where inexact string matching has become important is in the searching
genetic databases [13]. The optimal algorithm for inexact search in the field of bioin-
formatics is typically known asSmith-Watermannand uses a dynamic programming
technique. The algorithm compares two stringsS andT by performing a pairwise com-
parison of each element in the two strings, then computing a score to determine the
similarity of the two strings. Figure 1 gives a two-dimensional representation of the al-
gorithm. The two stringsS andT are compared and intermediate valuesa, b andc are
used to produce the intermediate result,d. This calculation is repeated once for each
pairwise element comparison.

Tj

...
a b

Si � � � c d

Fig. 1. Pairwise comparisons in the Smith-Watermann matching algorithm.

The matching algorithm itself is given in Figure 2. If the elements being compared
in the two strings are the same, the valuea used to calculate the result valued. If the
elements in the two strings are not the same, then the value ofa plus somesubstitution
penalty is used. The result valued is determined by taking the minimim of this value,
the value ofb plus someinsertionpenalty and the value ofc plus somedeletionpenalty.

d = min

8><
>:

�
a if Si = Tj

a+ sub if Si 6= Tj

b+ ins

c+ del

(1)

Fig. 2.The Smith-Watermann matching algorithm.

In the case where stringS is of lengthm and stringT is of lengthn, the algorithm
begins by comparingS0 andT0 and proceeds onward until a final value ofd is calculated
at the comparison ofSm andTn. This value ofd is theedit distancebetween the two
strings.

Because of the pairwise comparison between each element in stringS with each
element in stringT , the algorithm has a computational of complexity ofO(mn). Many
other matching algorithms popularly used in searching genetic databases including
BLAST, FASTA, Needleman-Wunsch and others have been published and implemented
to provide fast searching of genetic databases. While these algorithms provide high per-
formance, they are all sub-optimal and in some way compromise the quality of the
result. For this reason, Smith-Watermann is the preferred algorithm, but performance

3

issues often result in the use of one of these sub-optimal algorithms in its place. A good
overview of the various searh algorithms is avalaible on-line at the the Paracel WWW
site [4].

3 FPGA Implementations

One of the limitations in performance inherent in the Smith-Waternamm algorithm is
that it does not completely parallelize. Because results fromSi�1 andTj�1 are used
to compute the value at(Si; Tj), the computation proceeds serially across both thei

and j axes. These data dependencies, however, permit some level of parallelization.
If the nxm comparisons performed in the algorithm is viewed as a two dimensional
array, then the algorithm can be seen as proceeding from the upper left corner of the
array, whereS0 is compared toT0, downward and to the right until the final value of
d is computed using the comparison ofSn andTm. The data dependencies indicate
that calculations may proceed in parallel across diagonals of this array. In addition, all
communication of results are local, with data being passed to neighbors in the array.

This structure makes the problem amenable to the use of a systolic array, as de-
scribed by Kung [9]. In this approach, data is pumped through an array of simple,
identical processors, with results being produced on each clock cycle. An early imple-
mentation of the Smith-Waternamm algorithm was done using custom VLSI by Lipton
and Lopresti [10] [11] [12]. It was this approach that was used by Houang in his work
with theSplash 2reconfigurable logic based processor [8] [6].

It was the outstanding results of Houang with theSplash 2system which led us to
re-visit this approach. While the interest in searching genomic databases has increased
over the last decade, so has the speed and density of reconfigurable logic technology.
While a simple porting of the originalSplash 2design to more modern FPGA devices
would provide an excellent demonstration of the advancements in FPGA hardware tech-
nology, it was also desirable to explore some of the advances in FPGA software tech-
nology, in particular the use of run-time reconfiguration.

4 The JBits Implementations

Rather than using the standard VHDL design flow to implement the Smith-Watermann
algorithm, the XilinxJBits toolkit was used [7]. TheJBits toolkit is a set of Java tools
and APIs that permit direct impementation and reconfiguration of circuits for the Xil-
inx Virtex family of FPGAs.JBitswas particularly useful in the implementation of this
algorithm because there were several opportunities to take advantage of run-time cir-
cuit customization. In addition, the systolic approach to the computation permitted a
single parameterizable core representing the processing element to be designed, then
replicated as many times as necessary to implement the fully parallel array.

The logic implementation of the algorithm is shown in Figure 3. Each gray box
represents a LUT / flip-flop pair. This circuit demonstrates four different opportunities
for run-time circuit customization. Three of these are the folding of the constants for
the insertion, deletion and substitution penalties into the LUTs. Rather than explicitly
feeding a constant into an adder circuit, the constant can be embedded in the circuit,

4

resulting in (in effect) a customized constant adder circuit. Note that these constants
can be set at run time and may be parameters to the circuit.

The fourth run-time optimization is the folding of the match elements into the
circuit. In genomic databases, a four character alphabet is used to represent the four
bases in the DNA molecule. These characters are typically denotedA for adenine,T for
thymine,G for guanine andC for cytosine. In this circuit, each character can be encoded
with two bits. The circuit used to matchSi andTj does not require that both strings be
stored as data elements. In this implementation, theS string is folded into the circuit as
a run-time customization. Note that unlike the previous optimizations, the string values
are not fixed constants and will vary from one run to another. This means that the entire
stringS is used as a run-time parameter to produce the customized circuit.

Fig. 3. The combinational logic of the Smith-Watermann circuit.

The basic combinational logic of the algorithm must now be combined with memory
elements to produce the systolic processing element. Figure 4 shows the combinational
logic combined with flip-flop memory elements used to produce the systolic processing
element.

Fig. 4. The Processing Element circuit.

5

This design uses a feature of the algorithm first noted by Lipton and Lopresti [10].
For the commonly used constants, 1 for insert/delete and 2 for substitution,b andc can
only differ froma by +1 or -1, andd can only differ froma by either 0 or 2. Because of
this modulo 4 encoding can be used, thus requiring only 2 bits to represent each value.
The final output edit distance is calculated by using an up-down counter at the end of
the systolic array. For each step, the counter decrements if the previous output value
is one less than the current one and it increments otherwise. The up-down counter is
initialized to the match string length which makes zero the minimum value for a perfect
match. Figure 5 give the circuit diagram of the complete systolic array.

Fig. 5. The complete systolic array circuit.

Further optimizations were performed on the circuit to more efficiently map the de-
sign to the Virtex architecture. Shown in Figure 6 is the optimized circuit efficiently
mapped to the Virtex architecture. These optimizations make use of the Virtex carry
chain, which reduced the delay of the circuit since general routing was not needed. The
optimization is evident in the equation in Figure 7 which is equivalent to the one in Fig-
ure 2 . The equation is basically a wide or gate which is efficiently implementable with
the Virtex carry-chain. Another optimization evident from the transformed equation is
the fact thatd is equal toa or a+ 2. Because of this the least significant bits ofa andd
are always equal. Therefore, only 1 bit is needed to representd.

5 Comparison with Splash 2 Implementation

The advances in semiconductor technology over the past decade make comparisons be-
tween this implementation and that of theSplash 2system interesting. In theSplash 2
system, as many as 16 boards each containing 17 Xilinx XC4010 FPGAs comprised the
system. By counting only LUT / flip-flop pairs, a system similar in capabilities to the
fully expanedSplash 2could be implemented using approximately ten Virtex XCV1000
devices. Similarly, approximately four Virtex 2 XC2V6000 devices could also imple-
ment such a system. In addition, clock speeds in FPGAs have increased dramatically
over the last decade.

It is also interesting to isolate the advantages due to the use of run-time reconfigu-
ration. The originalSplash 2design was implemented in VHDL and produced a circuit
using approximately 33 LUT / flip-flop pairs per processing element. By comparison,

6

<>s0

t0in

0 0 1

a+1=

b=c

0

din

INIToutINITin

1

1
s1

t1in

dout

t1out
t0out

0 1

0 1

Fig. 6.The optimized logic of the Smith-Watermann circuit.

d =

�
a if b or c equalsa� 1 or Si = Ti

a+ 2 if b andc equala+ 1 andSi 6= Ti
(2)

Fig. 7.The transformed Smith-Watermann matching algorithm with a insert cost of 1, delete cost
of 1, and substitute cost of 2.

theJBits circuit uses only six LUT / flip-flop pairs, a savings of approximately a fac-
tor of 5.5. Much of this savings comes directly from the ability to fold constants and
variables into the circuit at run-time.

Clearly, some of the optimizations involving fixed constants such as the insert,
delete and substitution penalties could, and probably were, folded into the circuit in
the original VHDL design. These types of optimizations are commonly performed by
standard static design tools and do not specifically require run-time reconfiguration.
The ability to parameterize the circuit based on the string data, however, would not
typically be performed by standard design tools. Customizing a circuit in this manner
would require that the design tools be re-run for each string being matched. This would
be impractical in most cases. Circuit customization at run-time, however, makes this an
attractive option.

In addition, folding the string data into the circuit results in further savings. By
making the string data external to the circuit, two flip-flops per processing element
must be used to shift in and store this string data. This alone results in a 30 per cent
increase in circuit size. In addition, because the match string must be loaded into the
circuit as data, other control lines and circuitry must be used to manage this process.
Finally, time must be spent loading this data separately from the circuit configuration.
When the data is folded into the circuit through run-time customization, it is loaded as
part of the circuit and incurs no additional overhead. Loading the data may substantially
increase the time required to perform matching in large arrays.

7

6 Other Current Implementations

As the computing demmands of bioinformatics has continued to increase, commercially
available solutions to the problem of searching genetic databases have become avail-
able. Today the three major systems used commercially all take different approaches. It
should also be noted that these systems all support a variety of matching algorithms in
addition to Smith-Watermann. Table 1 gives a comparison of the various technologies
currently available to perform Smith-Watermann matching. For a historical comparison,
theSplash 2work of Houang has also been included.

Table 1.This displays both performance and hardware size for various implementations.

Processors Updates
per DeviceDevices per sec

Celera (Alpha cluster) 1 800 250B
Paracel (ASIC) 192 144 276B

TimeLogic (FPGA) 6 160 50B
Splash 2 (XC4010) 14 272 43B
JBits (XCV1000-6) 4,000 1 757B

JBits (XC2V6000-5) 11,000 1 3,225B

The first system listed in Table 1 is from Celera Genomics, Inc. Celera Genomics
is a commercial company owned by Applera, Inc. which completely sequenced the
human genome in June 2000 [1]. This work was done in parallel (some say in compe-
tition) with the publically funded Human Genome Program. Celera uses an 800 node
Compaq Alpha cluster for their database searches. This arrangement is able to perform
approximately 250 billion comparisons per second. The major advantage of such a mul-
tiprocessor system is its flexibility. The drawback, however, is the large cost associated
with purchasing and maintaining such a large server farm.

The second system listed in the table is made by Paracel, Inc. Paracel takes a custom
ASIC approach to the matching problem [3]. Their system uses 144 identical custom
ASIC devices, each containing approximately 192 processing elements. This produces
276 billion comparisons per second, which is comparable to Celera’s server farm ap-
proach, but using significantly less hardware. Interestingly, Paracel was bought in June
2000 by Applera, Inc., the company which also owns Celera Genomics.

TimeLogic, Inc. also offers a commercial system but uses FPGAs and describes
their system as using “reconfigurable computing” technology [5]. They currently have
six processing elements per FPGA device and support 160 devices in a system. This sys-
tem performs approximately 50 billion matches per second. This is significantly lower
in performance than the Celera Genomics or Paracel systems, but the use of FPGAs
results in a more flexible system which does not incur the overheads of producing a
custom ASIC.

For historical comparisons theSplash 2system is included in this table. Although
the results are nearly a decade old, the fully loadedSplash 2system contains 272 FP-

8

GAs, each supplying 14 processing elements, producing a match rate of 43 billion
matches per second. These are surprisingly respectable numbers for ten year old tech-
nology in a rapidly changing field.

Finally, theJBits implementations using a Xilinx XCV1000 Virtex device imple-
ments 4,000 processing elements in a single device running at 188 MHz in the fully
optimized version. This results in over 750 billion matches per second. And if the newer
Virtex 2 family is used, a single XC2V6000 device can be used to implement approx-
imately 11,000 processing elements. At a clock speed of over 280 MHz, this give a
matching rate of over 3.2trillion elements per second.

7 Conclusions

A gene matching system using run-time reconfiguration and operating on a single
FPGA device has been presented. This system is able to perform Smith-Watermann
matching at a rate of over three billion matches per second. This compares favorably
to the currently available systems used commercially in this field. In the area of perfor-
mance, the run-time reconfiguration approach provides an order of magnitude increase
over both custom ASIC and multiprocessor systems, while reducing the hardware com-
plexity by two to three orders of magnitude.

Such results would often indicate that some system parameter, usually flexibility,
has been lost. This, however, is not necessarily true. It is possible to use similar tech-
niques to implement other matching algorithms other than Smith-Watermann using run-
time reconfiguration. Interestingly, there may be little or no advantage to implementing
sub-optimal matching algorithms using this approach. Because this implementation ap-
pears to be limited more by data input / output than by processing power, implementing
a faster algorithm may not provide substantial increases in performance. This would
make the sub-optimal algorithms much less desirable.

As the field of bioinformatics continues to grow, and various fields from drug design
to law enforcement come to rely on this technology, it is expected that interest in high
performance matching systems will continue to grow. Reconfigurable logic and run-
time reconfiguration promise to permit faster, less expensive systems to be produced to
meet these needs.

References

1. Celera Genomics, Inc. World Wide Web site http://www.celera.com/, 2002.
2. The Human Genome Project Information. World Wide Web site http://www.ornl.gov/hgmis/,

2002.
3. Paracel, Inc. World Wide Web site http://www.paracel.com/, 2002.
4. Paracel, Inc. Frequently Asked Questions (FAQ). World Wide Web page

http://www.paracel.com/faq/, 2002.
5. TimeLogic, Inc. World Wide Web site http://www.timelogic.com/, 2002.
6. Maya Gokhale, William Holmes, Andrew Kosper, Sara Lucas, Ronald Minnich, and Douglas

Sweely. Building and using a highly parallel programmable logic array.IEEE Computer,
pages 81–89, January 1991.

9

7. Steven A. Guccione, Delon Levi, and Prasanna Sundararajan. JBits: A java-based inter-
face for reconfigurable computing. In Richard Katz, editor,Second Annual Military and
Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD),
September 1999.

8. Dzung T. Hoang. Searching genetic databases on splash 2. In Duncan A. Buell and Ken-
neth L. Pocek, editors,IEEE Workshop on FPGAs for Custom Computing Machines, pages
185–191, Los Alamitos, CA, April 1993. IEEE Computer Society Press.

9. H. T. Kung. Why systolic architectures?IEEE Computer, 15(1):37–46, January 1982.
10. Richard Lipton and Daniel Lopresti. A systolic array for rapid string comparison. In Henry

Fuchs, editor,1985 Chapel Hill Conference on Very Large Scale Integration, pages 363–376.
Computer Science Press, 1985.

11. Richard Lipton and Daniel Lopresti. Comparing long strings on a short systolic array. In
Will Moore, Andrew McCabe, and Roddy Urquhart, editors,Systolic Arrays, pages 181–190.
Adam Hilger, 1986.

12. Daniel P. Lopresti. P-NAC: A systolic array for comparing nucleic acid sequences.IEEE
Computer, pages 98–99, July 1987.

13. David Sankoff and Joseph B. Kruskal, editors.Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1983.

14. Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.Journal
of the ACM, 21(1):168–173, 1974.

